
Real-time Rendering of Point Based Water Surfaces

Kei Iwasaki1, Yoshinori Dobashi2, Fujiichi Yoshimoto1, and Tomoyuki Nishita3

1 Wakayama University
2 Hokkaido University

3 The University of Tokyo

Abstract. In recent years, attention has been paid to particle-based fluid simu-
lation, with several methods being developed to incorporate particle-based sim-
ulation into CG animations. These methods reconstruct water surfaces that are
usually represented by polygons. However, the computational cost of the surface
reconstruction is quite high. Therefore, it is difficult to render the result of the
particle-based simulation at interactive frame rates. To address this, we present a
real-time method for rendering water surfaces resulting from particle-based sim-
ulation. We present an efficient GPU accelerated surface reconstruction method
from particles, sampling the water surface point by point. In addition to rendering
the point based water surfaces, the use of the GPU permits efficient simulation of
optical effects such as refraction, reflection, and caustics.

1 Introduction

The research into fluid simulation is one of the most important research topics in com-
puter graphics. Many methods have been developed for the simulation of fluids such
as water, smoke, and fire [1, 2, 3, 4]. Most of these methods subdivide the simulation
space into grids and solve the Navier-Stokes equations by discretizing the equations,
using the grids to simulate the fluid dynamics. These methods are based on the Eulerian
method. On the other hand, particle-based fluid simulations have been developed that
represent the fluid as particles and calculate the fluid dynamics by solving the particles
dynamics [5]. Particle-based fluid simulation has received attention since this simula-
tion method is free from the numerical diffusions in the convection terms, suffered by
the Eulerian method, and the surface transformation is easy to handle.

One of the methods of visualizing particle-based simulation is to reconstruct the
water surface by polygons and to render these polygons. The water surface is recon-
structed as follows. Initially, a density function, (or smoothing kernel), is defined with
the distance from the center of the particle as parameter. The simulation space is sub-
divided into a grid and the summation of the densities of the particles is calculated at
each grid point. Then the water surface is extracted as an iso-surface by using either
the marching cube [6] or the level set method [3, 7]. To render high quality images of
the water surfaces, the simulation space must be subdivided into numerous small cells.
This indicates that the computational cost of the density calculation at each cell also
increases and thus the cost of the reconstruction of the water surface becomes quite
high. Moreover, many small polygons are generated from a fully subdivided grid. For
the animation of the particle-based fluid simulation, the processing of enormous num-
bers of small polygons compared to the number of screen pixels in each frame results

in bandwidth bottlenecks. Therefore, these problems prevent the particle-based fluid
simulation from being applied to interactive applications such as the preview of the
simulation, video games and virtual reality.

In recent years, point based rendering methods have been developed, using the
points as primitives instead of the polygons [8, 9]. Several methods that are accelerated
by the GPU have been presented [10, 11]. Moreover, a point based method has been
developed for visualizing iso-surfaces [12]. This method demonstrates that the point
based visualization method for iso-surfaces can obtain storage and rendering efficiency
compared with standard polygon-based methods.

Particle-based fluid simulation represents the fluid as particles and calculates the dy-
namics. Therefore, visualizing the particle-based fluid simulation by using point primi-
tives is straightforward, since both of the result data of the simulation and the data from
the rendering are unified into points.

This paper presents a fast rendering method, resulting in the particle-based fluid
simulation without explicitly constructing polygons. In this paper, we deal with the
water as a fluid and describe a rendering method for the water, represented by point
primitives. To render the water surface, we have to take into account optical effects due
to water surfaces such as reflection, refraction, and caustics. Rendering these optical
effects is essential to increase realism. We present a fast rendering method for these
effects from water surfaces, represented by points.

The contributions of our method are as follows.

– Fast generation of point primitives, representing water surfaces by using the GPU
– Fast rendering of the water surface, represented by points to obtain optical effects

such as refraction, reflection, and caustics

The rest of our paper is organized as follows. Section 2 describes the related work. In
Section 3, the overview of our method is presented. Section 4 describes the calculation
of the density at each grid point by using the GPU. The method of rendering water
surfaces, represented by points, is described in Section 5. The rendering results of point
based fluid simulation are shown in Section 6. Finally, conclusions and future work are
summarized in Section 7.

