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Abstract We propose a particle-based hybrid method
for simulating volume preserving viscoelastic fluids with
large deformations. Our method combines Smoothed Par-

ticle Hydrodynamics (SPH) and Position-based Dynam-
ics (PBD) to approximate the dynamics of viscoelas-
tic fluids. While preserving their volumes using SPH,

we exploit an idea of PBD and correct particle veloci-
ties for viscoelastic effects not to negatively affect vol-
ume preservation of materials. To correct particle veloc-

ities and simulate viscoelastic fluids, we use connections
between particles which are adaptively generated and
deleted based on the positional relations of the parti-

cles. Additionally, we weaken the effect of velocity cor-
rections to address plastic deformations of materials.
For one-way and two-way fluid-solid coupling, we in-

corporate solid boundary particles into our algorithm.
Several examples demonstrate that our hybrid method
can sufficiently preserve fluid volumes and robustly and

plausibly generate a variety of viscoelastic behaviors,
such as splitting and merging, large deformations, and
Barus effect.
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1 Introduction

Particle-based methods have been popular techniques
to simulate fluids, rigid bodies, deformable objects, and

their interactions. These methods use a simple concept
of particle interactions, which can be easily extended to
simulate various types of objects, and were adopted for

a versatile simulation framework [16]. For conceptual
simplicity and versatility, we herein focus on particle-
based methods.

Since viscoelastic materials play an important role
in representing common materials (e.g., egg white, gels,

toothpaste, and slime) and producing visually attrac-
tive characters and effects, simulating viscoelastic ma-
terials has been required for movies and video games. In

such entertainments, exaggerated representations which
real materials do not exhibit, e.g., very large deforma-
tions, are frequently required to make characters and

effects appear interesting and impressive.

In computer graphics, particle-based methods for
simulating viscoelastic fluids have been proposed. How-
ever, previous particle-based, Smoothed Particle Hydro-

dynamics (SPH) methods which depend on physically-
based viscoelastic models [17,6] cannot simulate highly
deformable objects because, at a particle position, phys-

ical contributions from farther particles are likely to
be smaller owing to the decreasing property of finite
support kernels, and consequently, viscoelastic materi-

als fail to restore their original shapes when they un-
dergo significant deformations. This problem can be ad-
dressed by combining SPH and a geometric method

[28,7]. However, these hybrid methods have another
problem that they suffer from volume loss of materials,
which leads to unphysical fluid behaviors, because the

geometric methods adopted by Takamatsu and Kanai
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Fig. 1 Viscoelastic fluids simulated with our hybrid method. (Left) Merging spheres with different viscoelasticity values
colliding with a static solid dragon. (Middle) A viscoelastic ball colliding with a solid cube. (Right) Barus effect of a viscoelastic
material (see §4.4).

[28] and Clavet et al. [7] make an incompressible fluid
solver fail to preserve fluid volumes.

To solve the two problems above simultaneously, we
propose a particle-based hybrid method for simulating
viscoelastic fluids, which can preserve fluid volumes and

enable large deformations of the fluids. Our method
uses a combination of SPH and Position-based Dynam-
ics (PBD) [20,4]. While using SPH to preserve fluid

volumes, we exploit PBD for velocity corrections which
achieve viscoelastic effects involving large deformations
without negatively influencing the volume preservation.

To correct particle velocities, we use a set of connections
between particles, which are adaptively updated based
on the positional relations of the particles. We incor-

porate solid boundary particles into our algorithm to
simulate adhesion of viscoelastic fluids to solid objects.

Our key contribution lies in velocity corrections which

allow for combining a geometric method with SPH to
simulate viscoelastic behavior with large deformations
while preserving fluid volumes, since the SPH-based

methods [17,6] cannot handle large deformations and
the previously proposed hybrid methods [28,7] cannot
preserve the volume of viscoelastic fluids. Fig. 1 illus-

trates characteristic behaviors of viscoelastic materials
simulated with our hybrid method.

This paper is an extended version of our previous

paper [26]. In this paper, we focus on the position-
based velocity correction scheme. As new additional
materials, we include a comparison of our method with

the SPH-based method [17] and propose a boundary-
handling method for fluid-solid coupling.

