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Abstract

Divide-and-conquer ray tracing (DACRT) methods solve intersec-
tion problems between large numbers of rays and primitives by
recursively subdividing the problem size until it can be easily
solved. Previous DACRT methods subdivide the intersection prob-
lem based on the distribution of primitives only, and do not exploit
the distribution of rays, which results in a decrease of the render-
ing performance especially for high resolution images with anti-
aliasing. We propose an efficient DACRT method that exploits the
distribution of rays by sampling the rays to construct an accelera-
tion data structure. To accelerate ray traversals, we have derived a
new cost metric which is used to avoid inefficient subdivision of the
intersection problem where the number of rays is not sufficiently
reduced. Our method accelerates the tracing of many types of rays
(primary rays, less coherent secondary rays, random rays for path
tracing) by a factor of up to 2 using ray sampling.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

Keywords: ray tracing, divide-and-conquer algorithm, ray sam-
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1 Introduction

Recent advances in ray tracing have led to the achievement of inter-
active performance for both static and dynamic scenes, by using ac-
celeration data structures such as grids [Wald et al. 2006; Kalojanov
et al. 2011], kd-trees [Shevtsov et al. 2007; Zhou et al. 2008], and
bounding volume hierarchies (BVHs) [Wald 2007]. These methods
construct and store acceleration data structures before ray tracing.

In recent years, alternative approaches that do not store auxiliary
data structures have been proposed [Mora 2011; Keller and Wachter
2011; Afra 2012]. These approaches, called divide-and-conquer ray
tracing (DACRT), calculate the intersection tests between a set of
rays and a set of primitives based on the divide-and-conquer algo-
rithm. DACRT solves an intersection problem between a set of rays
and a set of primitives by subdividing the problem into subprob-
lems whose problem sizes (i.e. the numbers of rays and primitives)
are smaller. DACRT subdivides the intersection problem by parti-
tioning the set of primitives, and simultaneously traversing the set
of rays.

Previous DACRT methods subdivide the problem based on the dis-
tribution of primitives only, which may not reduce the number of
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rays in the subproblem. This results in a waste of computational
time on ray traversal, which is inefficient especially for a large num-
ber of rays. Recent demands on high resolution images require a
large number of rays for ray tracing. Moreover, anti-aliasing meth-
ods that are used to improve the image quality usually require multi
sampling and super sampling, resulting in the generation of a large
number of rays.

To address this problem, our method exploits the distribution of
rays by tracing a small subset of rays, that is, a sample of the rays.
The main contribution of our method is that it derives a new cost
metric that can be used to detect and avoid the inefficient subdivi-
sion of problems where the number of rays has not been sufficiently
reduced. Our cost metric can be represented by a simple formula
and easily estimated. Before partitioning the set of primitives and
constructing a hierarchical acceleration data structure for the primi-
tives, a small subset of rays is traced and information about the rays
obtained (e.g. the ratios of rays intersecting each bounding volume
of the partitioning candidates of the set of primitives).

To partition the primitives efficiently, the distribution of rays as well
as the distribution of primitives is utilized, whereas the previous
methods calculate the partitioning by assuming a uniform distribu-
tion of rays. In addition, the distribution of rays is utilized to de-
termine the traversal order. Our experimental results demonstrate
that the tracing of many types of rays such as primary rays, less
coherent secondary rays (e.g. rays for specular reflection, ambient
occlusion, area light source, depth of field), and random rays, can
be accelerated up to a factor of 2 using our ray sampling method.

The contributions of our method are as follows.

• A concept of ray sampling is introduced. Our ray sampling
method during acceleration structure construction and traver-
sal improves the performance of tracing coherent rays, less
coherent secondary rays, and incoherent rays.

• A new cost estimator is derived to avoid the inefficient subdi-
vision of intersection problems in which the number of rays is
not sufficiently reduced at the cost of intersection tests. The
cost estimator is simple and therefore our method can easily
be incorporated into the original DACRT method.

The performance gain of our method increases as the number of
rays increases, which is beneficial for high resolution images and
anti-aliasing using super sampling and multi sampling.