2 Previous Work

There have been many methods for visualizing the results of the fluid simulation. These
are categorized into two types. One is to polygonize the iso-surfaces, represented by
implicit functions, and then to render the polygons. Another is to directly render the
implicit surface, without creating polygons. One of the methods to create the implicit
surface using polygons is the marching cube method [6]. Many methods have employed
this marching cube approach to render the water surface [13, 14, 4]. Moreover, a GPU
accelerated iso-surface polygonization method has been proposed in recent years. Mat-
sumura et al. proposed a fast method of iso-surface polygonization using programmable
graphics hardware [15]. Reck et al. developed a hardware accelerated method to ex-
tract iso-surfaces from unstructured tetrahedral grids [16]. Although the marching cube
method is efficient, representing iso-surfaces by creating polygons requires the memory

for the connectivity information and two different data structures are required for points
and polygons.

Another visualization method for fluid simulation of water involves the rendering
of the iso-surface directly. Enright et al. [3] and Premoze et al. [7] employed a level set
method to represent the water surface. Their methods render the water surface by using
Monte Carlo path tracing methods. Whilst these methods can render realistic images,
the computational cost for the rendering is high.

Although not for the rendering of the results of the fluid simulation, a visualiza-
tion method has been developed for iso-surfaces using point primitives. Co et al. pro-
posed a new algorithm called iso-splatting for rendering iso-surfaces using point primi-
tives [12]. This method shows that the point based rendering of iso-surfaces can exceed
the traditional polygon based approach such as a marching cube method in time and
space efficiency. This method, however, does not describe the calculation method of the
scalar(density) field, whose computational cost is high.

To solve these issues, we present a novel approach to render the water surface in
a particle-based fluid simulation. In our method, the iso-surface, representing the wa-
ter surface, is calculated efficiently by using fluid particles. Then the water surface is
sampled, point by point, and rendered by surfels [8]. This makes it possible to unify the
data structure into points in the simulation and then rendering, without the construc-
tion of polygons. Moreover, our method presents a fast rendering method for reflection,
refraction, and caustics by use of the point sampled water surface.

3 Overview

Fig. 1 shows the overview of our method. This method deals with the results of the
particle-based fluid simulation (Fig. 1(a)), calculated by particle-based simulation meth-
ods such as Moving Particle Semi-Implicit(MPS) and Smoothed Particle Hydrodynam-
ics(SPH). Then the the water surfaces, including caustics, are rendered as shown in
Fig. 1(d). To render the water surfaces including caustics, particles that represent the
surfaces must be extracted. Directly rendering the particles representing surfaces is one
solution to visualize the result of the particle-based fluid simulation. However, the num-
ber of particles used in the simulation is usually between about 1, 000 and 100, 000 so
that the number of particles representing a surface is, at most, several ten thousands.
As Muller pointed out, this is not sufficient number to render high quality images [14].
On the other hand, point based rendering methods [8, 9, 10, 11] are designed to render
huge number of points measured by range scanners. Thus, it is difficult to create high
quality images of water surfaces by rendering only the particles used in the simulation.

Therefore, our method generates dense sampled surfels (Fig. 1(c)), representing
water surfaces from all the particles used in the simulation (Fig. 1(a)). We create a tem-
porary grid in the simulation space, where the densities of the particles are accumulated
in each grid point (Fig. 1(b)). The density at each grid point is calculated as a density
function.

The cost of the density computation at each grid point is quite high, since it depends
on the number of grid points and the number of particles. We present a fast method for
accumulating densities of particles by using the GPU. Our density calculation method

(a) result of particle
 based simulation

(b) calculate density (c) extract surfels (d) render water surface
 and caustics

Fig. 1. Overview of our method.

can be applied not only to the particle-based simulation, but also to the grid based sim-
ulation, since the marching cube method requires the density at each grid. The points
(surfels) on the iso-surface representing the water surface are then extracted. The cal-
culation of surfels on the water surface is explained in Section 4.