2 Related Work

Viscoelastic fluids Miller and Pearce [18] and Ter-
zopoulos et al. [30] proposed a spring-based model that
computes repulsion and attraction forces among par-

ticles to simulate viscoelastic materials. Their method

was adopted by Steele et al. [25] and Tamura et al. [29].
Clavet et al. [7] combined this spring-based method

with SPH to simulate materials with elasticity, plas-
ticity, and viscosity, adopting a prediction-relaxation
scheme. A similar spring-based method was also pro-

posed by Takahashi et al. [27], who used PBD to sim-
ulate fluids with viscosity and elasticity in a unified
framework. Takamatsu and Kanai [28] combined Shape

Matching (SM), which was originally proposed by Müller
et al. [21] to simulate deformable objects, with SPH to
fast and robustly simulate viscoelastic fluids.

Müller et al. [22] proposed an elasticity term which
uses Moving Least Square (MLS) to simulate elasto-

plastic objects. Solenthaler et al. [24] adopted the for-
mulation of this elasticity term and computed it us-
ing SPH instead of MLS to allow for robustly simulat-

ing fluid with various properties under the condition of
collinear or coplanar particle distributions. The method
of Solenthaler et al. [24] was extended to handle rota-

tional motions of elastic materials [2]. Mao and Yang
[17] introduced a viscoelastic force term, called nonlin-
ear corotational Maxwell model, into the Navier-Stokes

equations to simulate viscoelastic fluids. A method sim-
ilar to the method of Mao and Yang [17] was proposed
by Chang et al. [6].

Gerszewski et al. [9] proposed a new formulation

for simulating elastoplastic materials, which uses affine
transformations to compute the gradient of deforma-
tions. This formulation was solved by Zhou et al. [31]

in an implicit manner to efficiently and robustly per-
form simulations with larger time steps. The method of
Gerszewski et al. [9] was extended by Jones et al. [14].

Jones et al. [14] used MLS to robustly simulate elasto-
plastic materials with spatially and temporally varying
masses.

Volume preservation In particle-based simulations,
volume preservation has been achieved by minimizing

density fluctuations from the fluid rest density by en-
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forcing fluid incompressibility [13] since meshes which

are often used for volume preservation of deformable
objects are inappropriate because of frequent topol-
ogy changes. After Müller et al. [19] presented the ba-

sic SPH method, which suffers from unacceptable den-
sity fluctuations and volume loss because of the de-
pendence on an equation of state (EOS), Becker and

Teschner [3] proposed Weakly Compressible SPH and
alleviated large density fluctuations by replacing the
EOF in [19] with a stiffer EOS called Tait equation,

requiring exceedingly smaller time steps for stable sim-
ulation. Solenthaler et al. [23] proposed a predictive-
corrective scheme, called Predictive-Corrective Incom-

pressible SPH (PCISPH) to use larger time steps while
satisfying fluid incompressibility. A similar predictive-
corrective scheme called local Poisson SPH was pro-

posed by He et al. [10]. Bodin et al. [5] proposed a
system of velocity constraints to improve the accuracy
of PCISPH [23], while achieving incompressible flows.
To further accelerate enforcing fluid incompressibility

by allowing us to use larger time steps than those used
in PCISPH [23], Macklin and Müller [15] adapted PBD
for fluid simulation, and Ihmsen et al. [12] proposed

Implicit Incompressible SPH (IISPH), which computes
pressure values using semi-implicit integration. A method
that enforces fluid incompressibility using semi-implicit

integration, called Incompressible SPH (ISPH) was also
proposed by Cummins and Rudman [8].

3 Proposed Method

The key of our method is to separately achieve volume
preservation and large deformations of viscoelastic ma-
terials. We rely on a particle-based incompressible fluid

solver to preserve fluid volumes while exploiting an idea
of PBD [20,4] to correct particle velocities for viscoelas-
tic effects without negatively affecting convergence of

density fluctuations in the fluid solver.