2 Previous Work

Many previous ray tracing methods construct and store accelera-
tion data structures before tracing of the rays. Uniform grids [Fuji-
moto et al. 1986], kd-trees [Bentley 1975], and BVHs [Rubin and
Whitted 1980] are widely used for acceleration data structures. For
static scenes, the acceleration data structure can be precomputed
and the computational time for this does not impact on the render-
ing frame rate. On the other hand, for dynamic scenes, the acceler-
ation data structure must be built from scratch or updated for each
frame. Therefore, the construction time and the time for ray tracing
impact on the rendering frame rate, and fast construction methods
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Figure 1: An overview of DACRT. A single partitioning step (cen-
ter) and ray filtering (right).

for grids [Wald et al. 2006; Lagae and Dutré 2008; Kalojanov and
Slusallek 2009], kd-trees [Hunt et al. 2006; Shevtsov et al. 2007;
Zhou et al. 2008; Wu et al. 2011], and BVHs [Wald et al. 2007;
Lauterbach et al. 2009; Garanzha et al. 2011] have been proposed.

In recent years, a number of divide-and-conquer ray tracing
(DACRT) methods have been proposed [Keller and Wachter 2011;
Mora 2011]. DACRT has several advantages compared to previ-
ous ray tracing methods. Firstly, DACRT does not need to store
acceleration data structures, and the memory footprint can be de-
termined in advance as a linear function of the number of prim-
itives and the number of rays. This is beneficial for rendering
hardware with limited memory. Secondly, the rendering speed of
DACRT [Mora 2011] is faster than previous ray tracing methods
for dynamic scenes, and is competitive for static scenes.

Mora’s method has been highly optimized for primary rays by using
conic packets. With conic packets, however, it is difficult to han-
dle rays from different origins such as reflected or refracted rays,
rays from area light sources, and random rays, while our method
can accelerate tracing of those less coherent rays. Afra [Afra 2012]
extended Mora’s method to handle incoherent rays efficiently by us-
ing SSE (Streaming SIMD Extensions) and AVX (Advanced Vector
Extensions) instructions. This method outperforms Mora’s method
for incoherent rays. Unfortunately, neither of these methods ex-
ploits the distribution of the rays. Our method further improves
Afra’s method by up to a factor of 2 for primary and less coherent
rays, and consistently outperforms that method for incoherent rays.

Several methods that exploit the distribution and intersection re-
sults of a representative set of rays in order to construct accelera-
tion data structures and ray traversals have been proposed. Bittner
and Havran proposed a method to construct acceleration data struc-
tures using the distribution of the rays [Bittner and Havran 2009].
They derived the ray distribution heuristics (RDH) to determine the
partitioning positions of hierarchical data structures. This method,
however, increases the time required to construct the acceleration
data structures and does not provide measurable performance gains
in the time required for ray tracing. Feltman et al. [Feltman et al.
2012] derived the shadow ray distribution heuristic to accelerate
the tracing of shadow rays by using representative shadow ray sets.
Although this method can reduce the number of shadow ray traver-
sals, the time to construct the acceleration data structures increases
and additional memory is required, whereas our method does not
increase the time required to construct the acceleration data struc-
tures compared to that without ray sampling. Moreover, the ray
sampling overhead is negligible and this can be overcome by per-
formance gains obtained through ray sampling.

3 Divide-And-Conquer Ray Tracing

DACRT performs the intersection tests between a set of rays and
a set of primitives in a scene based on the divide and conquer al-
gorithm, as illustrated in Fig. 1. The divide and conquer algorithm

recursively breaks down the problem to be solved until it can be
solved easily. For DACRT, the problem to be solved is the intersec-
tion tests between a set of primitives and a set of rays. Although
DACRT can deal with arbitrary primitives, triangles are usually
used as primitives. DACRT recursively partitions the set of tri-
angles into subsets and partitions the set of rays that intersect the
bounding volume (BV) of the set of triangles, until the number of
triangles or the number of rays is sufficiently small for the intersec-
tion tests between the triangles and the rays to be easily calculated.
DACRT partitions the set of triangles by using a tree structure such
as kd-trees [Mora 2011] or BVHs [Afra 2012]. Leaf nodes of the
tree structure store the triangles and each interior node of the tree
structure is associated with a bounding volume that encloses the
triangles in the descendant leaf nodes. Partitioning of the set of
triangles affects the ray tracing performance. To determine an effi-
cient partitioning, the cost function of the node associated with the
bounding volume V is defined as follows.

