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Abstract

Realistic rendering of participating media is one of the major sub-
jects in computer graphics. Monte Carlo techniques are widely
used for realistic rendering because they provide unbiased solu-
tions, which converge to exact solutions. Methods based on Monte
Carlo techniques generate a number of light paths, each of which
consists of a set of randomly selected scattering events. Finding a
new scattering event requires free path sampling to determine the
distance from the previous scattering event, and is usually a time-
consuming process for inhomogeneous participating media. To ad-
dress this problem, we propose an adaptive and unbiased sampling
technique using kd-tree based space partitioning. A key contribu-
tion of our method is an automatic scheme that partitions the spatial
domain into sub-spaces (partitions) based on a cost model that eval-
uates the expected sampling cost. The magnitude of performance
gain obtained by our method becomes larger for more inhomoge-
neous media, and rises to two orders compared to traditional free
path sampling techniques.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image
Generation; G.3 [Probability and Statistics]: Probabilistic Algo-
rithms

Keywords: Participating media, free path sampling, space parti-
tioning, Monte Carlo technique, unbiased

1 Introduction

Realistic rendering of inhomogeneous participating media is very
common, as there are many related phenomena in our daily life,
e.g., steam, water, fire, smoke, explosions, volcanic eruptions,
clouds, atmosphere, mist due to waterfalls, splashes due to ocean
waves, etc. These phenomena are the subjects in fluid simulation re-
search and frequently appear in movies. Thus, their photo-realistic
visualization is an important topic in both academic research and
film industry.

The photo-realistic rendering of participating media is typically re-
alized by techniques based on Monte Carlo sampling [Lafortune
and Willems 1996; Jensen and Christensen 1998; Pauly et al. 2000;
Raab et al. 2006]. In these methods, the intensity at a pixel is calcu-
lated by integrating contributions from a number of light paths, and
the process to generate light paths is at the heart of these methods.

Figure 1: Our method (left half) is able to generate 380 times more
light paths than [Raab et al. 2006] (right half) in the same com-
putation time, and the noise is significantly reduced. Sunlight is
the only light source. Global illumination effects, including multi-
ple scattering inside the clouds and the atmosphere, the haze, and
shadows on the ground due to the clouds, are simulated.

For inhomogeneous participating media, however, generating such
light paths is usually a time-consuming process.

In this paper, we focus on an efficient method for generating the
light paths. An important feature in designing such a method is the
unbiasedness, which brings several benefits: 1) the solution prov-
ably converges to the exact one; 2) the computational error can be
easily evaluated by measuring the variance, whereas the computa-
tional error in biased methods is difficult to evaluate [Veach 1998];
3) there is no need to be concerned about bias-induced artifacts.

A light path in a participating medium is constructed by randomly
generating successive scattering events. To determine the location
of a new scattering event, the distance from the previous scatter-
ing event, called the free path, needs to be determined using ran-
dom numbers. An importance sampling technique, called free path
sampling, is often employed to efficiently determine the free path
according to the probability density function which corresponds to
the optical depth of the participating medium. The ray-marching
approach is often employed [Pauly et al. 2000], but results in a bi-
ased solution. An unbiased solution can be obtained by using Wood-
cock tracking [Woodcock et al. 1965], which was proposed in the
nuclear science community and is frequently used in nuclear sci-
ence and medical physics [Badal and Badano 2009]. It was first
introduced to the computer graphics community by [Raab et al.
2006]. The free path is sampled by incrementing small distances
in a stochastic manner judging whether a scattering event has oc-
curred. The lengths of such small distances are adjusted to be short
enough to sample the densest region of the medium. However,
Woodcock tracking becomes inefficient in inhomogeneous media
[Leppänen 2007], because the mean free paths are much longer in
sparse regions, and such small distances are usually incremented
many times, ranging from tens to thousands, until the next scatter-
ing event occurs.