We briefly describe computational process and im-
portant features of particle-based incompressible fluid

solvers in § 3.1 and explain our velocity correction scheme,
which enables large deformations of viscoelastic mate-
rials while preserving their volumes in § 3.2. In § 3.3,

we summarize our algorithm, giving a list of simulation
procedures and implementation details.

3.1 Particle-based Incompressible Fluid Solvers

To preserve fluid volumes, we use a particle-based in-
compressible fluid solver, such as ISPH [8], PCISPH
[23], and IISPH [12]. In these SPH-based incompress-

ible fluid solvers, fluids are discretized by particles (par-

ticle i has position xi, velocity vi, and mass mi), and

pressure pi is iteratively corrected to obtain pressure
force Fp

i which achieves small deviations of density ρi
to the rest density ρ0 less than a certain criterion, e.g.,

0.01%. We briefly explain the flow of computations for
the solvers. For detailed simulation procedures and dis-
cussions, refer to the papers of particle-based incom-

pressible fluid solvers [8,23,12].

We first compute intermediate velocity v∗
i for par-

ticle i by

v∗
i = vt

i +∆t
Fother

i

mi
, (1)

where t denotes time, ∆t time step, and Fother all forces
except pressure and viscoelastic ones. Next, we use an
incompressible fluid solver to obtain pressure pi, which

is clamped as pi = 0 if pi < 0 not to cause attraction
forces between particles, through iterative corrections
with intermediate velocity v∗

i and compute pressure

force Fp
i by

Fp
i = −mi

∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇Wij , (2)

where j denotes a neighboring fluid particle and Wij a

kernel with a kernel radius h. Then, we compute veloc-
ity vi for incompressible flows:

vt+1
i = v∗

i +∆t
Fp

mi
. (3)

Finally, we update particle position xi:

xt+1
i = xt

i +∆tvi. (4)

There are two important requirements to note; first,
particle velocity vi needs to be updated with pressure
force Fp

i with Eq. (3) to integrate particle position xi

with Eq. (4), achieving incompressible flows. However,
the method of Takamatsu and Kanai [28] does not sat-
isfy this requirement because their method mixes ve-

locities derived from SM, which does not ensure incom-
pressible flows, and SPH, and thus resulting velocities
cannot achieve incompressible flows. Second, particle

position xi must be fixed after neighbor search steps
until pressure force Fp

i is computed with Eq. (2). As
explained in [23,12], neglecting changes of particle posi-

tions causes erroneous sets of neighboring particles and
their interparticle distances and leads to inaccurate es-
timates of physical quantities, which can make the fluid

solver fail to converge or delay the convergence of the
iterations. Since the method of Clavet et al. [7] uses
a prediction-relaxation scheme, which change particle

positions, this requirement is not satisfied.
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3.2 Velocity Correction Scheme

Satisfying the two requirements mentioned above, we
correct particle velocities to achieve viscoelastic effects

with velocity correction vector ∆vi (see § 3.2.1). We
obtain intermediate velocity v∗

i by modifying Eq. (1):

v∗
i = vt

i +∆t
Fother

i

mi
+∆vi. (5)

In [26], although three velocity correction schemes

(shape matching, spring-based, and position-based) were
proposed to compute velocity correction vector ∆v, we
herein use the position-based scheme because of the

following advantages over the other schemes; first, the
position-based scheme requires fewer neighbor particles
than the shape matching scheme and uses pairwise con-

nections which can simplify boundary conditions with
other objects unlike the shape matching scheme which
needs to construct particle clusters including farther

particles. Second, the position-based scheme inherits
properties of PBD [20,4] and thus is robust and easy
to tune parameters as compared to the spring-based

scheme.

3.2.1 Position-based Velocity Correction

To compute velocity correction vector∆v, we construct
a set of pairwise connections for neighboring particles
when an object is created, with their initial interparticle

distance rij , which is initialized as rij = ||xij ||, where
xij = xi − xj . Hereafter, we call particles connected
with other particles as connected particles. We correct

velocities of connected particles only when their inter-
particle distance ||xij || is larger than their initial in-
terparticle distance rij (fluid expansion), namely rij <

||xij ||, because fluid compression, which generally oc-
curs when ||xij || < rij , is resolved to preserve fluid vol-
umes with our fluid solver. To compute ∆v for those

connected particles such that rij < ||xij ||, we define a
distance function Dij as

Dij = max(||xij || − rij , 0).

