Creating Various Styles of Animations Using Example-Based Filtering

Ryota Hashimoto

Henry Johan

Tomoyuki Nishita

Department of Computer Science
The University of Tokyo
{hashiryo, henry, nis} @is.s.u-tokyo.ac.jp

Abstract

A number of Non-Photorealistic Rendering methods for
producing artistic style images have been developed. Re-
cently, a method called “Image Analogies™ was proposed.
This method is based on the idea of example-based filtering
that uses a pair of images (an original image and a filtered
image) as training data and creates an image which has a
style that resembles the filtered image of the training data.
This method has great flexibility since the users can cre-
ate various styles of images by simply changing the training
data. In this paper, we extend “Image Analogies™ to cre-
ate various styles of animations. The coherence between
frames is considered by computing the pixel flows between
the frames. From experimental results, the proposed method
can create nice animation sequences.

1 Introduction

Non-Photorealistic Rendering (NPR) has gained much
attention since it can create more impressive images than
photorealistic rendering does. The advantage of NPR isthat
it can omit fine details and produce images which contain
only the important portions of the scenes. One of the im-
portant fieldsin NPR deals with the problem of how to pro-
duce artistic style images, such as pen-and-ink illustrations,
oil paintings, watercolor paintings, and so on. A number of
NPR methods for these purposes are proposed and users can
choose the most effective rendering method for expressing
their idea.

Hertzmann et al. [8] proposed a new image synthesis
method based on the concept of machine learning. Their
method learns a filter from given examples images (which
consist of two images, unfiltered and filtered) and applies
the learned filter to the target image. The advantage of this
method isthat it can create various styles of images by sim-
ply changing the training data. In the rest of this paper, we
will use theterm “Image Analogies’ to refer to this method.

“Image Anaogies’, however, cannot directly be applied

to animations. In the case of animation, frame-to-frame co-
herence is very crucial. Simply applying “Image Analo-
gies’ to each frame of the animation independently will
produce an animation that appears to flicker considerably.
In this paper, we extend “Image Analogies’ to deal with
animation. To maintain the coherence, the pixel flows be-
tween the previous frame and the current frame are first
computed. Then, based on thisinformation, the method de-
cides whether the pixel values in the current frame should
be recomputed or simply copied from the previous frame.
As aresult, coherency between framesis preserved consid-
erably.

This paper is organized as follows. Section 2 discusses
related work on artistic style rendering. Section 3 briefly
describes “Image Analogies’. Section 4 describes the pro-
posed method for creating various styles of animations.
Section 5 shows the experimental results of our method.
Section 6 concludes this paper and describes a challenge
for future research.

2 Reéated work

Many methods for creating artistic style images have
been proposed. Haeberli [4] created impressionistic images
by drawing an ordered collection of brush strokes. Methods
for creating pen-and-ink style images have been presented
by Salisbury et al. [14] and Winkenbach and Salesin [16].
Curtiset al. [3] proposed awatercolor painting method us-
ing fluid simulation. Hertzmann [6] used cubic B-splinesto
simulate strokes of various sizesin order to produce stroke-
based paintings (e.g. oil paintings). Kowalski et al. [11]
presented an algorithm that uses strokesto render 3D scenes
in astylized manner suggesting the complexity of the scene,
such as fur, grass and trees, without representing it explic-
itly. These previous works can be used only to create spe-
cific art-style images. On the other hand, Hertzmann et al.
[8] proposed an image synthesis method that learns the fil-
ter represented by training images and applies it to a target
image. As aresult, various styles of artistic images can be
created by simply changing the training images.

In the case of NPR animation, Meier [13] proposed a
method for rendering animations in a painterly style that
provides the coherence between frames in animations by
modeling surfaces as 3D particle sets. Techniquesfor main-
taining coherence when creating impressionist style anima-
tions using the optical flow approach were presented by
Litwinowicz [12] and Hertzmann and Perlin [7]. Kaplan
et al. [9] presented an algorithm for rendering coherent
scenes and highly coherent animations in avariety of artis-
tic styles using an editable particle system. Hagacet al. [5]
proposed a method for rendering pen-and-ink-style anima-
tions with frame-to-frame coherence by using the stroke in-
formation of the previous frame. However, these methods
can only create animations of a specific artistic style. Klein
et al. [10] proposed a method that treats the input video as
a space time volume image of data. The coherence between
frames is established with the help of the users. Neverthe-
less, this method creates a flickering animation for certain
artistic styles.

3 Overview of “Image Analogies’

“Image Analogies’ is based on the recent advancement
in texture synthesis algorithms [15, 2]. Texture synthesis
aimsto create textureswith arbitrary size and shapes, which
look like the original input texture. The idea of these ap-
proaches is to copy the value of the pixel in the original
texture which has a neighborhood resembling the neighbor-
hood of the computed pixel in thetexture being synthesized.