To overcome the above problem, we extend Woodcock tracking,
and propose an adaptive and unbiased technique. During prepro-
cessing, our method partitions the analytical space (the bounding
box of the medium) into sub-spaces (partitions) according to the
spatial variation of the mean free path in the medium. The parti-
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Figure 2: (a): Illustration of light paths. (b): Sampling in parti-
tioned space. Black dots show the locations of scattering events and
the boxes with dashed lines show the bounding box of the medium.

tioning is represented as a kd-tree. During rendering, the locations
of the scattering events are determined adaptively using the kd-tree.
Our sampling technique is proven to be unbiased. A key contri-
bution of our method is an automatic partitioning scheme based
on a cost model for evaluating the sampling efficiency. We find
the optimal partitioning with respect to the cost model by solving
the largest empty rectangle problem. Another contribution of our
method is its scalability to handle a wide range of scenes including
clouds and atmosphere in whole-sky-scale as shown in Figure 1.
Using our method, the cost for obtaining the free path becomes
as low as the cost for other rendering processes including shading,
contrasting with other methods where it is the dominant cost. Our
method is one to two orders of magnitude faster in the overall ren-
dering speed than the previous methods for highly inhomogeneous
media, and is implemented on the GPU using CUDA.

An important benefit of our method is the ability to accelerate all
of the previous methods that generate light paths for rendering par-
ticipating media. Such methods include path tracing and Metropo-
lis light transport [Pauly et al. 2000], as well as photon mapping
[Jensen and Christensen 1998]. This benefit is also applicable in
other fields, such as nuclear science and medical physics.

2 Related Work

There has been much previous research on rendering participating
media. Thorough reviews can be found in [Cerezo et al. 2005] or
[Gutierrez et al. 2009]. Here, we briefly review some closely re-
lated papers. According to Cerezo et al. [2005], rendering meth-
ods for participating media can be classified into voxel-based meth-
ods [Stam 1995; Nishita et al. 1996] and sampling-based methods.
Voxel-based methods are usually inefficient for obtaining accurate
results, as the resolution of the voxels needs to be maintained finely.

In sampling-based methods, such as Metropolis light transport
[Pauly et al. 2000] and photon mapping [Jensen and Christensen
1998], the intensity at a pixel is calculated by generating a number
of light paths, each of which consists of a set of scattering events.
Major techniques to determine the locations of the scattering events
are the ray-marching method [Perlin and Hoffert 1989; Jensen and
Christensen 1998; Pauly et al. 2000] or its variants, e.g., [Brown and
Martin 2003]. However, they are biased and will produce different
results for different sampling intervals.

For unbiased sampling, Raab et al. [2006] introduced Woodcock
tracking [Woodcock et al. 1965; Lux and Koblinger 1991] (also
known as delta-tracking or pseudo-scattering) from the field of nu-
clear science. Although it has been proven to be unbiased [Coleman
1968], it is known to be inefficient when dealing with inhomoge-
neous media [Leppänen 2007]. Surprisingly, however, little work
has been proposed to overcome this inefficiency in the past few
decades. Recently, GPU implementations of Woodcock tracking
were proposed by, e.g., Badal et al. [2009]. Leppänen [2007] im-
proved Woodcock tracking by separating dense regions from sparse
regions, and treating these two kinds of regions differently. Unlike
the problem settings in Leppänen [2007], the density distribution of

participating media appearing in the computer graphics field (such
as smoke and clouds) is usually continuous, and it is not obvious
how to adapt such two-level separation.

In this paper, we propose for the first time an automatic space par-
titioning scheme and use a kd-tree to represent the partitioning.
Inefficiency for rendering inhomogeneous participating media is
overcome by utilizing the space partitioning for free path sampling.
Moreover, our method scales well to the complexity of the scene.

3 Free Path Sampling

We first state the free path sampling problem, and then discuss the
issues of ray-marching and Woodcock tracking.

Monte Carlo techniques calculate the pixel intensity by first gen-
erating a number of light paths, and then integrating their contri-
butions. To generate a light path, scattering events are generated
successively as shown in Figure 2(a). Assume the scattering event i
has already been generated. The location of scattering event (i+1)
is typically determined by sampling the free path di and the scat-
tering direction ~ωi by using random numbers. For the scattering
direction, we can use conventional importance sampling. The free
path di should be sampled according to the following probability
density function [Pauly et al. 2000]:

pdffp(xi+1 = xi + di~ωi) = e−τ(xi,xi+1)k(xi+1), (1)

where xi and xi+1 are the locations of the scattering events i and
(i+1). τ(xi,xi+1) =

∫

xi+1

xi

k(x′)dx′ is the optical depth between

xi and xi+1. k indicates the extinction coefficients. To generate
random numbers that obey the above probability density function,
the inversion method is usually used together with ray-marching:
first, a random number ξ ∈ (0, 1) is drawn using rand(), then
di satisfying τ(xi + di~ωi,xi) = − ln(1 − ξ) is found using ray-
marching, which, however, introduces bias.

