Curve intersection using

Bézier clipping

T W Sederberg and T Nishita*

A technique referred to as Bézier clipping is presented.
This technique forms the basis of an algorithm for
computing the points at which two curves intersect, and
also an algorithm for robustly and quickly computing
points of tangency between two curves. Bézier clipping
behaves like an intelligent interval Newton method, in
which geometric insight is used to identify regions of
the parameter domain which exclude the solution set.
Implementation tests suggest that the curve intersection
algorithm is marginally slower than an algorithm based
on implicitization (though faster than other algorithms)
for curves of degree four and less, and is faster than the
implicitization algorithm for higher degrees.

Bézier clipping, curve intersection, tangency, focus, polynomial,
collinear normal algorithm

This paper presents algorithms to solve the problems
of curve/curve intersection and of locating points of
tangency between two planar Bézier curves, based on
a new technique which will be referred to as Bézier
clipping. The basic strategy is to use the convex hull
property of Bézier curves to identify regions of the
curves which do not include part of the solution. By
iteratively clipping away such regions, the solution is
converged to at a quadratic rate and with a guarantee
of robustness. A

Several papers have addressed the problem of planar
Bézier curve/curve intersection. Predominant approaches
are the convex hull/de Casteljau subdivisional
algorithm’, the interval subdivision method adapted by
Koparkar and Mudur?, and implicitization®. Implementa-
tions of those algorithms have suggested that
implicitization is easily the fastest of those algorithms
for curves of degree less than five’. For higher degrees,
the interval algorithm is generally fastest.

An algorithm for computing points of tangency
between two parametric curves has recently been
proposed*, based on vector fields.

In the next section the curve intersection algorithm
based on Bézier clipping is discussed; then Bézier
clipping is applied to the problem of computing points
of tangency; this is followed by some timing
comparisons; the final section is devoted to some
concluding observations.

Engineering Computer Graphics Lab, Brigham Young University,
Provo, UT 84602, USA

*Department of Electrical Engineering, Fukuyama University,
Fukuyama, Japan

Paper received: 24 January 1990. Revised: 6 April 1990

538 0010—-4485/90/090538—12 © 1990 Butterworth-Heinemann Ltd

CURVE/CURVE INTERSECTION

Fat lines

Define a fat line as the region between two parallel
lines. The curve intersection algorithm described here
begins by computing a fat line which bounds one of
the two Bézier curves. Similar bounds have been
suggested in References 5, 6 and 7.

Denote by L the line P,—P,. A fat line is chosen
parallel to L, as shown in Figure 1. If L is defined in its
normalized implicit equation

ax+by+c=0 (a*+b*=1) (1)

then, the distance d(x, y) from any point (x, y) to L is
d(x, y)=ax+ by +c (2)

Denote by d; = d(x;, y,) the signed distance from control
point P,=(x, y,) to L. By the convex hull property, a
fat line bounding a given rational Bézier curve with
non-negative weights can be defined as the fat line
parallel to L which most tightly encloses the Bézier
control points:

{(X’ y)ldmingd(x/ y)gdmax} (3)
where
din=min{d,, ..., d,}

dpax = max{d,, ..., d,} (4)

Figure 1. Fat line bounding a quartic curve

computer-aided design

These values for d,;, and d,, are conservative. For
polynomial Bézier curves (all weights =1) of degree
two and three (the most common cases), values of d_;,
and d,,,, can readily be found for which the fat line
bounds the curve tightly.

Quadratic case

If d(t) is the distance from any point on the curve P(t)
to L, then, for polynomial quadratic Bézier curves (see
Figure 2)

d(t) = 2t(1 —t)d, ' (5)

from which the tight bounds are

dpin = min{O, i}
2
d
doax = max{O, ?1} (6)

Cubic case

For a cubic curve, the tightest possible fat line parallel
to L can be computed in closed form as follows. In this
case,

d(t) = 3t(1 — (1 —t)d, + td,] (7)

The function d(t) has an extremum where d’(t) = 0. If
d,d, > 0, there is one extremum at

d,

t’l — (8)
2d,—d,+ /di—d,d, + d?
and
dpin = min{0, d(t,)}
dax = max{0, d(t,)} (9)
If d,d, <0, there are two extrema, at
. _2di—d,+\/di+d}—d.d,
T 3(d, — d,)
t2=2d1—d2— d? + d —d,d, (10)
3(d1 _dz)