The water surfaces are rendered by splatting surfels (Fig. 1(d)). Refraction and re-
flection of light is calculated by using refraction and reflection mapping of surfels. The
rendering method of caustics from water surfaces represented by surfels is described in
Section 5.

4 Generation of Surfels of the Water Surface using a GPU

This section describes the method for generating dense surfels representing the water
surface by using the particles. We create a grid in the simulation space and calculate the
densities at each grid point by using particles. The simulation space is subdivided into
nx × ny × nz grid points.

The density function F (r, h) in this paper is calculated from the following equa-
tion [17].

F (r, h) =
{

405
748πh (− 4

9a6 + 17
9 a4 − 22

9 a2 + 1) (0 ≤ r ≤ h),
0 (r > h), (1)

where a = r/h, and where r is the distance from the center of particle to a calculation
point, and h the effective radius of the particle. Although we have used this smoothing
function as a density function for the prototype, other smoothing functions such as the
smoothing kernel of the SPH could also be used as the density function.

The simulation space is located as shown in Fig. 2 and the z-axis is set to be the
vertical direction. A virtual camera is set along the z-axis and the reference point of the
virtual camera is set to be the center of the simulation space. A virtual screen is then set
to be perpendicular to the z axis. The virtual screen consists of nx × ny pixels. Each
pixel corresponds to a grid point on the grid planes perpendicular to the z axis, as shown
in Fig. 2. The pixels in the screen frame buffer consist of R, G, B, and α components.
To calculate the density of each grid point influenced by a particle, we use a metaball
whose center is the position of the particle. The circle of intersection between the grid
plane and the metaball, of effective radius is h, is calculated. The densities of pixels
within the circle of intersection are calculated. By drawing the circles of intersection
with the densities and accumulating the densities in the frame buffer, the density of

x
y

z

virtual camera

particle

grid plane

simulation
space

virtual screen

h

Fig. 2. Calculation of densities at each grid point by using splatting.

each pixel, corresponding to each grid point of the grid plane, is calculated by using the
GPU.

The surfels on the water surface are generated using the following steps.

step1. Cluster the metaballs according to the z coordinate of the particle position.
step2. Project the metaballs in each cluster onto the screen and calculate the densities

at each grid point.
step3. Generate the surfels on the iso-surface (water surface).

4.1 Clustering particles

As shown in Eq.(1), the density contribution from the particle at the grid point is zero,
when the distance between the particle and the grid point is larger than the effective ra-
dius h. To reduce the computational time of the density calculation, the particles whose
density contributions are zero are eliminated. The particles are classified into Nc clus-
ters by using the z coordinates of the particles. Cluster Ck (k is the cluster number)
includes the particles pk whose z coordinate pk

z satisfies zk ≤ pk
z < zk+1. Then the par-

ticles belonging to the cluster Ck are taken into consideration only for the calculation of
the grid points of the grid planes whose z coordinate zi satisfies zk−h ≤ zi < zk+1+h.

4.2 Density Calculation and Generating Surfels

To calculate the density at each grid point, texture-mapped disks are projected onto the
screen corresponding to the grid planes (see Fig. 2). The disk corresponds to the circle
of intersection between the grid plane and the metaball whose center is the particle
and the effective radius of h. The texture mapped onto the disk represents the density
function F on the disk. The densities on the disk are calculated from the distance from
the center of the particle to the grid point using Eq. (1). By projecting the disks of the
particles, intersecting the grid plane, onto the screen, and accumulating the densities,
the densities of the grid points on each grid plane are calculated by using the GPU. In
this calculation, the quantization error problem can occur since the density is quantized
with 8bit precision in most graphics hardware. This problem causes the error of the

θii

θtilq

P

illumination

volume

S

Sq
object

γ

Q

sample plane

incident light

illumination
volume

P(x,y+1)
virtual screen

sample points

P(x,y)
P(x+1,y)

incident light

s
ni

si

Ri

virtual camera

(a) illumination volume (b) virtual screen and camera

Fig. 3. Creation of illumination volume.

accumulated densities by using the GPU. To reduce the error, we use a floating point
buffer for the precise calculation of accumulation of densities.

