
CGI2014 manuscript No.
(will be inserted by the editor)

An Optimization Approach for Designing Fluid Flow Fields

Syuhei Sato · Yoshinori Dobashi · Kei Iwasaki · Hiroyuki Ochiai ·
Tsuyoshi Yamamoto · Tomoyuki Nishita

Abstract In entertainment applications, such as com-
puter games and movies, animators are often requested

to synthesize a realistic fluid flow with a particular be-
havior. This paper presents a method to help animators
meet such requirements. Our method enables the user

to design a realistic fluid flow. In order to generate the
desired fluid flow in a realistic form, the flow is cal-
culated by solving a minimization problem subject to

user-specified constraints and the Navier-Stokes equa-
tions. The minimization problem is efficiently solved by
representing the flow field by a linear combination of or-

thogonal basis functions. Consequently, the fluid flow is
obtained by simple matrix operations.

Keywords fluid simulation · incompressible Navier-
Stokes equation · Laplacian eigenfunctions · design

1 Introduction

Visual simulation of fluids has become one of the most

important research topics in computer graphics. Many
methods have been proposed for simulating smoke, wa-
ter, fire, and so on [1]. Most of the recent methods are

based on computational fluid dynamics to create realis-
tic animations and these are used in many applications
such as movies and computer games. However, one of

the problems is the expensive computational cost. In

Syuhei Sato, Tsuyoshi Yamamoto
Hokkaido University

Yoshinori Dobashi
Hokkaido University, JST CREST, UEI Research

Kei Iwasaki
Wakayama University, UEI Research

Hiroyuki Ochiai
Kyushu University, JST CREST

Tomoyuki Nishita
UEI Research, Hiroshima Shudo University

those entertainment applications, rendering fluid with
a particular motion is often requested. Animators usu-

ally attempt to create the desired motion by repeating
fluid simulations with different parameter settings until
a satisfactory result is obtained. However, this is an ex-

tremely tedious and time-consuming task incurring an
expensive computational cost.

Many methods have been proposed to address this

problem. Controlling the fluid simulation is a promising
approach [2,3,5]. However, a trial-and-error process is
still required to tune the control parameters.

Several recent researches have focused on a differ-
ent approach: using low-resolution fluid simulation as
a guide to produce high-resolution results. In this ap-

proach, low-resolution fluid simulation is used for de-
signing the fluid motion, which is subsequently con-
verted into a high-resolution animation. Some meth-

ods control the simulation using low-resolution simu-
lation results [4,7]. These methods allow the user to
efficiently generate the desired high-resolution anima-

tion. However, creating a particular fluid motion is still
a difficult and tedious task even when low-resolution
fluid simulation is used.

To address this problem, we propose a method that
enables the user to design a realistic fluid flow. Our
method is based on grid-based fluid simulation and is

suitable for synthesizing animations of incompressible
flow such as smoke and fire. The key concept behind our
method is to solve a minimization problem subject to

the user’s constraints and the Navier-Stokes equations.
Our method decomposes the flow field into low and
high frequency components. The minimization problem

is solved for the low frequency components to control
the overall motion, and the high frequency components
are subsequently added to create detailed motion. The

low frequency components of flow fields are represented

2 Syuhei Sato et al.

user constraints

minimizer

D

vns(x, tn)

v(x, tn)

v(x, tn-1)

renderer

(our method)

user

vu(y, tn)

NS solver

F
vh(x, tn)

vl(y, tn)
+

Fig. 1 Overview of our system.“D” is a delay buffer that
takes a flow field as input and outputs it at the next time
step.“ F ” is a low pass filter.

by a linear combination of incompressible orthogonal
basis functions, which ensures that the velocity field

satisfies the divergence-free condition. Moreover, our
method uses 2D basis functions for 3D flow fields, and
the fluid flow is generated at a low computational cost.

Since the creation of the flow field is formulated as a
least squares minimization problem using orthogonal
basis functions, we can compute the flow field using

simple matrix operations.

2 Overview of our system

Fig.1 shows an overview of our system. The flow field

v is calculated at discrete time steps tn(n = 0, 1, · · ·),
where the time interval is ∆t. We decompose the flow
field v into low and high frequency components.

v(tn) = vl(tn) + vh(tn), (1)

where vl and vh are low and high frequency components

of the flow field v, respectively. In our computation, v
and vh are sampled at each grid point x, where the grid
size is Nh. vl is sampled at each grid point y, where

the grid size is Nl that is smaller than Nh. Our method
calculates desired fluid flow vl in low frequencies, and
then adds high-frequency components vh to vl. Details

are described in the following.