Then, we compute ∆vi with a velocity correction co-
efficient ci (0 ≤ li ≤ ci), where li is the lower limit of
ci:

∆vi = − 1

∆t

Sf
i∑
j

ci + cj
2

mj

mi +mj
Dij

xij

||xij ||
, (6)

where Sf
i denotes the number of connected fluid par-

ticles to particle i. To derive Eq. (6), we adopted an
idea of position correction used in PBD [20,4], where
position correction vector is defined as

∆xi = −
Sf
i∑
j

mj

mi +mj
(||xij || − rij)

xij

||xij ||
.

Fig. 2 A ball with different viscoelasticity values dropped
onto the ground. Particles are color coded based on their
velocity correction coefficients c (low: cyan and high: dark
cyan).
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Fig. 3 Comparison of the influence for viscoelastic effects
between an SPH-based method and our method.

Our velocity correction vector is basically obtained by
dividing ∆xi by ∆t. By using Dij , the velocity correc-
tion vector becomes zero when ||xij || < rij . We addi-

tionally introduce velocity correction coefficients ci and
cj to control the stiffness of viscoelastic materials; lower
(higher) ci leads to softer (stiffer) materials (see Fig. 2).

Our velocity corrections enable large deformations
that cannot be generated with SPH-based methods,
e.g., [17,6], because the influence of the SPH-based meth-

ods for viscoelastic effects decreases as interparticle dis-
tances get larger and finally becomes zero owing to fi-
nite support kernels when h < ||xij || while the influence
of our method increases when rij < ||xij || (see Fig. 3).

3.2.2 Coefficient Relaxation

When large stress is applied to viscoelastic materials,
they cannot completely return to their original shapes
(this is known as plastic deformation). To simulate this

behavior, we weaken the effect of ci if li < ci, taking
into account the fact that connected particles do not
restore their positional relation when their connection

is extended larger than a certain distance. Specifically,
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Fig. 4 (Top) Two merging viscoelastic balls. (Bottom) A
viscoelastic ball thrown toward a column, splitting into three
lumps.

we update ci by

ct+1
i = max(cti −∆t

Sf
i∑
j

wi + wj

2
σij , li), (7)

σij =

{
1 if

γi+γj

2 <
Dij

h

0 otherwise
,

where wi(0 ≤ wi) controls the weakening speed of ci,

and γi(0 ≤ γi) is a yield criterion. σij works so that
the weakening happens only when normalized extension
Dij/h is larger than

γi+γj

2 .

3.2.3 Connection Control

We adaptively generate and delete particle connections
depending on the positional relations of particles to al-
low viscoelastic fluids to merge with others and split

into several lumps. For merging, we generate a new
connection between two particles with αi (0 < αi) if
||xij ||/h <

αi+αj

2 , and if there is no connection between

them. For splitting, on the other hand, we remove parti-
cle connections with βi(0 < βi) if

βi+βj

2 < ||xij ||/h. We
show our connection control algorithm in Algorithm 1

for clarity. Merging and splitting of viscoelastic mate-
rials are demonstrated in Fig. 4.

Algorithm 1 Connection control algorithm
1: for all fluid particle i do
2: for all neighboring particle j do

3: if ||xij ||/h <
αi+αj

2
then

4: if there is no connection then
5: generate a new connection between i and j
6: for all connected particle j do

7: if
βi+βj

2
< ||xij ||/h then

8: delete the connection between i and j

3.2.4 Boundary-handling for Solids

We simulate interactions of viscoelastic fluids and solids
by incorporating solid boundary particles into our al-

gorithm. Connections between fluid and solid particles
are updated following Algorithm 1. We compute ∆vi

by extending Eq. (6) with solid particles:

