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Abstract

Although FDM 3D printers have been getting popular, it is still difficult for novice users to determine basic parameters such

as deposition directions and model subdivision. This paper describes an optimization method that determines the optimal

model subdivision and deposition direction. The cost function is based on the supporting structure volume and the number

of regions to adhere, which can be computed from multi-layered depth maps on GPU. The optimization can be efficiently

achieved by the dynamic programing. Experiments showed that the method can improve object surface smoothness and

reduce working time of support removal.
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1. Introduction

A 3D printer is a device that creates 3D physi-
cal objects from geometric models. In recent years,
low-cost consumer-level 3D printers have been released
and rapidly spread out. Many attractive applications
have been developed, such as animatronic mold1)2) and
Kinect-base self-portrait printing3). This results in
more opportunities for non-professional novice users to
create 3D objects by 3D printers, and it is important to
develop tools that assist untrained users to easily create
high quality objects.

Zhou developed a structural analysis method that
identifies structural mechanical problems4). Reduction
of used materials was discussed by Wang5), who pro-
posed to construct inner objects by truss scaffoldings
and to apply nonlinear optimization. Prévost et. al.,
proposed a method balancing static models at rest6).
However, many issues still remain open.

Most of low-cost systems adopt the fused deposition
modeling (FDM) method, which makes physical ob-
jects by depositing melted materials such as ABS resins.
FDM 3D printers build up 3D objects layer by layer.
Therefore, the deposition direction has a large influence
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on the production. When FDM 3D printers make ob-
jects containing holes or bridge-structures, they have to
deposit supporting structures underneath the objects,
as shown in Fig. 1-a. It is necessary to remove these
supports by hand after deposition, which often dam-
ages the objects, as shown in Fig. 1-b. Therefore, it is
very important to control support structures to obtain
well-finished objects and to reduce work time.

The support volume can be reduced by changing the
size or structure of supports7)8). However, it is possible
to reduce support volumes by selecting an appropriate
deposition direction, as well. We can also reduce it by
dividing a geometric model into several parts, creat-
ing each part separately, and adhering them after the
deposition, as shown in Fig. 2. For novice users, how-
ever, it is difficult to determine the appropriate direc-
tion and model subdivision. Therefore, it is important
to develop a computation model that calculates optimal
deposition directions and model subdivision.

Although a model subdivision technique based on
concave edges has been reported9), it is restricted to
simple geometric objects consisting of polygons paral-
lel to each other and it is difficult to apply the method
to complicated shapes such as figure dolls. To the au-
thors’ knowledge, optimization methods to determine
model subdivision based on the cost function has not
been discussed.

This paper describes an optimization method that de-
termines the optimal model subdivision and deposition
direction by utilizing CG techniques and the dynamic
programing. The cost function we used in this paper
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was defined by a sum of supporting structure volumes
and the number of regions to adhere, although it can
be easily introduce other factors such as the area of
the regions and weighting functions of support struc-
ture length.

Supporting structure volumes can be efficiently com-
puted from multi-layered depth maps on GPU by us-
ing the depth peeling method10). The number of adhe-
sion regions is also calculated from the layered depth
maps using a filling algorithm. The optimization is also
efficiently achieved by the dynamic programing. We
restricted model subdivision planes to be perpendicu-
lar to the deposit direction, which allows us to apply
the dynamic programing. By using the optimal subdi-
vided object, even novice users can reduce the problems
caused by the support removal.

(a)Supporting structures   (b) After their removal. 

Fig. 1 An example of supporting structures.

(a) Model subdivision. (b) After the adhesion. 

Fig. 2 Model subdivision and adhesion.

2. 3D Printer

2. 1 3D printing systems
A 3D printer is a device creating 3D physical ob-

jects from geometric models. There are several types of
3D printing systems, such as the stereo-lithography, the
selective laser sintering (SLS) and the fused deposition
modeling (FDM). Stereo-lithography 3D printers scan
a high power laser beam and draw the cross-sections
of 3D physical objects onto the surface of the pool of
light curing resin, repeating it layer by layer. SLS 3D
printers create 3D physical object by fusing small par-
ticles such as nylon using a high power laser. FDM
3D printers create objects by depositing thermoplas-

tic resin such as ABS resins or polycarbonates, by de-
positing the melted materials layer by layer. The stand
on which objects are placed horizontally moves to con-
struct object cross-sections like a plotter and vertically
steps down after the completion of a layer. The FDM
system has enabled low-cost products and is most pop-
ular in the consumer-level market.