C(V → {VL, VR}) = CT + CI(pLNL + pRNR), (1)

where VL and VR are the bounding volumes of the child nodes, CT

is the cost of an intersection test between a ray and a node, CI is
the cost of an intersection test between a ray and a triangle, and
pL and pR are the probabilities of rays intersecting VL and VR, re-
spectively. NL and NR are the numbers of triangles included in VL

and VR, respectively. Efficient partitioning is usually obtained by
minimizing the cost function with Surface Area Heuristics (SAH).
Since pL and pR are unknown in the construction, SAH assumes
that the rays are uniformly distributed and approximates pL(pR) by
the ratio of the surface area of VL(VR) to that of V .

Then DACRT calculates the set of rays that intersect each subdi-
vided bounding volume. This operation is called ray filtering. Ray
filtering requires an intersection test between the bounding volume
and the rays. The filtered rays that intersect the bounding volume
are called active rays as shown in Fig. 1.

4 Our Method

Our method uses ray sampling to improve DACRT. For the hier-
archical data structure, a BVH represented by a binary tree is em-
ployed, while our method can also be applied to kd-trees and BVHs
represented by n-ary trees [Dammertz et al. 2008]. Our method
employs axis aligned bounding boxes (AABBs) for the bounding
volume.

Algorithm 1 shows the pseudo code of our algorithm. The algo-
rithm takes a bounding volume V, a set of active rays R, and a
set of triangles T as inputs, and calculates intersection points be-
tween R and T . Our method first determines whether the current
node is a leaf node or not, by checking the numbers of active rays
and triangles. If the current node is not a leaf node, our method
subdivides V into two bounding volumes by using the binning-
based method [Wald 2007]. The binning-based method subdi-
vides the bounding volume into K bins (equally-sized AABBs)
{B1, B2, · · · , BK}. The bin that includes the center of each tri-
angle’s AABB is calculated. The set of triangles T in the bound-
ing volume V can be divided into two disjoint subsets; TL,j in
{B1 · · ·Bj} and TR,j in {Bj+1 · · ·BK} for the j-th bin Bj(1 ≤
j ≤ K − 1). Let VL,j and VR,j be the bounding volumes of TL,j

and TR,j , respectively.

We now describe the overview of main steps in Algorithm 1. Our
algorithm consists of four steps, ray sampling, partitioning, deter-
mining the traversal order, and traversal of child nodes with skip-
ping ray filtering. In the ray sampling step, our method traces a
small subset of active rays and calculates intersection tests between
the subset of active rays and VL,j and VR,j . In the intersection test,
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Algorithm 1 Our Divide-And-Conquer Ray Tracing Algorithm. V
is a bounding volume, R is a set of active rays, and T is a set of
triangles in V . NaiveRT calculates intersection points between R
and T . vL and vR are arrays for VL,j , VR,j , respectively. Nr , Nt,
and Ns are the numbers of active rays R, triangles T , and sample
rays, respectively.

1: procedure DACRT(V,R, T )
2: if Nr is small or Nt is small then
3: return NAIVERT(R,T )
4: end if
5: subdivide V into K bins {B1, B2, · · · , BK}
6: calculate TL,j , TR,j , VL,j , and VR,j for each bin Bj

7: initialize arrays cL, cR, nL, nR ← {0}
8: for each sample ray r do ⊲ ray sampling
9: INTERSECT(r, vL, vR, cL, cR, nL, nR)

10: end for
11: Cmin ←∞, jmin ← 1
12: for j = 1 to K − 1 do ⊲ partitioning using cost function
13: αL,j ← cL,j/Ns, αR,j ← cR,j/Ns

14: calculate cost function C in Eq. (2)
15: if C ≤ Cmin then
16: jmin ← j, Cmin ← C
17: end if
18: end for
19: if nL,jmin