∆vi = − 1

∆t

Sf
i∑
j

ci + cj
2

mj

mi +mj
Dij

xij

||xij ||

− 1

∆t

Ss
i∑
k

ci + ck
2

mk

mi +mk
Dik

xik

||xik||
, (8)

where k denotes a neighboring solid particle and Ss
i the

number of connected solid particles to particle i. Since
force-based rigid body simulators are often adopted, we
compute viscoelastic force Fv

i to exert the antisymmet-

ric effect of fluid particles to solid particle i, preserving
their momentum:

Fv
i = − mi

∆t2

Sf
i∑
j

ci + cj
2

mj

mi +mj
Dij

xij

||xij ||
. (9)

Computing velocity correction vector ∆vi for one-
way solid-to-fluid coupling is straightforward. Assum-
ing mk = ∞ in Eq. (8) for a solid particle k, which is

fixed or moves along a determined path, we obtain

∆vi = − 1

∆t

Sf
i∑
j

ci + cj
2

mj

mi +mj
Dij

xij

||xij ||

− 1

∆t

Ss
i∑
k

ci + ck
2

Dik
xik

||xik||
. (10)

Extending Eq. (7) with solid particles, we weaken
the effect of ci as

ct+1
i = max(cti −∆t(

Sf
i∑
j

wijσij +

Ss
i∑
k

wikσik), li), (11)

where wij =
wi+wj

2 .

Fig. 5 illustrates the effects of the fluid-solid cou-
pling with an example of a cube thrown toward a wall.

3.3 Simulation Algorithm and Implementation

We give an outline of our procedures in Algorithm 2.
In our implementation, we use IISPH [12] as an in-

compressible fluid solver and set a convergence crite-
rion as 0.01%. For fluid-solid coupling of pressure and
viscosity, we employ the method of Akinci et al. [1].

We use finite support kernels as proposed by Müller et
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Fig. 5 A cube thrown toward a wall without (left) / with
(right) fluid-solid coupling.

al. [19]. To accelerate neighbor search steps, we used a
variant of the z-index sort algorithm presented in [11].

There are six adjustable parameters c, l, w, γ, α, and β
that we introduced to cover various phenomena of vis-
coelastic fluids, and we basically use values similar to

c = 0.001, l = 0.0001, w = 0.001, γ = 1.01, α = 1.0, and
β = 2.0, adjusting them according to scenarios.

Algorithm 2 Simulation algorithm
1: for all particle i do
2: find neighboring particles
3: for all particle i do
4: update particle connections following Algorithm 1
5: if particle i is a fluid particle then
6: obtain v∗

i with Eqs. (5), (8), and (10)
7: relax ci with Eq. (11)
8: compute particle pressure p using IISPH
9: for all fluid particle i do
10: compute Fp

i with Eq. (2)
update solids with Eq. (9)

11: for all fluid particle i do
12: integrate vi with Eq. (3)
13: integrate xi with Eq. (4)

4 Results

We implemented our method in C++ and parallelized it

using OpenMP 2.0. All the simulations were performed
on a PC with a 4-core Intel Core i7 3.40 GHz CPU
and RAM 16.0 GB. We used a physically-based ren-

derer Mitsuba to render all the scenarios. Our velocity
corrections generally occupy only 1.3% of whole simu-
lation time. Simulation conditions and performance are

listed in Table 1.

4.1 Large Deformation

We compare results generated with our method and
the SPH-based method using a non-linear corotational
Maxwell model proposed by Mao and Yang [17] to show

that our hybrid method can handle large deformations

Table 1 Simulation conditions and performance.Nf andNs

denote the number of fluid and solid particles, respectively.
ttotal is total simulation time per frame.

Figure # Nf/Ns ttotal (s)

2 (left) 24.5k/38.6k 3.02
2 (middle) 24.5k/38.6k 3.83
2 (right) 24.5k/38.6k 4.06
4 (top) 45.2k/60.3k 9.57
4 (bottom) 22.6k/67.4k 5.36
5 (left) 13.8k/27.0k 2.40
5 (right) 13.8k/27.0k 2.43
6 (top) 7.1k/21.8k 0.39
6 (bottom) 7.1k/21.8k 0.64
7 (middle) 8.2k/19.2k 5.75
7 (right) 8.2k/19.2k 2.47
9 (middle) 14.0k/27.5k 3.35
9 (right) 14.0k/27.5k 3.13
11 up to 195.1k/168.1k 125.2
12 33.4k/65.7k 6.82
13 73.5k/108.8k 29.01

of a viscoelastic material, which cannot be simulated
with the SPH-based method [17]. Though the method
of Mao and Yang [17] resampled particles to solve an

issue of particle disorder, we did not do that in our
experiment to show that our method can generate large
deformations without the need of special treatments.