Woodcock tracking (shown as Algorithm 1) samples the free path in
an unbiased way by utilizing a rejection sampling technique. First,
a majorant extinction coefficient kM which is the maximum ex-
tinction coefficient of the participating medium is computed. Then,
Woodcock tracking samples pseudo scattering events by regard-
ing the medium as a uniform medium with the extinction coeffi-
cient being kM . For unbiasedness, such pseudo scattering events
are only accepted as ‘real’ scattering events with the probability
k(xi + di~ωi)/kM . This process is proven to be unbiased and
we can obtain di with the probability density function given by
Equation (1) [Coleman 1968]. Every time a random number is
generated, the free path di (see Figure 2(a)) is incremented by
− ln(1 − rand())/kM , whose expectation value is 1/kM . In an
inhomogeneous participating medium, k(xi + di~ωi) is often much
smaller than the majorant extinction coefficient kM , and the ra-
tio k(xi + di~ωi)/kM becomes small where the medium is sparse.
Therefore, many random numbers might be generated until a real
scattering event is detected. Thus, this method becomes less effi-
cient when the participating medium is highly inhomogeneous.



4 Unbiased Sampling and Space Partitioning

To efficiently sample the free path, we partition the bounding box
containing the participating medium into some partitions. Then the
majorant extinction coefficient for each partition can be set smaller
than that for the entire domain. The results of this are that 1) the
average distance in each iteration (1/kM ) becomes longer, and 2)
scattering events are more likely to be accepted. Thus, the expected
total number of iterations can be reduced.

A simple way to do this partitioning is to use a uniform grid
[Szirmay-Kalos et al. 2010]. However, the resolution of the grid
significantly influences the sampling performance and needs to be
tuned manually. Moreover, uniform grids do not scale well to the
size of the scene. Instead, we present an automatic partitioning
scheme and use a kd-tree to represent the partitioning (Figure 2(b)).
The partitioning adapts well to the size of the scene and the sam-
pling performs much better than using a uniform grid.

Firstly, we discuss how to sample the free path in an unbiased man-
ner when the partitioning is given. Then, we discuss our space par-
titioning strategy that makes our sampling technique efficient. Fi-
nally, we summarize our sampling technique utilizing the kd-tree.

4.1 Unbiased Sampling in Partitioned Space

Suppose that a ray starting at x0 in the direction ~ω (Figure 2(b))

passes through two adjacent partitions i and j, with k
(i)
M and k

(j)
M

being their majorant extinction coefficients. Let the distances from
x0 to the intersections with those partitions be s, q, and t.

To sample the free path in the interval (s, t], we first deal with the
first interval (s, q] by using Algorithm 1 with kM , dmin, and dmax

set to k
(i)
M , s and q. We may obtain a scattering event in the first

interval or the free path exceeds q otherwise. If the free path ex-
ceeds q, we rewind the free path back to q and proceed to the sec-

ond interval (q, t], and Algorithm 1 is used with k
(j)
M , q, and t. By

rewinding the free path back to q, we can ensure the unbiasedness
of the sampling. This strategy of rewinding was also used in [Carter
et al. 1972] to treat adjacent medium boundary. We provide a sim-
ple proof of the unbiasedness in Appendix A, by showing that we
can obtain the free path d with the probability:

{

P (x′ = x0 + d~ω ∧ s < d ≤ t) = e−τ(x0+s~ω,x′)k(x′)

P (d > t) = e−τ(x0+s~ω,x0+t~ω)
, (2)

which is equivalent to using Algorithm 1 with dmin and dmax being
s and t, respectively, and kM = maxs≤z≤t k(x0 + z~ω).