Figure 2. Fat line for a polynomial quadratic curve

volume 22 number 9 november 1990

and

dmin = min{d(t,), d(t,)}
dpax = max{d(t,), d(t,)} (11)

In the experience of the authors, the expense of
computing this tightest possible fat line is not justified
by improved overall execution speed. It is better, in the
case of polynomial cubic curves, to use the following
values of d;, and d,,,,. From equation (7), if d,d, >0,

min{0, d,, d,}3t(1—1t) < d(t) < max{0, d;, d,} 3t(1 —1t)

(12)
Thus if d,d, > 0, use
3 .
dmin ZZ mln{Q/ d1l dZ}
3
dmx=z max{0, d;, d,} (13)
From equation (7), if d, <0 and d, >0, then
3t(1—t)Pd, < d(t) < 3t(1—t)d, (14)
Thus, if d;d, <0, use
4
dmi,,=§ min{0, d,, d,}
4
dmax=§ max{0, d,, d,} (15)

These fat lines are illustrated in Figure 3.

Bézier clipping

Figure 4 shows two polynomial cubic Bézier curves P(t)
and Q(u), and a fat line L which bounds Q(u). This
subsection is concerned with how to identify intervals

Figure 3. Fat lines for polynomial cubic curves

539

Figure 4. Bézier curve/fat line intersection

of t for which P(t) lies outside of L, and hence for which
P(t) does not intersect Q(u)
P is defined by its parametric equation

=Y PBID) (16)
i=0

where P,=(x, y,) are the Bézier control points, and
B (t) = ()(1 —)"~ 't denote the Bernstein basis functions.
If the line L through P, — P, is defined by

ax+by+c=0 (@+b*=1), (17)

then the distance d(t) from any point P(t) to L can be
found by substituting equation (16) into equation (17):

d;=ax;+by,+c (18)

i dBIt

Note that d(t) = 0 for all values of t at which P intersects
L. Also, d; is the distance from P; to L (as shown in Figure
4). ‘

The function d(t) is a polynomial in Bernstein form,
and can be represented as a so-called ‘non-parametric’
Bézier curve® as follows:

D) = (t, dt Z . (19)

The Bézier control points D, = (¢, d,) are evenly spaced
in t (t=1i/n). Since Z/_,(i/nB(t)=tl(1—t)+tI"=¢
the horizontal coordinate of any point D(t) is in fact
equal to the parameter value t. Figure 5 shows the
curve D(t) which corresponds to Figure 4.

Values of t for which P(t) lies outside of L correspond
to values of t for which D(t) lies above d = d,,,, or below
d=d.,,,. Parameter ranges of t can be identified for
which P(t) is guaranteed to lie outside of L by identifying
ranges of t for which the convex hull of D(t) lies above
d=d,,, or below d =d,,,. In this example, it is certain
that P(t) lies outside of L for parameter values t < 0.25
and for t > 0.75.

Bézier clipping is completed by subdividing P twice
using the de Casteljau algorithm®, such that portions
of P over parameter values t <0.25 and t>0.75 are
removed.

540

(O’ _5)‘

t=0.25 t=10.75

Figure 5. Non-parametric Bézier curve

Iterating

The notion of Bézier clipping has just been discussed
in the context of curve intersection: regions of one
curve which are guaranteed to not intersect a second
curve can be identified and subdivided away. The Bézier
clipping curve intersection algorithm proceeds by
iteratively applying the Bézier clipping procedure.

Figure 6 shows curves P(t) and Q(u) from Figure 4
after the first Bézier chpplng step in which regions
t < 0.25 and t > 0.75 have been clipped away from P(t).
The clipped portions of P(t) are shown in the fine pen
width, and a fat line is shown which bounds P(t),
0.25 <t < 0.75. The next step in the curve intersection
algorithm is to perform a Bézier clip of Q(u), clipping
away regions of Q(u) which are guaranteed to lie
outside the fat line bounding P(t). Proceeding as before,
a non-parametric Bézier curve is defined which expresses
the distance from L in Flgure 6 to the curve Q(u) (see
Figure 7). From Figure 6, it is concluded that it is safe
to clip off regions of Q(u) for which u<042 and
u>0.63.