Fig. 6 illustrates a viscoelastic sphere dropped onto
the ground. The viscoelastic ball simulated with the
method of Mao and Yang [17] exhibits slight elastic

deformations. After the degree of the deformations ex-
ceeds a certain threshold, the ball fails to restore their
original shape and breaks into many lumps which con-

sist of fairly close particles because particles close to
others exert strong forces to preserve their positional
relations (see Fig. 3). The method of Mao and Yang

[17] needs to use strong viscoelastic forces to make the
viscoelastic ball exhibit slight elastic deformations at
the expense of numerical stability. On the other hand,

our method can handle large deformations, restoring its
original shape without resampling particles nor intro-
ducing numerical instability.

4.2 Volume Preservation

We compare our method and the existing hybrid meth-
ods [28,7], using a scenario of a viscoelastic ball com-

pressed by a moving board along a vertical path.

Comparison to [28] First, we illustrate the differ-

ence between our method and the method of Takamatsu
and Kanai [28], who combined SPH and SM. Since the
basic SPH [19] adopted by Takamatsu and Kanai [28] as

their underlying fluid solver cannot preserve fluid vol-
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Fig. 6 Comparison for large deformation. (Top) the method
of Mao and Yang [17]. (Bottom) our method.

Fig. 7 Comparison for volume preservation. (Left) initial
state. (Middle) the method of Takamatsu and Kanai [28].
(Right) our method.

umes, we use IISPH [12] instead of the basic SPH [19]
and consider the method of [28] as a hybrid of IISPH

and SM. In this comparison, we use 100 pressure iter-
ations in IISPH for both methods because the method
of [28] is likely to fail to preserve fluid volumes even if

more pressure iterations are applied.

Fig. 7 shows the comparison, where the left is the
initial state, and the middle (right) is the result of the
method [28] (our method), and Fig. 8 illustrates the

volume V (which is estimated by summing up the vol-
ume of all fluid particles as V =

∑
i Vi =

∑
i mi/ρi)

occupied by the ball for the method of Takamatsu and

Kanai [28], our method, and reference (initial volume).
The volume of the ball on the middle decreases and in-
creases depending on the moving board. By contrast,

the ball on the right preserves its volume, which is
fairly close to the reference. Additionally, when being
compressed, the ball on the right exhibits horizontally

spreading motions, which cannot be generated with the
method of [28].

Moreover, our method is advantageous over the method
of [28] in terms of performance (see Table 1), and there

are two main factors; first, the method of Takamatsu
and Kanai [28] needs more neighboring particles to sta-
bilize simulations than our method, and processing these

particles is an additional cost. Second, their method [28]
uses Singular Value Decomposition, which is time con-
suming, to obtain rotational matrices in SM while our

velocity corrections need simple computations only.
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Fig. 8 Profiles of the volume V occupied by a ball for Fig. 7

Fig. 9 Comparison for volume preservation. (Left) initial
state. (Middle) the method of Clavet et al. [7] (Right) our
method.

Comparison to [7] Second, we compare our method

and the method of Clavet et al. [7], who combined
SPH with spring systems using a prediction-relaxation
scheme. Similar to the above previous method, since

Clavet et al. [7] used the basic SPH [19], we use IISPH
as their fluid solver for the same reason.