4.2 Partitioning Participating Media

The performance of the sampling technique shown in Section 4.1
highly depends on the partitioning. If we partition a nearly homo-
geneous interval, an additional iteration is required to rewind the
free path to q when proceeding to the adjacent interval, and this
would be a waste compared to the case with no partitioning. On the

other hand, we can have more benefit, if k
(i)
M in a partition is much

smaller than kM for the entire space. These observations would
give us a stopping criterion for the partitioning process, as well as
a decision criterion for the partitioning location q. We first explain
our method for a one dimensional case, and discuss the optimal par-
titioning location. Then, we extend the method to three-dimensions.

One-dimensional case. Suppose that k(x) is given at an arbi-
trary location x. Let the w axis indicate the value of k(x), and we
consider an interval (s, t]. First, we consider a simple case as shown

(a) (b) (c)

Figure 3: Example distributions of media in 1D.

in Figure 3(a), where k(x) has only one local maximum in (s, t].
We decide whether we should partition this interval as well as the
optimal partitioning location through a cost model evaluating the
expected number of iterations as follows. Let kM be the majorant
extinction coefficient in this interval. Then, in a single iteration,
the free path will proceed 1/kM on average. Therefore, we need
N = (t − s)kM iterations, on average, to go across this interval.
If we partition this interval at location q, as in Figure 3(a), it takes
Npart = (q − s)kML + (t − q)kM + 1 iterations, on average, to
go across the entire interval (s, t], where kML is the majorant ex-
tinction coefficient in the interval (s, q]. The last term ‘+1’ arises
because we need to reset the location to q when we proceed to the
second interval. Then, the reduction Nr in the expected number of
iterations when we partition the interval (s, t] at q is given by

Nr(q) = N − Npart = (q − s)(kM − kML) − 1. (3)

If Nr ≤ 0, we cannot gain any benefit, and the interval is left
unpartitioned. Otherwise the optimal partitioning location can be
obtained by finding q that maximizes the reduction, i.e.,

q = argmax
q′∈(s,t]

Nr(q
′). (4)

Next, we generalize the above discussion to handle the cases where
k(x) has multiple peaks like Figure 3(b) by replacing Equation (4)
with a problem to find the largest rectangle R in Figure 3(a). By in-
specting Figure 3(a), we notice that (q−s)(kM −kML) on the right
hand side of Equation (3) corresponds to the area of a rectangle R
(hatched region in Figure 3(a)), and R should touch the boundary
of the empty space E (the light gray region bounded by kM , k(x),
x = s and x = t). Similarly, the expected number of iterations
to traverse the interval (s, t] without the partitioning, (t − s)kM , is
exactly the area of the bounding box B (the blue rectangle bounded
by w = kM , w = 0, x = s and x = t). Intuitively, the bounding
box B contains empty space E, which corresponds to the waste in
sampling. By finding the largest rectangle R and partitioning the
interval at q, we can remove the waste corresponding to R.

To define the problem formally, we replace Equation (4) with

R = argmax
R′⊂E

N∆(R′), (5)

where N∆ is the reduction in the expected number of iterations
corresponding to removing the rectangle R′ from E, and is given
by N∆(R′) = A(R′) − T (R′). A(R′) is the reduction in the
expected number of iterations when we simply remove R′ from E,
and is exactly the area of R′. T (R′) is the number of additional
iterations we have to pay when the interval is partitioned, and is
determined according to the alignment of R′. T (R′) = 2 if both
lower corners of R′ are on w = k(x) (Figure 3 (b)), since we have
to partition the interval at both ends of R′ to remove R′ from E.
Otherwise, T (R′) = 1 (Figure 3 (a)). We call N∆(R′) the reduced
area of R′.

To find R that satisfies Equation (5), we solve a slightly modified
version of the 2D largest empty rectangle problem [Aggarwal and



Figure 4: An illustration of building functions k+(x) and kδ(x),
and calculating partitioning coordinates. For each location a, we
scan along a slice ‘a’ perpendicular to the x axis, and find the
maximum and minimum extinction coefficients (k+(a) and k−(a),
respectively) in this slice. kδ(a) is then defined as k+(a) − k−(a).

Suri 1987]. In our problem, the area of each rectangle is replaced
by the reduced area. For the solution, we discretize the empty re-
gion E into n bins along the x axis and use dynamic programming
to find the largest empty rectangle in E. Both the computational
complexity and the memory requirement are in O(n). For details,
please refer to the supplemental material.