Next, P(t) is again clipped against Q(u), and so on.
After three Bézier clips on each curve, the intersection
is computed to within six digits of accuracy (see Table
1).

Clipping to other fat lines

The fat line defined above provides a nearly optimal
Bézier clip in many cases. However, it is clear that any
pair of parallel lines which bound the curve can serve
as a fat line. In many cases, a fat line perpendicular to
the line P, — P, provides a larger Bézier clip than does
the fat line parallel to the line P, —P,. Figure 8 shows

computer-aided design

L

Figure 6. After the first Bézier clip

0.4188 0.6303

Figure 7. Distance from Q(u) to L

such a case. It is suggested that in general it works best
to examine both fat lines to determine which one
provides the largest clip. This extra overhead results in
a slightly lower average execution time.

volume 22 number 9 november 1990

Table 1. Parameter ranges for P(f) and Q(u)

Step tmin tmax Unnin umax

0 0 1 0 il

1 0.25 0.75 0.4188 0.6303

2 0.3747 0.4105 0.5121 0.5143

3 0.382079 0.382079 0.512967 0.512967

Figure 8. Alternative fat lines

Multiple intersections

Figure 9 shows a case where two intersection points
exist. In this case, no Bézier clipping is possible because
the endpoints of each curve lie within the fat line of
the other. The remedy is to split one of the curves in
half and to compute the intersections of each half with
the other curve, as suggested in Figure 10. A stack data
structure is used to store pairs of curve segments, as
in the conventional divide-and-conquer intersection
algorithm’.

Experimentation suggests the following heuristic. If a
Bézier clip fails to reduce the parameter range of either

Figure 9. Two intersections

541

Figure 10. Two intersections after a split

curve by at least 20%, subdivide the ‘longest’ curve
(largest remaining parameter interval) and intersect the
shorter curve, respectively, with the two halves of the
longer curve. This heuristic, applied recursively if needed,
allows computation of arbitrary numbers of intersections.

Rational curves

If P is a rational Bézier curve

Z,wPB(D)

P =
0= B®

(20)

with control point coordinates P, = (x, y) and
corresponding non-negative weights w;, the Bézier clip
computation is modified as follows. Substituting equation
(20) into equation (17) and clearing the denominator
yields:

di =Y dBt)
i=0
d, = w,(ax, + by, + ¢)

The equation d(t) = 0 expresses the intersection of P(t)
with a line ax + by + ¢ = 0. However, unlike the non-
rational case, the intersection of P(t) with a fat line
cannot be represented as {(x, y)= P(t)|d,,, <d(t) <
e }- INstead, P must be clipped independently against
each of the two lines bounding the fat line. Thus, ranges
of t are identified for which

Y. wilax;+ by, +c—d,)B(t) >0
i=0

or for which
Z w;(ax; + by, + c + d,,;,)B'(t) < 0
i=0

These ranges are identified using the Bézier clipping
technique as previously outlined.

542

TANGENT INTERSECTIONS

The solution to multiple intersections just discussed
works well if the intersections are well spaced. If the
difference between the parameter values of two
intersections is small, a large number of subdivisions
may be needed to isolate the intersections, and the
algorithm tends to degenerate to a divide-and-conquer
binary search. An algorithm is now presented for
quickly isolating two adjacent intersections, and for
computing tangent intersections. This algorithm can
compute a tangent intersection to high precision in
few iterations.
The algorithm is based on the following theorem.

Collinear normal theorem
If two curve segments, each C' smooth, intersect in two
points, and neither curve turns more than 90°, then
there exists a line which is mutually perpendicular to
both curves. Further, the two intersection points lie on
opposite sides of the line.
Proof. See.Sederberg et al.™.
Thus, if a line can be computed which is perpendicular
to both curves, it will be possible to isolate two close
intersections. Such a line will be referred to as a collinear
normal (as opposed to parallel normal lines, of which
there are typically an infinite number). If the two curves
are tangent, then a collinear normal meets both curves
at that point of tangency. Figure 11 shows a collinear
normal in the case of two distinct intersections, and
Figure 12 shows the case of a tangent intersection.
An algorithm is presented here for computing collinear
normals which uses geometric insight. This algorithm
adapts Bézier clipping and introduces the notion of a
focus.