≥ nR,jmin
then ⊲ determine traversal order

20: (V0, α0, T0)← (VL,jmin
, αL,jmin

, TL,jmin
)

21: (V1, α1, T1)← (VR,jmin
, αR,jmin

, TR,jmin
)

22: else
23: (V0, α0, T0)← (VR,jmin

, αR,jmin
, TR,jmin

)
24: (V1, α1, T1)← (VL,jmin

, αL,jmin
, TL,jmin

)
25: end if
26: if α0 > 1− Cbv

nchildCchild

then

27: DACRT(V0, R, T0) ⊲ skip ray filtering
28: else
29: R0 ← R ∩ V0, DACRT(V0, R0, T0) ⊲ ray filtering
30: end if
31: if α1 > 1− Cbv

nchildCchild

then

32: DACRT(V1, R, T1) ⊲ skip ray filtering
33: else
34: R1 ← R ∩ V1, DACRT(V1, R1, T1) ⊲ ray filtering
35: end if
36: end procedure

our method stores informations about rays and bounding volumes,
which are used in the latter steps. In the second step, our method
estimates the cost function for K−1 partitioning candidates and the
partitioning that provides the minimum cost is selected. In the third
step, our method determines the traversal order of two child nodes
based on the informations obtained in the ray sampling step. In the
fourth step, we first determine whether the ray filtering reduces the
computational cost or not, by using a simple criterion. Then our
method recursively traverses the child nodes.

4.1 Ray sampling

Active rays are sampled to calculate the cost function, the distribu-
tion of active rays in the bounding volume, and the traversal order
of child nodes. The sampled rays are referred to as sample rays.
In the current implementation, the number of sample rays is fixed
(100) and is irrespective of the number of active rays. The sample
rays are selected randomly when the number of active rays is more
than 1000. Otherwise our method avoids ray sampling since the
overhead of ray sampling cannot be amortized.

Algorithm 2 Intersection tests between sample ray r and VL,j and
VR,j . INTERSECTP(V, r, tn, tf ) returns true if ray r intersects V ,
and sets the intersection interval between r and V to [tn, tf ]. IN-
TERSECTP is a common ray-box intersection algorithm as shown
in [Pharr and Humphreys 2010].

1: procedure INTERSECT(r, vL, vR, cL, cR, nL, nR)
2: for j = 1 to K − 1 do
3: dL,j , dR,j ←∞
4: if INTERSECTP(VL,j , r, tn, tf ) then
5: cL,j ← cL,j + 1, dL,j ← tn
6: end if
7: if INTERSECTP(VR,j , r, tn, tf ) then
8: cR,j ← cR,j + 1, dR,j ← tn
9: end if

10: if dL,j < dR,j then
11: nL,j ← nL,j + 1
12: else
13: nR,j ← nR,j + 1
14: end if
15: end for
16: end procedure

In the ray sampling step, our method calculates intersection tests
between each sample ray and all pairs of VL,j and VR,j as shown
in Algorithm 2. In the intersection test, our method calculates num-
bers of sample rays, cL,j and cR,j , that intersect VL,j and VR,j ,
respectively. In addition, for each pair VL,j and VR,j , the bounding
volume closer to each sample ray is determined in Algorithm 2. To
determine the closer bounding volume, our method compares the
entry distances (tn in Algorithm 2) to VL,j and VR,j for each sam-
ple ray. Our method calculates the numbers of sample rays, nL,j

and nR,j in Algorithm 2, closer to VL,j and VR,j , respectively.

4.2 Partitioning using Cost function

The SAH cost function approximates the probability of a node be-
ing hit by a ray as the ratio of the surface area of the child node to
that of the parent node. This approximation works well when the
rays are uniformly distributed in the scene, while it may not pro-
vide a good estimation when the ray distribution is concentrated.
Since previous methods construct acceleration data structures be-
fore ray tracing, the probability of a node being hit by a ray cannot
be estimated.