Assume R′ in Figure 3(b) is reported to be the largest rectangle
with the reduced area. Let q1 and q2 be the two ends of the rectan-
gle. As we use a kd-tree to represent the partitions, we partition the
interval once. Of these two ends, the one that is closer to the center
c = (s+ t)/2 of interval (s, t] is chosen as the partitioning location
q as shown in Figure 3(c). This makes the lengths of the two new
intervals, (s, q] and (q, t] as nearly equal as possible. The partition-
ing is then recursively applied to each of the two child intervals, as
shown in Figure 3(c). The kd-tree is constructed so that an inner
node represents the corresponding partitioning location and a leaf
node stores the majorant extinction coefficient of the corresponding
interval.

Three-dimensional case. An interval of the medium now be-
comes a volumetric region V . Hence, we want to choose a plane
for partitioning V . To maintain a kd-tree, we only consider planes
aligned to axes for partitioning. A straightforward way to find the
partitioning plane is to find the largest hyper-rectangle in the 4D
region bounded by w = k(x), w = kM and V . However, current
solutions for the largest empty rectangle problem in 4D space have
high computational complexity [Edmonds et al. 2003].

Instead, we employ a heuristic approach, with which, in our exper-
iments, the kd-tree can be built in less than one minute. Although
it is not always optimal, it works well for media with complex dis-
tributions as shown in Section 5.2. We regard the problem as three
individual 1D problems along each of the three axes, and try to find
the partitioning candidate for each of the axes. We then choose the
best one from those candidates comparing their benefits.

We first explain how to find the partitioning candidate for the x
axis. We first setup a 1D function k+(x) along the x axis, defined
as k+(x) = maxy,z,(x,y,z)∈V k(x, y, z). We apply the solution of
the one dimensional case to find the largest empty rectangle and
obtain its reduced area N∆

+ . If N∆
+ > 0, we obtain the corre-

sponding partitioning coordinate q+. This simple approach works
well for most cases, but if k(x) has many peaks in V and their
projections onto 1D overlap each other, k+(x) tends to become
uniform and fails to detect the non-uniform regions, e.g., sparse
regions that are enclosed by dense regions. To address this situa-

tion, we introduce another 1D function kδ(x), defined as kδ(x) =
maxy,z,(x,y,z)∈V k(x, y, z) − miny,z,(x,y,z)∈V k(x, y, z). Please
see Figure 4 for a graphical illustration of k+(x) and kδ(x). Using
kδ(x) makes it possible to detect the non-uniform regions in such
a case, because kδ(x) becomes large when the distribution of the
medium in the plane at x perpendicular to the x axis is inhomoge-
neous and becomes small if the distribution of the medium is nearly
homogeneous. We notice that the 1D largest empty rectangle solver
can be used to detect such homogeneous regions. Similar to the pro-
cess for obtaining N∆

+ from k+(x), we obtain N∆
δ from kδ(x). If

N∆
δ > 0, we obtain another partitioning coordinate qδ . The last

step is then to choose the partitioning candidate from these two co-
ordinates. Empirically, we find that using q+ preferentially will
result in better performance. Thus, we compare N∆

+ with F · N∆
δ ,

where F < 1 is a constant. We then choose the larger one and let its
value be the numerical representation of the benefit for the x axis.
We find that F = 0.7 gives good performance.

The above process is performed for the y and z axes. To lower the
cost for free path sampling, we seek the largest benefit. If it is less
than or equal to 0, V is left unpartitioned. Otherwise, we select the
partitioning axis and location that give the largest benefit value.

The memory footprint of a kd-tree is usually negligible compared to
the storage for the participating medium itself. In our implementa-
tion, the memory layout of the kd-tree is similar to that for standard
ray tracing [Wald 2004], and each node consumes only 8 bytes.

To handle object surfaces, we first perform the above process ignor-
ing the surfaces. Then, for each leaf node, if surfaces are aligned
in the node, we further construct a sub kd-tree in the node for the
surfaces. Compared to using separate kd-trees for the surfaces and
the medium, we can reduce redundant ray-surface intersections.