2. 2 Supporting Structures
When FDM 3D printers create objects with holes

or bridge-structures, they have to deposit supporting
structures underneath the objects (Fig. 1-a). After the
deposition, supporting structures have to be removed
by hand, which often damages the objects. Therefore,
it is very important to control support structures to
obtain well-finished objects and to reduce work time.

2. 3 Cost function
To determine appropriate directions and model sub-

division, we have to consider the following factors.
( 1 ) Object qualities: The object is often damaged

by removing supporting structures. It can be ex-
pected that less support structures decrease the
damage.

( 2 ) Support removal time: Support removal by
hand is a labor intensive task. This factor also
depends on the amount of supporting structures.

( 3 ) Adhering time: It is necessary to adhere di-
vided parts, which also requires manual opera-
tions. This increases with respect to the number
of subdivision planes.

The volume of supporting structures and the adher-
ing region can be considered to have dominant influ-
ences on the factors (1), (2) and (3). Thus, we adopted
a cost function consisting of two terms: the volume of
supporting structures and the number of regions to ad-
here after the deposition. Note that the volume term
monotonously decreases with the number of subdivision
while the number of regions to adhere increases.

The area of adhering regions can be another impor-
tant factor. It will be also shown that this factor can
be also integrated to our cost function. Design issues
on the cost function will be discussed in Section 5.4.

3. Computation of Supporting Structure
Volumes

A supporting structure volume can be regarded as
a volume of shadow regions when light rays come in
the deposit direction and can be calculated by using
depth values as Fig. 3. Let us assume model subdivi-
sion planes to be perpendicular to the deposit direction
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Fig. 3 Supporting structures.
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Fig. 4 Length of supporting structure at X.

z. In Fig. 4, values zi(i = 1, . . . , n) indicate the depth
value of the object surface at X, and D1 and D0 are
the depth values of the upper subdivision plane and the
lower plane:

D0 < zl < zl+1 < · · · < zh < D1.

In this example, we have to set a support between z1

and z2 at X and its length is z2 − z1. By summing
up these support length, the total support length at X,
hs(X), can be calculated by:

hs(X) =
∑

outside object
Li, (1)

L0 = zl −D0, (2)

Li = zl+i+1 − zl+i, (3)

Lh = 0. (4)

Note that Lh is zero because no support is necessary
above the top surface. The support volume in this sub-
division section can be calculated by the sum of hs(X):

H ′
s(D0, D1) =

∑

X

hs(X). (5)

Depth values zi(X) can be stored in multi-layered depth

maps. Referring to these maps, the supporting struc-
ture volume can be efficiently calculated.

In 3D printing, it is also possible to depose objects
in the reverse direction as well. Therefore, we set the
supporting structures volume Hs is the smaller volumes
in the direction s and −s, as:

Hs(D0, D1) = min(H ′
s, H

′
−s). (6)

The area of adhering regions, Ha, can be also calcu-
lated in a similar way. By setting Li = 1, the area Ha

is given by counting the number of points as:

Ha =
∑

X

∑

outside object
1 (7)

The number of regions to adhere, M(z), can be cal-
culated from the cross-sections of the objects and sub-
division planes. A bit map image of the cross-section
CD(x, y) can be constructed from the multi-layered
depth map. The number of regions is then counted
through simple region filling.

4. Optimization Method

The cost function gs is defined by the summation of
the supporting structure volume Hs(Zi, Zi+1) and the
number of regions to adhere M(Zi) as:

gs(Zi, Zi+1) = Hs(Zi, Zi+1) + αM(Zi), (8)

where α denotes a weight constant balancing the two
terms.

Selecting the optimal α value is generally a difficult
task. However, it can be roughly estimated by regard-
ing it as a balancing factor between the dynamic ranges
of a decrease in the support volume Hs and the number
of regions to adhere N . Given the expected decrease in
the volume δH at the maximum allowable number of
the planes Nm, α can be estimated by δH/Nm. In the
case of Fig. 9, δH is about 0.15. If we set Nm = 15,
α = 0.15/15 = 0.01 would be a good value.