The disks are rendered by using point sprites. This makes it possible to acceler-
ate the rendering process by the GPU. The point sprites are hardware functions that
render a point by drawing a square, consisting of four vertices, instead of drawing a
single vertex. The point sprites are automatically assigned texture coordinates for each
vertex corner of the square. This indicates that each pixel inside the point sprite is au-
tomatically parameterized in the square. Therefore, the distance, d, from the center of
the particle to each pixel of the point sprites can be calculated by using the fragment
program. By comparing the distance, d, with the effective radius h, we can determine
whether the pixel is within the circle of intersection or not. The density of the grid point
corresponding to the pixel is calculated by inserting the distance, d, into the density
function F . For the density calculation, we prepare a texture whose parameter is the
distance from the calculation point to the center of the particle. The density of the pixel
corresponding to the grid point is efficiently calculated by mapping this texture.

The density is scalar and the pixel of the frame buffer consists of four components.
Therefore, our method calculates circles of intersection between the particle and four
grid planes at once, and renders four disks by storing four densities in the RGB and α
components. After drawing all the disks intersecting the four grid planes, the RGBα
components are read from the frame buffer into the main memory. Then the points
on the iso-surfaces for the four grid planes, corresponding to the RGBα components,
are extracted. The density of the surface is specified by the user. We clear the frame
buffer and draw all the disks intersecting the next four grid planes in the frame buffer.
We repeat this for all grid planes that intersect the metaballs. Therefore, our method
consumes texture memories only for the four grid planes.

The positions of the surfels, si, are set to the positions of these extracted points.
The radius, Ri, of the surfel, si, is assigned and is determined so that there are no gaps
between the surfels. Normal vector, ni, of surfel si is calculated by using the gradient
of the densities. If the distance between the extracted point and neighbor point is larger
than a threshold, we add points on the iso-surface to fill gaps between the surfels.

5 Rendering Point Based Water Surface

This section describes the rendering method for water surfaces represented by surfels.
To render the water surfaces, a disk is assigned to surfel si. The radius of the disk is Ri

and the disk is perpendicular to normal ni of the surfel. In this section, we first explain
the rendering method of caustics due to water surfaces represented by surfels. Then the
rendering method of water surfaces is described.

5.1 Rendering Caustics for Point Based Water Surface

Our rendering method for caustics is based on Nishita’s and Iwasaki’s methods [18,
19]. In these methods, the water surface is represented by a triangular mesh. At each
vertex, the refracted direction of the incident light is calculated. Then the volumes are
created by sweeping the vectors refracted from the triangle mesh. These volumes are
called illumination volumes [18] (see Fig. 3). Caustics are rendered by accumulating the
intensities of the areas of intersection between the object surface and the illumination
volumes. The intensity, Lq , at point Q of the intersection area is calculated from the
following equation,

Lq(λ) = Li(λ) cos θiiT (θii, θti) exp(−c(λ)lq)FqK(λ) + La(λ) (2)

where λ is the wavelength, which is sampled for RGB components, Li(λ) cos θii is the
intensity of the incident light onto the water surface, T (θii, θti) is the Fresnel transmit-
tance, exp(−c(λ)lq) is the extinction of light from the water surface to point Q. Fq is
the flux ratio and is calculated from the equation Fq = S/Sq, where S is the area of the
triangle mesh of the water surface and Sq is the area of the intersection area between
the illumination volume and the object (see Fig. 3). K(λ) is the reflectance of the object
surface and La is the intensity of the ambient light.

Our method is based on Iwasaki’s method [19] that sets virtual planes (called sam-
ple planes) around the object and calculates the intensities of caustics on the object
surface by using the intensities incident onto the sample planes. The intensities of the
sample planes are calculated by accumulating the intersection triangles between the
illumination volumes and the sample planes.

However, illumination volumes cannot be created, since the surfels representing
water surfaces have no connectivity. To address this problem, we propose a method for
creating illumination volumes from surfels.