4.3 Ray Traversal

Algorithm 2 shows a ray traversal algorithm using the kd-tree. The
algorithm proceeds by first locating the leaf node for the current
sampling location. dmin and dmax in line 4 indicate the distances
to the nearest and farthest points of the node. In each leaf node, we
apply Algorithm 1 to sample the location of the scattering event. If
a ray-surface intersection is found as shown in line 8, disect is set
to the distance to the intersection. If d obtained in line 6 exceeds
disect, we return an intersection event. If the location correspond-
ing to d is inside the current leaf node, that location is determined
as the scattering location. Otherwise, we continue to the next in-
terval, by traversing the next leaf node. The resulting algorithm is
quite simple and similar to the standard kd-tree based ray tracing
algorithm for polygonal scenes, e.g., [Keller 1998]. Lines 2, 4, 8
and 9 of Algorithm 2 share his code.



Figure 5: (a): Close view of the reference image. (b) to (c): ren-
dered using [Raab et al. 2006] and our method with 100 minutes.
(d) to (g): rendered with 1,000 minutes using ray-marching with the
sampling interval being 4×, 1×, 1/4× and 1/16× of 1/kM of the
medium, respectively. time*: The time to generate 106 rays.

5 Evaluations

We conducted three types of experiments: 1) comparison of rates
of convergence, 2) detailed investigation of the performance gain
and 3) rendering natural participating media. All the tests were per-
formed on a single PC with an Intel Core2 Extreme QX9650 CPU
and an nVIDIA GeForce GTX 295 GPU. Tests in Sections 5.1 and
5.2 were performed on a single core of the CPU without SIMD
instructions for fairness. To simplify the evaluation, we imple-
mented our sampling technique in a simple Monte Carlo path trac-
ing method. Multiple scattering and inter-reflection of light were
computed in all of the tests, and Russian roulette was used to deter-
mine the termination of the light paths. In all of the experiments,
the computation time for the space partitioning was less than one
minute, and this is negligible compared to the time needed for ob-
taining a result with the noise reasonably reduced.

5.1 Discussion on Convergence

We compared the rates of convergence between [Raab et al. 2006],
our method, and ray-marching in Figure 5. We applied random off-
sets to the first sampling interval for ray-marching to avoid aliasing
artifacts as in [Pauly et al. 2000]. The left image is the reference
image rendered using [Raab et al. 2006] in 5 days with 16 cores.
The top right graph shows the rates of convergence by plotting the
RMS error against the computation time on a log-log scale.

The results rendered using ray-marching do converge, but to wrong
solutions. This can be seen by comparing (a) with (d), and from
the fact that the graphs of ray-marching are ‘curving out’ which
is clearly noticeable when the sampling interval is 4x and 1x of
1/kM . The bias can be reduced by shortening the sampling interval,
but more time is needed for a converged result. By contrast, the
result rendered using our method converges to the correct one, and
the performance is superior to all of the other cases. Comparing
the computation times required to generate 106 rays, our method is
13.6 times faster than [Raab et al. 2006]. This gain results in faster
reduction of the noise due to the Monte Carlo estimation. The noise
is clearly visible in (b), but has almost disappeared in (c).

5.2 Detailed Evaluation of Performance Gain

We compared the computation times of free path sampling for var-
ious media using Algorithms 1 and 2. To cover a variety of me-

Figure 6: (a): The appearance of the set of media with maximum
extinction coefficient being equal to the baseline. (b): The perfor-
mance gains for the set. Blue squares in (b) indicate inferior cases.
(c): The max/min performance gains for each of the set.

dia, we changed the degree of concentration (extinction coefficient),
size and inhomogeneity. Since a large scene with low optical co-
efficients (extinction, scattering and absorption coefficients) and a
small scene with high optical coefficients will have the same ap-
pearance, we fix the scale of length and only consider the scale of
optical coefficients. Inhomogeneity is controlled by changing the
frequency parameter of 3D Perlin noise [Perlin 2002] (higher fre-
quency parameter means more rapid local variation in the medium).

We first prepared 8 types of base media by setting the frequency pa-
rameter from 1 to 8. We then normalized the extinction coefficients
in the range [0, 1]. Then, we prepared 9 types of variations for

each base medium by changing the contrast to 2j , (j = 1, ..., 9),
where the contrast is the ratio of the maximum difference of the
extinction coefficient to the average extinction coefficient. To ob-
tain a desired contrast, we applied the power r to the normal-
ized extinction coefficients, where r is a real number and is ob-
tained using a bisection method. Finally, for each of these 72
types of media, we changed the maximum extinction coefficient
to 1/8, 1/4, 1/2, 1, 2, 4, 8 times of the baseline to create 7 sets of
sparser and denser media. Then, we examined the performance for
these 504 types of media.