On the other hand, since DACRT constructs a BVH and traces rays
simultaneously, the probability can be estimated by using the num-
bers of sample rays, cL,j and cR,j , that intersect VL,j and VR,j .
Our method calculates the ratio, αL,j(αR,j), of sample rays inter-
secting VL,j(VR,j). We refer to this ratio as the intersection ratio.
The probabilities pL and pR in Eq (1) are estimated by using the
intersection ratios αL,j and αR,j . Then the cost function C is cal-
culated by:

C(V → {VL,j , VR,j}) = CT +CI(αL,jNL,j +αR,jNR,j), (2)

where NL,j and NR,j are the numbers of triangles in VL,j and VR,j ,
respectively. By using this cost function, our method can consider
the actual distribution of rays to construct the BVH.

4.3 Traversal order

Previous method [Afra 2012] determines the traversal order of two
child nodes by using a single active ray. While this estimation
works well for incoherent rays, we observed that this estimation is
inefficient for tracing secondary rays and random rays with a small
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Figure 2: Inefficient case of ray filtering. The number of active
rays (orange color) reduced by ray filtering is only one in this case.
The cost for intersection tests between active rays of parent node
and V0 is nrayCbv . The cost for intersection tests between active
rays intersecting V0 and bounding volumes of nchild child nodes is
estimated as αnrayCchildnchild, where α is the intersection ratio
of V0.

number of bounces, and the inefficient order traversal decreases the
ray tracing performance. To address this problem, our method uses
the number of sample rays closer to the bounding volume of each
child node, which is obtained in the ray sampling step. Since the
calculation of entry distances is necessary to obtain the intersection
ratios, the additional operation to determine the efficient traversal
order is only a comparison, whose computational cost is negligible
compared to the performance loss due to inefficient order traversals.

4.4 Skip ray filtering

The ray filtering calculates the intersection tests between active rays
intersecting V and the bounding volumes V0 and V1 as listed in
Algorithm. 1. Since this step calculates active rays for V0 and V1,
we now consider the node with V0 as current node, and that with V
as parent node for the explanation. As shown in Fig. 2, when most
of the active rays of parent node intersect the bounding volume of
current node during ray filtering, the problem size (i.e. the number
of rays) is not sufficiently divided and this wastes a huge amount
of computational time on intersection tests between the bounding
volume of current node and the active rays of parent node. In this
case, it is efficient to skip the ray filtering and assume that all active
rays intersect the bounding volume.

To determine whether or not to skip ray filtering, we propose a new
cost metric that uses the intersection ratio α of the current node,
which is obtained in the ray sampling step. The cost metric is the
sum of two costs, the cost of intersection tests between the bound-
ing volume of the current node and the active rays of parent node,
and the cost of intersection tests between the child nodes and the
active rays of the current node. Let nray be the number of active
rays of the parent node, Cbv the cost of an intersection test between
a bounding volume and a single ray. The cost of the intersection
tests between nray rays and the bounding volume of current node
is given by nrayCbv . The number of active rays for the current
node is estimated as αnray . Our method then calculates the cost
of intersection tests between the child nodes and the active rays of
the current node. Let Cchild be the cost of the intersection test
between a child node and a single ray, and nchild be the number
of child nodes. The cost of intersection tests between nchild child
nodes and αnray rays is given by αnrayCchildnchild. Thus, the to-
tal cost Cint with ray filtering can be calculated from the following
equation.

Cint = nrayCbv + αnrayCchildnchild. (3)

Next, we describe the cost Cskip of skipping the intersection tests
as illustrated in Fig. 3. In this case, since our method skips the in-

ac�ve rays

skip ray 

filtering

ac�ve rays

parent node current node

ac�ve rays

child nodes

Figure 3: Skip ray filtering if the number of active rays is not suf-
ficiently reduced. The computational cost Cskip for skipping ray
filtering is that of the intersection tests between nray active rays of
current node and child nodes, and estimated as nrayCchildnchild.

tersection tests, the cost of the intersection tests between the active
rays of parent node and the bounding volume of current node is
zero and nray active rays remain. The cost of intersection tests be-
tween nchild child nodes and nray active rays is nrayCchildnchild.
Therefore the total cost Cskip without ray filtering is calculated by:

Cskip = nrayCchildnchild. (4)

Our method skips the ray filtering if Cint > Cskip. That is, the
skipping criterion for the intersection ratio α is calculated by the
following equation.