5.2 Creation of illumination volumes

To create illumination volumes from the surfels, a virtual screen is set horizontally as
shown in Fig. 3(b).The normal vector and the depth of a point that corresponds to each
pixel, P (x, y), of the frame buffer of the virtual screen are calculated by interpolating
the normal and the depth values of the surfels representing the water surface.

The basic idea to create the illumination volumes is as follows. First, the depth of the
water surface, d(x,y), from the virtual screen is calculated for each pixel, P (x, y). Using
the depth, points s(x,y) on the water surface are obtained. The normal vector, n(x,y),

s(x,y)

ni

si

sj

ri(s)

nj

dj

pixel P(x,y) virtual screen

di

d(x,y) n(x,y)

Fig. 4. Calculation of normal n(x,y) at point s(x,y) on the water surface, and depth d(x,y) from
point s(x,y) to the virtual screen.

of s(x,y) is also calculated by interpolating the normals of the nearby surfels. Then a
refraction vector at s(x,y) is computed. An illumination volume is created by sweeping
the refracted vectors from points s(x,y), s(x+1,y), and s(x,y+1) (or s(x+1,y+1), s(x+1,y),
and s(x,y+1)) that correspond to neighboring pixels. In the following, the calculation
method for the normal and the depth from the virtual camera is explained.

Normal, n(x,y), and depth, d(x,y), at point s(x,y) on the water surface are calculated
from the following equations (see Fig. 4),

n(x,y) =

∑
i g(ri(s)

Ri
)ni∑

i g(ri(s)
Ri

)
, d(x,y) =

∑
i g(ri(s)

Ri
)di∑

i g(ri(s)
Ri

)
, (3)

where g is a Gaussian function whose parameter is distance, ri(s), between each surfel,
si and s(x,y), and returns 0 if ri(s) is larger than radius Ri.

The calculation of the normal, n(x,y), and depth, d(x,y), is accelerated by using the
GPU. We create the normal map that stores the normal information at each point, s(x,y),
corresponding to each pixel of the virtual screen. The normal map of the water surface
is calculated by splatting the surfels. To create the normal map, calculated from Eq.(3),
the xyz components of normal vector, ni, of surfel, si, are encoded as RGB compo-
nent of the color of surfel. Then the surfels are projected onto the screen with a radially
decreasing Gaussian weight function g(ri(s)

Ri
). The value of Gaussian weight function

g(ri(s)
Ri

) is stored in the α component of pixel, P (x, y), and is used as a blending fac-
tor to calculate Eq.(3). We prepare a 1D texture for the Gaussian weight function. This
texture is mapped onto each surfel and is multiplied by the RGB components of the sur-
fel, corresponding to the normal vector of that surfel. The texture-mapped surfels are
rendered and the resulting colors are accumulated in the frame buffer by using additive
color blending functions. The resulting image is stored as a texture. Normal, n(x,y), at
surface point, s(x,y), corresponding to pixel, P (x, y), is calculated by dividing the RGB

components of each pixel that store the summation of weighted color (
∑

i g(ri(s)
Ri

)ni),

by the α component that stores the summation of weight (
∑

i g(ri(s))
Ri

)). This per-pixel
normalization is accelerated by using the fragment program of the GPU. The depth,
d(x,y), is calculated in the same manner. The normal and depth information are read
back to the main memory and the point, s(x,y), and refracted direction of the incident
light onto s(x,y) are calculated. Illumination volumes are created by sweeping the re-
fracted direction from each point, s(x,y).

ni

si

sliced object image

vi

vl

vr

PS

environment map

viewpoint

water
surface

Fig. 5. Rendering water surfaces by surfels.

When the illumination volumes are created, caustics are rendered, using Iwasaki’s
method [19]. To render caustics due to water surfaces, sample planes are set around
the objects within the water, and the intensities of caustics on the surface of the object
are calculated by using the illumination distribution on the sample planes. In Iwasaki’s
method, an object is represented by a set of images of the object surface, that are created
by rendering the object between two adjacent sample planes (see Fig. 3). These images
are called the sliced object images [19]. The refracted object with caustics is rendered
by refraction mapping of the sliced object images.