As Algorithms 1 and 2 sample the free path with the same probabil-
ity distribution, their computation time for generating 106 rays can
be compared fairly. Figure 6 (b) shows the performance gains of Al-
gorithm 2 over Algorithm 1 for the set of media with the maximum
extinction coefficient being equal to the baseline, and their appear-
ances are shown in Figure 6 (a). The tendency of the performance
gain for the other 6 sets of media is similar. Therefore, instead of
displaying all of the performance gains, we show the relationship
between the maximum extinction coefficient, and the maximum /
minimum performance gains in Figure 6 (c). We notice that more
performance gains are obtained for media with higher maximum
extinction coefficients.

The performance gains are higher when the media have higher con-
trasts and are generated from base media with lower frequency pa-
rameters. If high concentration regions are congregated in a nar-
rower range as shown in Figure 6 (a), our method is more efficient.
Natural participating media, such as smoke, clouds and fire often
have this property. Although there are a few inferior cases shown
as the blue squares in Figure 6 (b), our method is faster than [Raab
et al. 2006] in most cases. The inferior cases were all reported for
nearly homogeneous media, and the performance loss is at most a
few percent. Such performance loss happens because of the fol-



Figure 7: Rendered results of inhomogeneous participating media using our method. Global illumination effects, including multiple scatter-
ing and inter-reflection, are simulated. Image sizes are 640 by 480 for the left image and 960 by 450 for the middle and right images.

lowing two reasons: 1) the heuristics are imperfect; 2) the cost of
traversing the kd-tree influences the performance slightly.

Next, we would like to briefly mention the performance gain for
the whole rendering process, which have other sub-processes, such
as shading and sampling the scattered direction. In our implemen-
tation, they take up about half of the computation time. Thus, the
performance gain for the whole rendering process is about half of
that for free path sampling.

5.3 Rendered Results

The images in Figure 7 from left to right show the fire, steam and
sky scenes, lit by the fire, an environment light source and the sun-
light, respectively. Scene statistics are shown in Table 1. Kd-tree
construction took 5, 7 and 42 seconds for the fire, steam and sky
scenes. Our method is 2.7, 8.9 and 380 times faster than [Raab et al.
2006] to render the images in the same quality for these scenes.
These increased speeds come from the fact that the numbers of av-
erage iterations are significantly reduced. Our method running on
the GPU is about 50 times faster than on a single core of the CPU.
At each thread on the GPU, we compute tens of light paths for a
single pixel: light paths passing through the pixel are started from
the viewpoint, and successive scattering or intersection events are
generated. A single CUDA kernel execution evaluates the contri-
butions for all the pixels. We execute the kernel hundreds of times,
and then finally average the contribution of each light path to obtain
the result. The rendering times for these scenes are 225 min, 58 min
and 345 min on the GPU. Using a two-layered kd-tree described in
Section 4.2 resulted in 10 to 35% faster speedup than using separate
kd-trees for the object surfaces and the participating medium.

In the sky scene, the clouds are in a voxel-based representation and
is modeled based on a satellite image. The atmosphere is in a proce-
dural representation. We used physically-based optical coefficients
and phase functions to render the images. In the real world, the ex-
tinction coefficients of the clouds are about 102 to 103 times as large
as those of the atmosphere, thus the sky is highly inhomogeneous.
In Figures 1 and 7 right, global illumination effects, including mul-
tiple scattering inside the clouds and the atmosphere, the haze, and
shadows on the ground due to the clouds, are simulated.

5.4 Discussion and Applications

On voxelization. If the participating medium is not in a voxelized
representation, we need a temporal voxelized representation, e.g., a
uniform grid or an adaptive grid, during the space partitioning in
order to solve the largest empty rectangle problem. In each voxel,
the majorant extinction coefficient of the corresponding subspace
needs to be stored. As long as the majorant extinction coefficient
is any valid upper bound of the extinction coefficient (i.e., not nec-
essarily the least upper bound), the unbiasedness of our method is
guaranteed. A tighter bound leads to more efficient sampling. If the

Table 1: Scene statistics. Values in the style ‘x/y’ show ‘#ray/sec’

and ‘#average iterations’. depth and #leaf show the average depth
and the number of leaves of the kd-tree for the participating me-

dia. k and σ(k) show the average and standard deviation of the
extinction coefficient.

participating medium is in a procedural representation, in practice,
we can estimate an upper bound from the formulae of the procedu-
ral representation. Currently, the resolution is chosen by the user.
We recommend the use of as high resolutions as possible for better
performance in sampling.