α > 1−
Cbv

nchildCchild

. (5)

If the current node is a leaf node, the cost Cchild is the cost of
an intersection test between a triangle and a ray, and nchild is the
number of triangles included in the leaf node. If the current node is
not a leaf node, the cost Cchild is equal to the cost Cbv , and nchild

is 2 since in our method the BVH is represented by a binary tree. In
summary, the skipping criterion for a non-leaf node is simplified to
the following equation.

α > 0.5. (6)

5 Results

We tested several scenes on a standard PC with an Intel Core i7
2.67GHz CPU and 6GB memory. The timings listed in Figs. 4, 5,
6, and 7, are those for ray tracing and do not include ray generation
and shading, and measured in a single thread. SSE is utilized for ef-
ficient ray tracing. In order to exploit SSE, the data structures of the
rays and the triangles are similar to Afra’s method [Afra 2012]. To
demonstrate the effectiveness of our method, we compare the com-
putational time for ray tracing with and without ray sampling [Afra
2012]. In the latter case, the partitioning is determined by using
the SAH cost function. To perform a fair comparison, our method
adaptively uses our cost function and middle partitioning similar to
Afra’s method. If the ratio of the number of active rays and that
of triangles is larger than a threshold (1.5 in our method), the set of
triangles is partitioned using the cost function described in Sec. 4.2.
Our method uses 32 bins and obtains good results.

Fig. 4 shows the Sibenik scene rendered with different viewpoints
and different image resolutions. The floor is a specular surface
with one point light source (Figs. 4(a)(b)) or an area light source
(Fig. 4(c)). As shown in Fig. 4, our method gives an average in-
crease in speed of 1.85 and accelerates ray tracing by up to a factor
2 for primary, secondary, and shadow rays from point and area light
sources. To handle secondary rays, our method first traces primary
rays from the viewpoint and calculates the hit points. The reflected
rays are generated and traced from the hit points on the specular
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surfaces. For secondary rays, our method rebuilds the BVH from
scratch and does not reuse the BVH constructed for the primary
rays. We have experimented with the reuse of the BVH for the sec-
ondary rays for the Sibenik model. However, the reuse of the BVH
does not provide meaningful performance gains compared to our
method that reconstructs the BVH for the secondary rays, since the
computational time for tracing of rays is dominant compared to that
for constructing the BVH for the Sibenik model.

We measured the impacts of, first, using the cost function given
in Eq. (2), secondly, traversal order determination using sample
rays, and thirdly, skipping the ray filtering for the 40962 reso-
lution image in Fig. 4(a). The acceleration ratios obtained by
use of the cost function, traversal order, and skipping ray filter-
ing were 1.24×(27.3s/22.0s,42%), 1.05×(27.3s/26.0s,10%), and
1.28×(27.3s/21.3s,48%), respectively, where the numbers in the
parentheses are the computational times in seconds without and
with each technique, and the percentage contribution made to the
total reduced time. As shown in this measurement, the performance
gains due to skipping ray filtering and the cost function using actual
ray distributions have the most impact.

Fig. 5(a) shows a case for which our method is not so efficient. In
this case, the performance gain due to ray sampling is relatively
small for moderate resolution images and the computational time
without ray sampling is slightly smaller than that with ray sampling
for the 10242 image. However, the performance loss due to ray
sampling is small (3ms) and our method becomes faster for high
resolution images. Fig. 5(b) shows the results of rendering with
ambient occlusion (AO). For AO rays, our method traces a random
ray on the hemisphere of each hit point. Fig. 5(c) shows the San
Miguel scene with depth of field (DOF) rendering with path tracing
up to 3 bounces.

Figs. 6 and 7 show the Conference and Sponza scenes, respec-
tively. Fig. 8 shows the acceleration ratios using ray sampling with
different image sizes and different bounce numbers of rays. As
shown in Fig. 8(a), the acceleration ratio increases as the number
of rays increases. That is, our method is suited to high resolution
images as well as moderate resolution images with multi-sampled
anti-aliasing (MSAA). In fact, all the images are rendered in 5122

resolution with MSAA (e.g. a 40962 resolution image is rendered
as a 5122 image with 64 MSAA). Fig. 8(b) shows that our method
can accelerate the ray tracing for coherent and incoherent rays.