Fig. 9 demonstrates the comparison, where the left
is the initial state, and the middle (right) is the result

of the method [7] (our method). Since errors introduced
by position changes during the iteration are relatively
small and it is difficult to clarify visual or volume differ-

ences between the previous method [7] and our method,
we compare these methods in terms of the number of
iterations required to satisfy the convergence criterion

of 0.01%, as shown in Fig. 10, where profiles of iteration
numbers for Clavet. et al [7] nspr and our method npos,
and their difference nspr−npos are illustrated. Although

our method and the method of Clavet et al. [7] can gen-
erate similar results, the method of Clavet et al. [7] is
likely to require more iterations to enforce fluid incom-

pressibility than our method. This is noticeable espe-
cially when the ball is compressed and significantly de-
formed by the board because large deformations cause

strong attraction forces and introduce larger positional
errors (see “Difference” in Fig. 10). The extra iterations
of the method of Clavet et al. [7] lead to slightly higher

computational cost than our method (see Table 1).
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Fig. 10 Profiles of iteration number required to satisfy the
convergence criterion of 0.01% for Fig. 9.

Fig. 11 Spheres with different viscoelasticity values succes-
sively thrown toward a solid dragon. Particles are color coded
based on their velocity correction coefficients c (low coeffi-
cient: cyan and high coefficient: dark cyan).

Fig. 12 A viscoelastic ball thrown toward a solid cube.

4.3 Interactions

Fig. 11 illustrates several spheres with different vis-
coelasticity values successively thrown toward a static

solid dragon. Similar to Figs. 4 (top) and 5 (right), our
method can easily handle merging of fluids and adhe-
sion of fluids to a solid by updating pairwise interpar-

ticle connections.
Fig. 12 demonstrates two-way interactions of a vis-

coelastic material and a solid. The solid cube is grad-

ually pulled toward a wall by the viscoelastic material
that connects to both of the solid cube and the wall.
This effect cannot be simulated only with the previ-

ously proposed boundary-handling scheme for pressure
and viscosity [1].

4.4 Barus Effect

Fig. 13 demonstrates Barus effect of a viscoelastic ball.
Barus effect (also known as die swell, exclude swell,

and Merrington effect) is a phenomenon that a stream

Fig. 13 Barus effect of a viscoelastic material.

of viscoelastic fluid swells wider than the diameter of
an opening when the stream goes through the opening

because of viscoelastic forces which restore fluid’s orig-
inal shape after the deformations at the opening. Al-
though our velocity correcting method is based on ap-

proximated dynamics of viscoelastic fluid, we can plau-
sibly generate Barus effect.

5 Discussions and Limitations

Our method combines PBD with SPH to take advan-

tage of geometric methods, such as numerical stability
and capability of handling large deformations. Addi-
tionally, unlike SPH-based methods, our method has

another benefit that time steps are not generally re-
stricted by viscoelasticity values, namely velocity cor-
rection coefficient c in our method; and thus our method

can use larger time steps and be faster than SPH-based
methods. In contrast to positive aspects, however, there
are a few negative issues on the adaptation of PBD.

First, our method exploits PBD to approximate vis-
coelastic behaviors instead of using physically-based mod-
els. Because of this approximation, our simulation re-

sults are less accurate than SPH-based methods which
use a physically-based model for viscoelastic effects.
Second, we introduce several parameters which lack phys-

ical meanings into our method to cover various effects
of viscoelastic fluids. These parameters need to be ad-
justed depending on each scenario through experiments

to generate desirable behaviors of materials. Third, since
results of our position-based velocity correction can be
affected by time steps similar to other geometric meth-

ods, our method would produce different behavior of
viscoelastic fluids depending on time steps.

When materials are driven to extreme situations

(e.g., a ball forcibly and significantly deformed by a
heavy object), particle penetrations can be observed be-
cause of interparticle connections which exert larger ve-

locity changes for farther connected particles to enable
large deformations. Although this can be addressed by
adjusting the influence of velocity corrections, such an

adjustment could make viscoelastic materials fail to re-
store their original shapes from highly deformed shapes.

Most viscoelastic materials undergo phase and prop-

erty changes, e.g., turning into a stiff solid, as time
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passes. To simulate stiff materials, strengthening the

influence of velocity corrections would cause instability
in simulations. Thus, investigating how to simulate soft
and hard materials with phase and property changes in

a unified framework is our important future work.
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