Figure 11. Collinear normal line

computer-aided design

Figure 12. Tangent intersection

Bézier curve focus

A focus of a Bézier curve P(t) is defined to be any curve
through which all lines perpendicular to P(t) pass. By
this definition, a focus is not unique. For example, P(t)
is a focus of itself. The algorithm for computing collinear
normals works best if the focus curve is relatively small,
and somewhat removed from the curve. One heuristic
for creating such a focus which has been found to
work well is discussed here. Other possible heuristics
for obtaining small foci are mentioned below.

Figure 13. Focus example 1

volume 22 number 9 november 1990

Figures 13=15 show some examples of focus curves
created using the method described. Notice the families
of lines perpendicular to the given curves. These normal
lines all pass through the focus curve, though are not
generally perpendicular to the focus curve.

The focus construction proceeds as follows. If N(t)
defines any vector function (not necessarily of unit
length) which is perpendicular to P(t) for all values of
t, then the curve F(t) = P(t) + c(t)N(t) (where c(t) is any
function of t) can serve as a focus curve.

N(t) is taken to be the rotated hodograph™ of P(t).
The hodograph H(t) of a degree n Bézier curve P(t) is
the first derivative of that curve, P'(t). The hodograph
is itself a Bézier curve of degree n —1, whose control
points H, are n(P,, , — P)) (see Figure 16). This discussion
deals only with hodographs and foci of polynomial
curves. Hodographs of rational Bézier curves are discussed
in Reference 12, following which the construction of a
focus parallels the present discussion.

Graphically, the tangent vector P'(t) is expressed as
a vector from the hodograph origin to the point H(t)
on the hodograph (see Figure 17). By rotating the
hodograph through 90° about its origin, a vector
function N(t) is obtained which defines vectors
perpendicular to P(t) (see Figure 18). In creating the
focus F(t) =P(t) + c(t)N(t), c(t) is chosen to be a
degree-one polynomial ¢,(1—1t)+ c;t which satisfies
the condition F(0) = F(1). This is a heuristic decision,
motivated by the observation that if F(t) begins and
ends at the same point, it will tend to cover a relatively
small area. The examples in Figures 13—15 illustrate that
this choice generally works well. The coefficients ¢, and
c, are solved from the linear equation

|:X1_X0 Xn—1_Xn:|{Co}={Yn_y0} (21)
Yo— Y1 Yo = Yn-1 G Xn — Xo

543

o=

Figure 14. Focus example 2

Figure 15. Focus example 3

It can happen in regions of zero curvature that the
magnitudes of ¢, and ¢, can get excessively large, in
which case their magnitude is simply limited to some
large value. Thus, even curves with inflection points (as
in Figure 14) can have a reasonable focus.

This focus construction behaves well when the curve
is subdivided into smaller segments, quickly converging
to the centre of curvature of their respective curve
segments. Thus, even though a curve may initially have
an impracticably large focus, the size of the focus will
shrink quickly as the curve is subdivided. Figures 19
and 20 show the curve in Figure 15 after it has been
split into two and four segments. The resulting foci
appear nearly optimally small.

Other focus heuristics

After some experimentation, the authors are confident
that the focus heuristic is competitive. A few other
choices present themselves. First, one could simply
compute a line segment through which all lines normal
to a given curve pass. This has the virtue that the focus

544

Figure 16. Curve and hodograph

)
?.‘l

Figure 17. Tangent vector

is a simpler entity than our degree n focus, but more
computation must go into computing the focus.

A second choice is to use the evolute™ of the given
curve as its focus. The evolute is the locus of the centres
of curvature of the given curve, and is itself a rational

computer-aided design

curve. Some drawbacks are that the degree of the
evolute is larger than the degree of the focus described
here, the evolute goes to infinity for segments which
have inflection points, and the evolute does not seem
to be as small as the focus in the examples presented
here. For example, the evolute for the curve in Figure
14 can be seen as the envelope of the normal lines.