5.3 Rendering Water Surfaces Represented by Surfels

Water surfaces are rendered through the use of a splatting technique. Our rendering
method extends the method proposed by Bostch et al. [10] to take into account refrac-
tion, reflection and caustics. The refraction of an object, with caustics through the water
surface is rendered through the use of refraction mapping of sliced object images. The
reflection of the environment is rendered through the use of reflection mapping. We
use a three-pass rendering approach. Before rendering, we eliminate invisible surfels
by using a backface-culling method. In a first pass, the surfels are rendered only to the
z buffer with all z values having an ε offset added. ε is specified by the user.

In the second pass, the z-buffer update is turned off so that the overlapping surfels
are blended if and only if the difference of their depth values is less than ε. For each
visible surfel, the reflection vector vl and the refraction vector vr of the viewing ray are
calculated (see Fig. 5). We calculate the intersection point PS between the sliced object
image and the refracted viewing ray from the surfel, and the texture coordinate of PS

for the sliced object image. The texture coordinate for the environment map of the surfel
is also calculated. The surfel is rendered by mapping the sliced object image and the
environment map texture onto the point sprite. At each pixel corresponding to the disk
of the surfel, the Gaussian weight function is associated to blend the overlapping surfels.
The RGB components of the pixel are multiplied by the Gaussian weight function by
mapping the texture of the Gaussian weight onto the surfel.

In the third pass, the values of RGB components of each pixel, storing the accumu-
lated weighted color must be normalized by dividing by the value of the alpha com-
ponent that stores the accumulated Gaussian weights. The per-pixel normalization is
performed by the method described in Section 5.2. This per-pixel normalization results
in high quality images.

6 Results

Figs. 6 and 7 show the result of the MPS simulation rendered by our method. These
figures are stills from an animation of dropping a parallelepiped into the water pool.
The numbers of the points representing the water surface are from 61,500 to 77,000 in
this animation. The average rendering time of these figures is about 0.039 sec (25.5fps).
Our method can render the water surfaces, represented by points, including caustics,
refraction, and reflection in real-time. These images are created on a desktop PC (CPU
: Pentium4 3.4GHz, 2GB memory) with a nVidia GeForce6800 GT. The image size
of these figures is 512 × 512. The size of the virtual screen for creating illumination
volumes is 128 × 128.

The number of particles used for the simulation is about 210,000. The temporary
grid is subdivided into 2563. The computational time of density calculation from the
particles using the GPU is 0.91 sec. The memory for calculating the density in the GPU
is only 1MB. For the software calculation, the computational time is about 80 sec. That
is, our method using the GPU can calculate the densities about 88 times faster than
the method using the software. The computational time for extracting the surfels on
the iso-surface is about 0.16 sec. Our GPU based method extremely reduces the time
of reconstructing the water surface from the particles compared to the software based
method. The relative difference between the densities calculated by the GPU and those
by the software is about 1.9%. To verify the quantization error due to the GPU based
density calculation, Fig. 8 shows the comparisons of the water surface that is extracted
from the densities calculated by the GPU and that by the software. The image quality of
the water surface (Fig. 8(a)) calculated by using the GPU based density calculation is
indistinguishable from that by using the software based density calculation (Fig. 8(b)).

Fig. 9 shows the result of MPS simulation of making waves. These figures show
that our method can extract complex shape of water surfaces. The average rendering
frame rate of these figures is about 21.7fps. The numbers of the points representing the
water surface are from 55,000 to 120,000 in this animation.

7 Conclusions and Future Work

In this paper, we have presented a fast rendering method for the particle-based simu-
lation. To calculate the water surface from the result of the particle-based simulation,
a temporary grid is created and the densities at each grid point by using the particles
are calculated. We accelerate this density calculation by using a GPU based splatting
method. Then the iso-surface is extracted and represented by surfels. The rendering
method has been developed for a water surface, which is represented by the surfels.
Moreover, our method can render the reflection, refraction, and caustics due to the point
based water surface in real-time. Our method drastically reduces the time of the surface
reconstruction and rendering. This makes it possible to easily preview the result of the
particle-based simulation.