In order to generate the desired flow field, the user

first places a set of control points at arbitrary posi-
tions as indicated by the blue spheres in Fig.1. The user
then specifies the velocities at the control points (the

red arrows). The user-specified velocity of the l-th con-
trol point at time step tn is denoted as su(yl, tn)(l =
0, 1, · · · , Nu − 1), where yl is the position of the l-th

control point and Nu is the number of control points.
Then, our system interpolates su(yl, tn) in order to ob-
tain a spatially continuous flow field vu(y, tn) by using

radial basis functions. On the other hand, a simulated
flow field vns(tn) is obtained by solving the Navier-
Stokes equations using the flow field v(tn − 1) com-

puted at the previous time step (see Fig.1). vns(tn) is

calculated on the high-resolution grid whose grid size is

Nh. Then, vns(x, tn) is decomposed into low and high
frequency components. vh(x, tn) is obtained as high fre-
quency components of vns(x, tn). Our system computes

an incompressible flow field vl(y, tn) by solving a mini-
mization problem (see Section 3). Our minimizer takes
vu(y, tn) and [F ∗ vns](y, tn) as input, where F is a

low pass filter, and ∗ is the convolution operator. Af-
ter computing v(x, tn), scalar quantities, such as smoke
density, are advected and visualized by using a volume

rendering technique. The user then modifies the con-
straints to create the desired visual effect.

3 Definition of minimization problem

In our method, the low frequency components vl(y, tn)
of the flow field are represented by a linear combination
of basis functions, Φi, as follows,

vl(y, tn) =

N−1∑
i=0

wi(tn)Φi(y), (2)

where wi(tn) is the coefficient for the i-th basis func-
tion and N is the number of basis functions. We use

Laplacian eigenfunctions [6] for Φi(y). This enforces
the divergence-free condition on the flow field. For re-
ducing computation and storage costs, 3D flow fields

are represented by using 2D basis functions (see Sec-
tion 5). Our task is then to determine the coefficient
w(tn) = (w0(tn), w1(tn), · · · , wN−1(tn)) at each time
step so that a realistic flow with the desired behavior

is generated. The user can specify the constraint veloc-
ities at multiple positions in space and time in order to
design the desired flow field. The Navier-Stokes equa-

tions are taken into account in computing the flow. The
coefficient w(tn) is obtained by minimizing the sum of
two error functions, Eusr and Ens. That is,

arg min
w(tn)

(Eusr(tn) + αEns(tn)), (3)

where α is a user-specified constant used to adjust the
influence of the two error functions described below.

Eusr(tn) measures the difference between the user-

specified velocities and the resulting flow field. Eusr(tn)
is defined by the following equation.

Eusr(tn) = ||vu(y, tn)−
N−1∑
i=0

wi(tn)Φi(y)||2, (4)

where || · || is the L2 norm of the function. vu(y, tn)
represents the constraint flow field and is defined by
interpolating user-specified velocities su(yl, tn) by using

radial basis functions. That is,

vu(y, tn) =

Nu−1∑
l=0

bl(tn)φ(|y − yl|), (5)

An Optimization Approach for Designing Fluid Flow Fields 3

x

yz

Fig. 2 Slices for representing a 3D flow field.

where φ is a radial basis function and bl(tn) is obtained
by solving the following linear system of equations.

Nu−1∑
l=0

bl(tn)φ(|ym − yl|) = su(ym, tn), (6)

where m = 0, 1, · · · , Nu − 1. For φ, we use Gaussian

basis functions.
Ens(tn) measures the difference between the flow

field and the incompressible inviscid Navier-Stokes equa-

tions. By discretizing the incompressible inviscid Navier-
Stokes equations with the time step ∆t(= tn − tn−1),
we obtain the following equation.

u(tn) = G(u(tn−1)), (7)

G(u(t)) = u(t) +∆t{−(u(t) · ∇)u(t)− 1

ρ
∇p+ f}. (8)

Let us now assume that we have obtained the flow field
v(x, tn−1) at time tn−1. In order to satisfy the Navier-
Stokes equations, the flow field at time tn needs to be

computed according to Eq.(7). That is, vns(x, tn) =
G(v(x, tn−1)). We use low frequency components of vns

for defining Ens. We define Ens(tn) as the difference

between vl(y, tn) and low frequency components of vns:

Ens(tn) = ||[F ∗ vns](y, tn)−
N−1∑
i=0

wi(tn)Φi(y)||2. (9)

Finally, vh(x, tn) is obtained as follows: vh(x, tn) =

vns(x, tn)− [F ∗ vns](x, tn).

4 Solving minimization problem

Given the definitions of the error functions in the previ-
ous section, we can now solve the minimization problem

given in Eq.(3). By taking a derivative of Eq.(3) with
respect to the coefficient wi(tn), we obtain the matrix
equation Aw(tn) = c(tn), where A is an N×N matrix,

w(tn) and c(tn) areN dimensional column vectors. The
(i, j)-th element aij ofA is given by aij = (1+α)(Φi(y)·
Φj(y)), where · indicates the dot product between two

functions. Since Φi are orthogonal basis functions, aij

computed by the above equation is zero if i ̸= j. There-

fore, A is a diagonal matrix and its diagonal elements
can be precomputed. Next, i-th element ci of c(tn) is
given by ci = {vu(y, tn)+α[F ∗vns](y, tn)}·Φi(y). Our

system computes the dot product between functions in
the above equations on a grid with a specified resolu-
tion Nl. Then, the coefficient wi(tn) is computed by

wi(tn) = ci/aii. The above approach allows us to com-
pute the coefficient vector w(tn) very efficiently since
we do not have to compute A at run time. All we need

to do at each time step is to project vu + α[F ∗ vns]
onto Φi, and compute wi(tn) = ci/aii.