Asinput, “Image Analogies’ takes three images, the un-
filtered source image A, the filtered source image A’, and
the unfiltered target image B. As output, the method pro-
duces thefiltered target image B’, such that

A:A:B:B.

In other words, the goal isto create image B’ that relates to
B “inthe sameway” as A’ relatesto A.

The approach assumes that the colors at and around any
given pixel g in A correspond to the colors at and around
the same pixel ¢ in A’. Through out the paper, the symbol
q is used to specify both a pixel in A and its correspond-
ing pixel in A’. Similarly, symbol p is used to specify the
corresponding pixelsin B and B’.

The image synthesis process using a multiresolution ap-
proach is as follows:

1. Createimage B’ from the coarsest to the finest levels.

2. Determinethe pixel value of each pixel p in B; (image
at the [-th level resolution) in a raster scan ordering
by finding a pixel ¢ in A; which has a neighborhood
nearest to the neighborhood of p.

::H:: @EH

5 p

unfiltered image filtered image
Figure 1. The single resolution neighborhood
of pixel p is defined as the union of the L-
shaped region which centers on p in the fil-
tered image and the rectangular region which
centers on p in the corresponding unfiltered
image.

The core of thisalgorithm isthe neighborhood matching.
The single resolution neighborhood of pixel p is shown in
Figure 1. Intuitively, the size of the neighborhood should
be at least as large asthe largest structure of the image filter
represented by thetraining data A and A’. However, for im-
ages containing large scale structures, alarge neighborhood
must be used, resulting in increased computation time.

This problem is solved by using a multiresolution syn-
thesis approach. Computational cost is reduced since large
scale structures can be represented more compactly with a
few pixels at a coarser level resolution. Assume that p’ is
the corresponding pixel of p in the one level coarser resolu-
tion filtered image. The multiresolution neighborhood of p
is extended from the single resolution neighborhood of p to
include the single resolution neighborhood of p'.

The search in step 2 is done by performing a global
search and a local search, and the best search result is re-
turned. The global search is performed using a similar ap-
proach to that proposed by Wei and Levoy [15]. The Ap-
proximate Nearest Neighbor (ANN) [1] method is used to
accelerate the search. The local search uses the approach
proposed by Ashikhmin [2] which uses the search result of
the preceding pixels and their relative positions.

4 Creating animations

In this section, we first describe an outline of the algo-
rithm, then explain its details.

4.1 Outline
Our agorithm takes two images, the unfiltered source

image A and the filtered source image A’, and a se-
guence of images (animation), the unfiltered target ani-

search domain

m o~
m

previous frame current frame
Figure 2. Search domain for motion estima-
tion.

mation Bj --- By (where T' denotes the length of the an-
imation). The algorithm produces the filtered animation
Bj - - - BY. asoutput, such that

A: A By By

for every t. In other words, our agorithm creates an anima-
tion such that the relationship between B; and B; is same
as the relationship between A and A’ for every t.

The problem when creating NPR animations is the loss
of coherence between frames. Usually, we are aware of
the loss of coherence when the animation appears to flicker.
The noise that generates the flickering is easily introduced
especialy when we create animations containing certain
artistic styles. In our approach, wetry to preserve coherency
by maintaining the temporal redundancy of the original an-
imation.

The outline of the proposed method is as follows:

1. Createthefirst frame B/ using the agorithm described
in Section 3.

2. Createframesfor¢ = 2,---,T fromthe coarsest to the
finest level using the following steps.

3. Calculate the motion between B;_, ; and B; ;, (images
at the I-th level resolution) by cofnputi ng the corre-
spondence map prev which maps the pixelsin B; ; to
the pixelsin B;_, , (refer to Section 4.2) . '

4. Determine the pixel value of each pixel p in B}, in
a raster scan ordering by first selecting the search
method according to the change between the neighbor-
hood of p and the neighborhood of prev(p) in the fil-
tered image, and then find the nearest pixel ¢ from A
(refer to Section 4.3).

4.2 Motion estimation

In motion estimation, for each pixel p in B, ; we search
for its corresponding pixel prev(p) in B,_;,. Before we

& |

stripes

previous frame current frame
Figure 3. Stripes appear when several pixels
in the current frame are set to correspond to
a single pixel in the previous frame.

describe the algorithm, we first define the notion of neigh-
borhood used in motion estimation. The definition of neigh-
borhood used here is different from that used in “Image
Analogies’. For motion estimation, the neighborhood of
p isdefined asan n x n pixel rectangle with p asits center
(n isan odd number). In our experiment, we set n to 5. This
valueis determined based on experimental results.