On the heuristics. As a quantitative evaluation of our heuristic
approach, we prepared various volume data with two different res-
olutions, 83 and 163, and compared the computation time for the
free path sampling using the kd-trees built with our heuristic ap-
proach and with the optimal partitioning solution. Comparisons for
higher resolutions were not possible due to the prohibitive compu-
tation cost for the optimal solution. We found that use of the opti-
mal solution is more efficient in sampling than using the heuristic
approach, but the gain is only less than 10% on average.

Applications. Our unbiased free path sampling technique is a
common building block for typical rendering methods based on
Monte Carlo sampling. We would like to emphasize that our
method can be used with any algorithm, including photon mapping,
that must sample inhomogeneous media. The code for generating
scattering events can be replaced by our method for better accu-
racy and performance. Our method is also applicable to problems
in other fields: nuclear simulation in the nuclear science field, x-
ray simulation in the medical physics field, etc. Additionally, our
method can be used to accelerate unbiased computation of the trans-
mittance, which also uses Woodcock tracking [Raab et al. 2006].

6 Conclusions and Future Work

We have proposed a free path sampling technique to efficiently
find scattering events. Our method partitions the spatial domain
into partitions that adapt to the inhomogeneous distribution of the
medium, by solving the largest empty rectangle problem and using
the kd-tree to represent the partitioning. Our sampling technique
then samples the free path using the kd-tree in an unbiased manner.
We have conducted a case study to investigate the performance gain
of our method over previous methods, reporting one to two orders
of magnitude acceleration for highly inhomogeneous media. By



using our method, we can accelerate the rendering of many types
of participating media, including the atmosphere and clouds, taking
multiple scattering into account.

For future work, we would like to develop efficient solutions for
the largest empty rectangle problem in high dimensional spaces. A
5D solution would also be important if we want to obtain a mo-
tion blur effect. Another possible extension is to incorporate other
integrators, such as Metropolis light transport.
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A Proof of Unbiasedness of Our Method

It is proven by [Coleman 1968] that Woodcock tracking (Algorithm
1) can generate the free path d that obeys the probability distribution
shown in Equation (2). We show below that our sampling technique
can generate d with the same probability distribution. From the
probability distribution of Algorithm 1, d1 is obtained during the
sampling for the first interval (s, q] with the probability,

{

P1(x
′ = x0 + d1~ω ∧ s < d1 ≤ q) = e−τ(x0+s~ω,x′)k(x′)

P1(d1 > q) = e−τ(x0+s~ω,x0+q~ω)
.

(6)
Similarly, d2 is obtained during the sampling for the second interval
(q, t] with the probability,

{

P2(x
′ = x0 + d2~ω ∧ q < d2 ≤ t) = e−τ(x0+q~ω,x′)k(x′)

P2(d2 > t) = e−τ(x0+q~ω,x0+t~ω)
.

(7)
Since the sampling for the second interval is executed if and only if
d1 exceeds q during the sampling for the first interval, we obtain











































































P (x′ = x0 + d~ω ∧ s < d ≤ q)
= P1(x

′ = x0 + d~ω ∧ s < d ≤ q)

= e−τ(x0+s~ω,x′)k(x′)

P (x′ = x0 + d~ω ∧ q < d ≤ t)
= P1(d > q)P2(x

′ = x0 + d~ω ∧ q < d ≤ t)

= e−τ(x0+s~ω,x0+q~ω)e−τ(x0+q~ω,x′)k(x′)

= e−τ(x0+s~ω,x′)k(x′)

P (d > t) = P1(d > q)P2(d > t)

= e−τ(x0+s~ω,x0+q~ω)e−τ(x0+q~ω,x0+t~ω)

= e−τ(x0+s~ω,x0+t~ω)

. (8)