In future work, we plan to develop a method for improving the quality of images
of the water surface by adaptively adding surfels, i.e., we need to add the surfels adap-
tively according to the intensity distribution at the water surface since the number of

the surfels is sometimes insufficient when the light intensities drastically change at the
water surface. Moreover, we would like to develop a method for rendering splashes and
foams using surfels.

Acknowledgements
We thank Prometech Software Inc. for providing MPS simulation data and thank Kaori
Ono and Yoshitaka Moro for their help.

Fig. 6. Rendering the result of the MPS simulation.

Fig. 7. Rendering the result of the MPS simulation viewed from another viewpoint.

(a) (b)

Fig. 8. Comparisons of the water surface generated by using the GPU based density calculation (a)
and the water surface calculated by the software (b).

References

[1] Stam, J.: Stable fluids. In: Proc. SIGGRAPH’99. (1999) 121–128
[2] Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proc. SIGGRAPH 2001. (2001)

23–30
[3] Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water sur-

faces. In: Proc. SIGGRAPH 2002. (2002) 736–744
[4] Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Re-

alistic animation of fluid with splash and foam. Computer Graphics Forum 22(3) (2003)
391–400

[5] Koshizuka, S., Tamako, H., Oka, Y.: A particle method for incompressible viscous flow
with fluid fragmentation. Computational Fluid Dynamics Journal 29(4) (1995) 29–46

Fig. 9. Rendering the result of the MPS simulation of making waves.

[6] Lorensen, W., Cline, H.: Marching cubes: A high resolution 3D surface construction algo-
rithm. In: Proc. SIGGRAPH’87. (1987) 163–169

[7] Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., Whitaker, R.: Particle based simulation of
fluids. Computer Graphics Forum 22(3) (2003) 335–343

[8] Pfister, H., Zwicker, M., Baar, J., Gross, M.: Surfels: Surface elements as rendering primi-
tives. In: Proc.SIGGRAPH 2000. (2000) 335–342

[9] Zwicker, M., Pfister, H., Baar, J., Gross, M.: Surface splatting. In: Proc. SIGGRAPH 2001.
(2001) 371–378

[10] Bostch, M., Kobbelt, L.: High-quality point-based rendering on modern GPUs. In: Proc.
Pacific Graphics 2003. (2003) 335–343

[11] Guennebaud, G., L.Barthe, M.Paulin: Deferred splatting. Computer Graphics Forum 23(3)
(2004)

[12] Co, C., Hamann, B., Joy, K.: Iso-splatting: A point-based alternative isosurface visualiza-
tion. In: Proc. Pacific Graphics 2003. (2003) 325–334

[13] Kunimatsu, A., Watanabe, Y., Fujii, H., Saito, T., Hiwada, K., Takahashi, T., Ueki, H.: Fast
simulation and rendering techniques for fluid objects. Computer Graphics Forum 20(3)
(2001) 57–66

[14] Muller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive appli-
cations. In: Proc. Symposium on Computer Animation 2003. (2003) 154–159

[15] Matsumura, M., Anjo, K.: Accelerated isosurface polygonization for dynamic volume data
using programmable graphics hardware. In: Proc. Electronic Imaging2003. (2003) 145–
152

[16] Reck, F., Dachsbacher, C., Grosso, R., Greiner, G., Stamminger, M.: Realtime isosurface
extraction with graphics hardware. In: Proc. Eurographics 2004 Short Presentation. (2004)

[17] Wyvill, G., Trotman, A.: Ray-tracing soft objects. In: Proc. Computer Graphics Interna-
tional. (1990) 439–475

[18] Nishita, T., Nakamae, E.: Method of displaying optical effects within water using
accumulation-buffer. In: Proc. SIGGRAPH’94. (1994) 373–380

[19] Iwasaki, K., Dobashi, Y., Nishita, T.: A fast rendering method for refractive and reflective
caustics due to water surfaces. Computer Graphics Forum 22(3) (2003) 601–609