We compared the performance of tracing coherent rays with that of
Mora’s method [Mora 2011] for the Conference scene in Fig. 6(a).
Our method is 1.66 fps for 1024 × 1024 image on 2.67GHz CPU,
while Mora’s cone optimization method is 3.3 fps for 1280 × 800
image on 3GHz CPU. For the primary rays and shadow rays of one
point light source, our method is 2 times slower than Mora’s method
that is optimized for primary rays. However, as described in Sec. 2,
Mora’s cone optimization cannot be applied to secondary rays and
random rays, while our method can accelerate tracing of those rays.
Therefore the applicability of our method is much wider than that
of Mora’s method.

For the Conference scene in Fig. 6(c), we compared the perfor-
mance in terms of millions of rays per second with those reported
for previous DACRT methods [Mora 2011; Afra 2012]. The perfor-
mance for path tracing of diffuse rays with 8 bounces (no Russian
roulette) was 2.4 (M rays/s) using our method, 2.0 using Afra’s
method, and 1.3 using Mora’s method. Although our method
was measured on the slowest clocked Intel Core i7 CPU (ours :
2.67GHz, Afra : 3.4GHz, Mora : 3GHz), it outperforms the previ-
ous DACRT methods for incoherent rays (1.20×Afra’s method and
1.85×Mora’s method). For incoherent rays, the distribution of rays
tends to be uniform and SAH provides a good estimation. However

our method is still faster compared to Afra’s method, which is op-
timized for incoherent rays. Although our method is slower than
Mora’s method for primary rays, our method is at least 1.85 times
faster for incoherent rays. Therefore, we think our method out-
performs Mora’s method in the total computational times in path
tracing where the computation of incoherent rays is dominant.

6 Conclusions and Future Work

We have presented an efficient DACRT algorithm using ray sam-
pling. Our method exploits the distribution of rays to construct a
BVH and determine an efficient traversal order. We have derived a
new cost metric that can skip inefficient subdivisions by using the
intersection ratio. The derived metric for non-leaf nodes of binary
BVHs is simplified and easily calculated using the intersection ra-
tio. The ray sampling used in our method can accelerate the tracing
of many types of rays by up to a factor of 2. The method is most
efficient for high resolution images with high quality anti-aliasing.

In future work, we would like to implement our method using mul-
tithreading. We also intend to apply our method to the motion blur.
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Conference

image size (a) point light (b) point light (c) path tracing

5122 234ms/189ms (1.24) 273ms/189ms (1.44) 1208ms/1071ms (1.13)

10242 803ms/602ms (1.34) 1030ms/671ms (1.54) 3936ms/3279ms (1.20)

20482 3113ms/2182ms (1.43) 5992ms/2636ms (1.60) 15533ms/12316ms (1.26)

40962 12784ms/8930ms (1.43) 17987ms/10618ms (1.69) 65117ms/47761ms (1.36)

Figure 6: Computational times in milliseconds of ray tracing without and with ray sampling (our method) for different image sizes of the
Conference scene (331K triangles). The acceleration ratio using our method is listed in the parenthesis.

Sponza

image size (a) point light (b) point light (c) path tracing

5122 661ms/478ms (1.38) 599ms/448ms (1.52) 2853ms/2331ms (1.22)

10242 2298ms/1428ms (1.61) 2213ms/1471ms (1.50) 8288ms/7066ms (1.17)

20482 8801ms/5056ms (1.74) 8774ms/5363ms (1.64) 31960ms/23779ms (1.34)

40962 35397ms/19657ms (1.80) 35643ms/20548ms (1.73) 136327ms/98228ms (1.39)

Figure 7: Computational times in milliseconds of ray tracing without and with ray sampling (our method) for different image sizes of the
Sponza scene (262K triangles). The acceleration ratio using our method is listed in the parenthesis.

Figure 8: Acceleration ratios using ray sampling for (a) different image sizes and (b) different bounce numbers of rays.
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