5 Basis functions

As we have described previously, the Laplacian eigen-
functions are used as the basis functions. In our method,

we use basis functions defined on a 2D rectangular grid
for a 3D flow field. Although 3D basis functions exist
[6], we found that those functions are not suitable for

our purpose. In order to design a 3D flow field, we need
a large number of basis functions. We tried 512 basis
functions but we found that they were not sufficient.

Furthermore, the storage cost for 3D basis functions
sampled on a 3D grid is very expensive. We can com-
pute the basis functions on the fly but we found that

this significantly slows down the computation.
To address these problems, we propose to use the

2D basis functions for the 3D flow fields. For using 2D

basis functions, we subdivide the simulation space using
three sets of slices, indicated in red, green, and blue in
Fig.2. The red, green, and blue slices are orthogonal to

the x, y, and z axes, respectively. On the red slices, the
yz components of the flow field are represented by 2D
basis functions. Similarly, for the green and blue slices,

the zx and xy components, respectively, are represented
by 2D basis functions. Let us define the flow field vp

yz,
vq
zx, and vr

xy on the p-th red, q-th green, and r-th blue

slices, respectively. The 3D flow v at grid point (p, q, r)
is generated by combining these three flow fields:

vl(p, q, r) =
1

2
(vp

yz(q, r) + vq
zx(r, p) + vr

xy(p, q)). (10)

Note that the 3D flow field computed in this way satis-
fies the divergence-free condition. This method signifi-
cantly reduces the storage cost for the basis functions

sampled at the grid points and the pre-computation
time for calculating A, because slices with the same
size can share the same basis functions. If the shape

of the simulation space is a cube, we can use the same
basis function for all the slices.

6 Results

This section shows some examples created using our

method. We used a desktop PC with a CPU (Intel

4 Syuhei Sato et al.

Fig. 3 Example of fire.

Core i7 2600K, 16GB memory) and GPU (NVIDIA
GeForce GTX TITAN) to compute all the examples
shown in this section. In all examples, the number of

basis functions (N) is 256, the low resolution and high
resolution grid sizes (Nl and Nh) are 32× 32× 48 and
256×256×384, respectively. The computation time for

updating the flow field is 0.7sec/frame. The videos cor-
responding to the following examples can be found in
the supplemental material.

Fig.3 shows an example of a fire animation with a

circular swirling motion that is simulated by setting
five disk-shaped heat sources at the bottom of the sim-
ulation space. The left-upper inset of Fig.3 shows the

control points. Our method can be used to render fire
simulations with buoyancy forces.

Next, Fig.4 shows an animation of a tornado. The
right-bottom inset of Fig.4 shows the control points.
By moving the control points, the user can design the

motion of the tornado.

7 Conclusion

We have proposed a method for designing incompress-
ible and inviscid flow fields. The user can specify a

set of constraints in order to create the desired flow
field. The method computes realistic flow fields by solv-
ing the minimization problem such that user-specified

constraints are satisfied. The Navier-Stokes equations
are also taken into account in solving the minimiza-
tion problem. The low frequency components of flow

fields are represented by incompressible orthogonal ba-
sis functions and this ensures the divergence-free con-
ditions of the flow. We also proposed a method for rep-

resenting a three-dimensional flow field using a set of

Fig. 4 Example of tornado.

two-dimensional basis functions. We demonstrated the

capabilities of our method with a set of examples.
One of the limitations is the fact that the computa-

tional cost of our method is proportional to the number

of basis functions. The level of detail in editing the flow
depends on the number of basis functions used. The
user can design a detailed flow field at the expense of

increased computational and storage costs.

References

1. R. Bridson, Fluid Simulation for Computer Graphics,
Publisher, AK Peters, 2008.

2. R. Fattal, D. Lischinski,“Target-driven smoke animation,”
ACM Transactions on Graphics 23, 3, pp. 439-446, 2004.

3. Y. Kim, R. Machiraju, D. Thompson,“Path-based control
of smoke simulaitons,” In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer Ani-
mation, pp. 33-42, 2006.

4. M. B. Nielsen, B. B. Christensen,“ Improved variational
guiding of smoke aniemtions,”Computer Graphics Forum
29, 2, pp. 705-712, 2010.

5. A. Treuille, A. McNamara, Z. Popovic, J. Stam,
“Keyframe control of smoke simulations,” ACM Trans-
actions on Graphics 22, 3, pp. 716-723, 2003.

6. T. D. Witt, C. Lessig, E. Fiume,“Fluid simulation using
Laplacian eigenfunctions,”ACM Transactions on Graphics
31, 1, Article 10, 2012.

7. Z. Yuan, F. Chen, Y. Zhao,“ Pattern-guided smoke ani-
mation with lagrangian coherent structure,”ACM Trans-
actions on Graphics 30, 6, Article 136, 2011.