4. 1 Optimization of subdivision planes
Assume that an object is subdivided by N planes

perpendicular to the deposition direction s, as shown
in Fig. 5. Let Zi(i = 1, · · · , N) be their depth values,
and the minimum and maximum depth value of the ob-
ject be Zo and Ze = ZN+1. We quantize z-value in
nz levels. The total cost function, G, is defined by the
sum of the cost values between neighboring subdivision
planes, gs(Zi, Zi+1), as:

G =
N∑

i=0

gs(Zi, Zi+1). (9)
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Fig. 5 Supporting structure volume.

The minimization of G can be efficiently achieved
by the dynamic programing at an O(nz

2) computation
cost, while the cost for the exhaustive search is O(nN

z ).
First, we calculate gs(z, z′) and store the values into a
table. Next, we calculate Ej(z) defined by

E0(Z1) = gs(Z0, Z1), (10)

Ej(Zj) = min
Zj−1<Zj

(Ej−1(Zj−1) + gs(Zj−1, Zj)).

and also stored as DP-tables. The minimum values
Gmin for given N and S can be found by a linear search,
as:

Gmin(N ; s) = min
Z1,···,ZN

G

= min
ZN

(EN−1(ZN ) + gs(ZN , Ze)). (11)

4. 2 Optimization of number of subdivision
The optimization represented by Eq. (11) is con-

ducted for each number of subdivision plane N =
1, 2 · · · , Nmax. We adopt N that provides the smallest
cost value as the optimal number of planes.

4. 3 Optimizing of deposit direction
The cost function Eq. (9) is non-linear with respect

to the deposit direction. We decided to simply sample
deposition directions and calculate the minimal cost in
each direction. We adopt the direction that provides
the smallest cost value as the optimal deposit direction.

5. Experiments

5. 1 Procedure and implementation
Fig. 6 outlines the proposed method. We sample

deposit direction sj and calculate multi-layered depth
maps zi[x][y] by depth peeling method10). By referring
to the maps, we calculated support volumes Hs(Z,Z ′).

Fig. 6 Outline of the proposed method

We also construct a bitmap image of cross-sections
Cz(x, y) and count the number of adhesion, M(Z).

Using Hs(Z, Z ′) and M(Z), the DP-table Ek is cal-
culated by Eq. (11). Minimal cost values Gmin(N ; sj)
are then calculated form Eq. (11) for each number of
subdivision planes N . We adopt N that provides the
smallest cost value. We execute this process for all sam-
ple directions and the optimal deposition direction is
the sample direction in which the cost value is smallest.

The object is clipped by the optimal subdivision
planes and the clipped polygons are triangulated. We
used Delaunay triangulation and implemented it using
CGAL11).

In the experiments, we used multi-layered depth
maps at 64× 64 resolution. We quantized depth values
by 64 levels. We sampled 19 deposition directions as
shown in Fig. 7.

Fig. 7 Sampling direction.

5. 2 Optimization
We applied the proposed method to the Stanford
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Buddha model12) and made physical objects. In this
experiment, we fixed the deposition direction and the
number of subdivision N = 1 to show the basic proper-
ties.

Fig. 8 shows the cost value G when we changed the
weighting factor α in Eq. (8). The supporting structure
volume is normalized by the volume of the object. As
shown in the figure, G has the minimum value near the
center of the object.

 

 

Fig. 8 Support structure volume, the number of regions

to adhere and the number of subdivision.

Fig. 9 shows the minimal cost value Gmin(N) with
respect to the number of subdivision N . When the
weighting factor α is zero, the cost value monotonously
decreases with the number of subdivision. As the
weighting factor α increases, the minimum cost value
is obtained at lower N value.

α =0 

α =0.005 

α =0.01 

α =0.015 

Fig. 9 The number of subdivision plane and cost value.

Fig. 10-a shows G values with respect to each sam-
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(b) Sampled deposition direction. 
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Fig. 10 Deposition direction and cost value.

pled deposit directions. In this experiment, G took the
minimum value at direction #16. The optimal number
of subdivision planes was 2. Fig. 11 shows the sub-
divided objects. The processing time for 19 directions
was 9.2 second on a Windows PC (Intel Core i7-3770K
@3.50GHz, GeForce GTX 690). Table 1 shows the
measured processing time for one direction. It took a
few hours to print the objects and we think our opti-
mization process is fast enough.