The corresponding pixel of p a the previous frame
prev(p) is computed by finding a pixel in the previous
frame whose neighborhood resembl es the neighborhood of
p. The similarity between two neighborhoods is measured
by the Mean Absolute Difference of the colors of their pix-
els. In most cases, the motion is relatively small, thus a
local search around the same location as p in the previous
frame is sufficient to find the corresponding pixel. Based
on several experimenta results, in practice, we perform
the search on pixelsin B;_,; which are located inside an
(6n+ 1) x (6n + 1) pixel rectangle whose center coincides
with the location of p (see Figure 2). This approach works
well for preserving coherence when we create an anima-
tion using “Image Analogies’ because it resembles “Image
Analogies’ in the way that both methods perform searching
by comparing neighborhoods of pixels.

However, due to the simplicity of the algorithm, thereis
a chance that several pixelsin B, ; are set to correspond to
asingle pixel v in B;_; ;. This can cause problems since
there is a possibility that the value of v is used as the value
of those pixels. Asaresult, stripes (see Figure 3), consisting
of pixels of the same color, may appear in B, ;. Inthis case,
we employ a heuristic approach which selects the pixel in
B, ; with the minimum moving distance as the pixel that
corresponds to u. For the rest of the pixels, we assume that
they do not have corresponding pixelsin B;_; ;. From ex-
perimental results, this simple solution works well.

nearest to prev(p)

Figure 4. Shortcut global search is performed
in the subtree of the ANN tree.

4.3 Coherence preserving search

Using the correspondence map prev described in Section
4.2, we measure the coherency degree of pixel p, coh(p),
which represents the amount of change in the neighborhood
pixels of p in the filtered image from the previous frame.
Specifically, coh(p) is defined as the value of the number
of pixelsin the neighborhood of p for which the colors and
relative positions with respect to p are unchanged since the
previousframe divided by thetotal number of neighborhood
pixels (0.0 < coh(p) < 1.0). For pixels which do not have
corresponding pixels in the previous frame, we assign zero
to their coherency values.

According to coh(p), we modify the search methods as
follows.

0 < coh(p) < €1
The neighborhood of p has changed greatly, therefore,
the search is performed using both aglobal and alocal
search.

€1 < coh(p) < €

The neighborhood of p has been well preserved, so we
assume that the global search result islocated near the
result of the previous frame. Thus, we can search for
the nearest pixel of p with a shortcut global search and
alocal search. The shortcut global search is performed
not in the whole ANN tree, but in the subtree which
includes the nearest pixel of prev(p) (see Figure 4).
The depth of the subtree is determined in proportion to
the value of coh(p).

Table 1. The computation times (minutes per
frame) for generating the result animations.

| Style of the animation | Computation time |

Texture-by-numbers 2
Oil painting 2
Watercolor painting 2
Pen-and-ink 2

€2 < coh(p)
The neighborhood of p has been very well preserved,
so there is no need to search for the nearest pixel of p.
Instead, we just set the nearest pixel of prev(p) to be
the nearest pixel of p.

The optimal values for ¢; and e, are determined based
on the results of several experiments. In practice, we set ¢
to 0.3 and ¢, to 0.8, respectively.

5 Results

All of the results presented here (Figures 6 and 8 (see
Color Plate for Figure 8), from top to bottom) show severa
frames taken from the created animations®.

Figure 5 shows the training images for creating the an-
imations of a flower field. Figure 6 shows the origina an-
imation, the resulting animation using “Image Analogies’,
and the resulting animation using the proposed method. The
proposed method outperformed “Image Analogies’ with re-
spect to the quality of the created animations. Creating the
frames independently using “Image Analogies’ produced
an animation that appeared to flicker considerably, for ex-
ample inside the encircled areas of the middle column in
Figure 6. On the contrary, the proposed method succeeded
to preserve the coherence between frames, for example in-
side the encircled areas of the right column in Figure 6.

Theinput movie for the examples shown in Figure 8 was
taken using a video camera. The movie was processed in
three different styles using the training data shown in Figure
7. The results of applying oil painting, watercolor painting,
and pen-and-ink styles to the original movie can be seen in
Figure 8. We also used “Image Analogies’ to create anima-
tions for these examples, however, the resulting animations
exhibited severe flickering due to the lack of coherence be-
tween frames.

Table 1 shows the length of time required to create one
frame of each of the animations using a Pentium 4 3.06
GHz machine. The size of each frame of the animations

1Created animations can be seen at the following URL.
http://nis-lab.is.s.u-tokyo.ac.jp/cgi2003_hashimoto/

in Figures 6 and 8 are 320x 240 pixels and 352 x 240 pixels,
respectively. The computation time depends on the frame
sizes, the sizes of the training images, and the amount of
object movement in the animation.