Table 1 PROCESSING TIME

Calculation of Calculation of Calculation of

depth map hs(z) Hs(Z,Z’) and M(Z) DP-table

0.18 s 0.27 s <0.001 s

5. 3 Examples
We created physical objects from the Stanford Bud-

dha, Dragon, and Armadillo models12) using the pro-
posed optimization method. The created objects are
shown in Fig. 12, Fig. 13 and Fig. 14. In the ex-
periments, we used an FDM 3D printer, named “UP!
Plus 3D Printer”13). We set the parameter α = 0.01 in
this experiment. As shown in Fig. 12-a, Fig. 13-a and
Fig. 14-a, when objects were not subdivided, support-
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(a) 1-plane subdivision     (b) 2-plane subdivision  (optimal) 

Fig. 11 Divided 3D CG object.

Fig. 12 Experimental results of the Stanford Buddha.

Fig. 13 Experimental results of the Stanford Dragon.

ing structures could not be completely removed and the
object surface remained rough. In Fig. 12-b, Fig. 13-b
and Fig. 14-b, on the other hand, the optimization re-
sulted in smoother object surfaces and improved quality
of object finish.

Fig. 14 Experimental results of the Stanford Ar-

madillo.

Table 2 SUPPORT REMOVE TIME AND ADHER-

ING TIME.

Number of Support Adhering Print

subdivsion remove (min) time

(min) (min)

Buddha 0 19 0 210

2(optimal) 9 5 215

Dragon 0 19 0 70

1(optimal) 1 1 72

Armadillo 0 3 0 127

3(optimal) 2 13 111

Table 2 shows printing time and working time re-
quired in removing supports and adhering subdivided
parts. The table indicates that the optimization largely
decreased support removing time. Subdivision intro-
duces adhering time, which was rather modest with the
Dragon and the Buddha. However, the adhering time
with the Armadillo was relatively large because the sub-
divided model contained many small regions to adhere.
It was suggested to refine the cost function to avoid
such small subdivided area. The differences in printing
time were not significant.

5. 4 Discussion
Through the experiments, we noticed that the cost

function defined by Eq. (8) may not necessarily be
the best measure of quality and working time but that
the area of adhering regions and the length of support
structures can be important factors as well. From these
considerations, we have examined some other cost func-
tions based on region areas, support length, and their
combination. Although we have made several pilot ex-
periments using different cost functions and various bal-
ancing values (α), we cannot obtained a significant im-
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provement in terms of working time and quality of finish
so far. We realized that more systematic investigations
are necessary to refine the cost function.

The proposed methods digitizes the depth of dividing
planes and the deposit directions in a fixed number of
levels. With respect to the direction, the cost function
cannot be represented by an analytic function in gen-
eral and it is hard to handle it in a continuous space.
However, it is possible to apply a coarse-to-fine subdi-
vision approach to obtain a good trade-off between the
resolution and cost. We can further subdivide the po-
sitions/directions near the minimum values at a higher
sampling rate so that we can search better values in a
depth first fashion.

The proposed method adopts the depth peeling
method and dynamic programing. To make compar-
isons with more naive methods, we first implemented
a scan-conversion program that creates sorted lists of
depth values from which a multi-layered depth image is
made. Surprisingly, the execution time to build a multi-
layered depth image of the Buddha model at 64 × 64
resolution was 0.031 sec, much smaller than that for the
depth peeling method, 0.18 sec. However, we would still
prefer the depth peeling method to the software scan-
conversion because of simplicity of implementation. We
also implemented an optimization code based on an ex-
haustive search. The execution time rapidly grows up
with respect to the maximum number of dividing planes
N and was 13 seconds and 119 seconds for N = 7, 8,
respectively.

6. Conclusion

Although FDM 3D printers have been getting popu-
lar, it is still difficult for novice users to determine ba-
sic parameters such as deposition directions and model
subdivision. This paper describes an optimization
method that determines the optimal model subdivision
and deposition direction by utilizing CG techniques and
the dynamic programing. The cost function we used is
defined by a sum of supporting structure volumes and
the number of regions to adhere.

Supporting structure volumes can be efficiently com-
puted from multi-layered depth maps on GPU. The op-
timization can be efficiently achieved by the dynamic
programing. Using the optimization method, we cre-
ated physical objects with an FDM 3D printer. The
optimization resulted in smoother object surfaces and
improved quality of object finish. It also reduced work-
ing time of support removal. The experiments also sug-

gested that more refinement of the cost function is nec-
essary to reduce adhering time more effectively. Future
work includes systematic studies on the cost functions.
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