6 Conclusion and futurework

This paper has proposed a method that creates various
styles of animations using example-based filtering. When
creating the animation, the proposed method measures the
coherence between frames and uses this information to se-
lect the best suited search method. As a result, the amount
of observed flickering in the created animations can be
considerably reduced. We have shown that the proposed
method can be used to create various styles of animations.

Similar to “Image Analogies’, the proposed method has
a high computational cost. This becomes a problem when
we want to create a long animation with frames of a large
size. Therefore, we are interested in speeding up the image
synthesis process.

Acknowledgment

We would like to thank Toshiyuki Haga for his help and
discussion during the early stages of this work. We also
would like to thank Hajime Matsui for providing the oil
painting image in Figure 7 and Tomohiro Nishita for pro-
viding the pen-and-ink image in Figure 7.

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silver-
man, and A. Y. Wu, “An Optimal Algorithm for Ap-
proximate Nearest Neighbor Searching in Fixed Di-
mensions’, Journal of the ACM, Vol. 45, No. 6, 1998,
pp. 891-923.

[2] M. Ashikhmin, “Synthesizing Natural Textures’,
Proceedings on 2001 Symposium on Interactive 3D
Graphics, 2001, pp. 217-226.

[3] C.J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleis-
cher, and D. H. Salesin, “Computer-Generated Wa-
tercolor”, Proceedings of ACM SIGGRAPH 97, 1997,
pp. 421-430.

[4] P E. Haeberli, “Paint by Numbers. Abstract Image
Representations’, Computer Graphics (Proceedings
of ACM SIGGRAPH 90), Vol. 24, No. 4, 1990, pp.
207-214.

[5] T. Haga, H. Johan, and T. Nishita, “Animation
Method for Pen-and-Ink Illustrations Using Stroke

6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Coherency”, Proceedings of CAD/Graphics 2001,
2001, pp. 333-343.

A. Hertzmann, “Painterly Rendering with Curved
Brush Strokes of Multiple Sizes’, Proceedings of
ACM SIGGRAPH 98, 1998, pp. 453-460.

A. Hertzmann and K. Perlin, “Painterly Rendering for
Video and Interaction”, Proceedings of NPAR 2000,
2000, pp. 7-12.

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and
D. H. Salesin, “Image Analogies’, Proceedings of
ACM SIGGRAPH 2001, 2001, pp. 327-340.

M. Kaplan, B. Gooch, and E. Cohen, “Interactive
Artistic Rendering”, Proceedings of NPAR 2000,
2000, pp. 67-74.

A.W.Klein, P. J. Sloan, A. Finkelstein, and M. F. Co-
hen, “Stylized Video Cubes’, Proceedings of 2002
Symposium on Computer Animation, 2002, pp.15-22.

M. A. Kowalski, L. Markosian, J. D. Northrup,
L. Bourdev, R. Barzdl, L. S. Holden, and J. F. Hughes,
“Art-Based Rendering of Fur, Grass, and Trees’, Pro-
ceedings of ACM SIGGRAPH 99, 1999, pp. 433-438.

P. Litwinowicz, “Processing Images and Video for
an Impressionist Effect”, Proceedings of ACM SIG-
GRAPH 97, 1997, pp. 407-414.

B. J. Meier, “Painterly Rendering for Animation”,
Proceedings of ACM SIGGRAPH 96, 1996, pp. 477-
484.

M. P. Sdlisbury, S. E. Anderson, R. Barzel, and
D. H. Salesin, “Interactive Pen-and-Ink Illustration”,
Proceedings of ACM SIGGRAPH 94, 1994, pp. 101-
108.

L. Wei and M. Levoy, “Fast Texture Synthesis Using
Tree-Structured Vector Quantization”, Proceedings of
ACM SIGGRAPH 2000, 2000, pp. 479-488.

G. Winkenbach and D. H. Salesin, “Computer-
Generated Pen-and-Ink Illustration”, Proceedings of
ACM SIGGRAPH 94, 1994, pp. 91-100.

i

unfiltered

Figure 5. The unfiltered and filtered source images for creating animations of a flower field.

3 T o

gL ot ot 81

et 5 ot St "
Original “Image Analogies’

Figure 6. Creating animations of a flower field using a texture-by-numbers approach. The regions
inside the encircled areas in the resulting animation using “Image Analogies” flicker considerably
while the corresponding regions using the proposed method do not.

unfiltered filtered unfiltered filtered
Qil painting Watercolor painting Pen-and-ink

Figure 7. The unfiltered and filtered source images for creating animations in artistic styles.

Originad Oil painting Watercolor painting Pen-and-ink

Figure 8. Original movie and oil painting, watercolor painting, and pen-and-ink versions.