Bézier clip application

We next consider the problem of identifying regions of
a Bézier curve for which lines perpendicular to the
curve P(t) do not pass through a given point F. The
parameter values t for which lines normal to P(t) pass
through F are the zeros of the equation

dit)=P(t)-(P(t) —F)=0 (22)

N(t)

(0,0)

Figure 18. Rotated hodograph, N(t)

Figure 19. Curve of Figure 15 (left) split into two segments

volume 22 number 9 november 1990

' The polyndmial d(t) can be expressed in Bernstein form,

d(t)=22"5"dB>" ~(t), where

<"><"—1>
I\ k
J N(Psr—P)- (P —F)

d= LI W)
j+2k:=i (2'7_1) '
je{o,...,n} .
ke{0 n—1} I

(23)

For the cubic Bézier curve in Figure 21, d(t) is shown
as a non-parametric Bézier curve in Figure 22. Applying
the convex hull property, it is observed that for
parameter ranges t < 0.374 and t > 0.5, there are no
normals to P(t) passing through F.-

Next consider the case where F is not a point, but
is itself a Bézier curve. Specifically, Fo(u) = E,.:OF,B;”(U)
is a focus of a Bézier curve Q(u) (see Figure 23). It is
now desired to identify regions of P(t) whose normal
lines do not pass through any point on Fy(u) — that is,

Figure 20. Curve of Figure 15 split into four segments

545

A

\
b F

Figure 21. Normal to P(t) passing through F

(0, dy) L, dy)

t=0374 t=0.5

Figure 22. Non-parametric Bézier curve

to find ranges of t for which

P'(t)
n

D(t, u) = (P(t) — Fg(u))- #0,0<u<T (24)

D(t, u) can be expressed as a tensor product polynomial
in Bernstein form in t and u:

(25)

546

(e

u=>0
Figure 23. P, Q and Fy,

where

n(P,,—P)-(P,—F)

(26)

The function D(t, u) can be represented, in a (¢t u, D)
coordinate system, as a so-called ‘non-parametric’
Bézier surface patch’ whose control points D; = (t;, u;

D;) are evenly spaced in t and u: t,-,=[i/(2n—1)i,
I u
Dy s o ° ¢ D; 3
O O o \'g é
g © Q
t
Dy, & o o o _
D50

Figure 24. Top view of D(t, u) patch

computer-aided design

Figure 26. P after first clipping, and its focus

Q(u)

Fq(u)

= 0.62199

= 0.40866

Figure 27. Q after first clipping, and its focus

volume 22 number 9 november 1990

P(t)

u;=j/m. A point on such a patch has coordinates

tu=§i u)D;

j=0
=(t,

Q

u)) (27)

The top view of the patch D(t, u) corresponding to -
Figure 23 is shown in Figure 24.

A side view of the D(t, u) patch, looking down the
u axis, is shown in Figure 25. In this side view, portions
of D(t, u) which are completely above or beneath the
t-axis correspond to portions of P(t) for which no normal
line intersects any point on Fq(u). In Figure 25, the
convex hull of the projected control points bounds the
projection of the D(t, u) patch. Therefore, it is certain
that regions ‘of the t-axis which lie completely outside
the convex hull of the projected D(t, u) control points
represent portions of P(t) for which no normal line
intersects any point on Fg(u). In this example, that
convex hull intersects the t-axis at points t,,, = 0.3020
and t,, = 0.7712. It is concluded that d(t, u)#0, and
therefore lines normal to P(t) do not intersect any point
on Fq(u), for t <0.3020 and t > 0.7712.

Collinear normal algorithm

All the tools have now been gathered to create an
algorithm for computing all lines which are simultaneously
perpendicular to two curves. Continuing the example
in the previous subsection, we clip away portions of P
which do not have normals through Fq. Those portions
are shown in fine pen width in Figure 26.

Next, compute a focus for the remaining segment
of P, as shown in Figure 26, and clip away regions of
P whose normal lines do not pass through Q’s focus.
The remaining portion of P is shown in heavy pen
width in Figure 27, and also its focus F,. This iteration
continues as recorded in Table 2. After four iterations,
the point of tangency is actually determined to eight
digits of accuracy.

If an iteration fails to reduce the parameter range of
either curve by at least, say, 20%, there may be more
than one collinear normal. The remedy is to split one
of the curves in half and to compute the collinear
normals of each half with the other curve, using a stack
data structure to store pairs of curve segments.

TIMING COMPARISONS

The Bézier trim curve intersection algorithm has been
implemented and some timing comparisons have been

Table 2. Parameter ranges for P(#) and Q(u)

Step tmin tmax Unin umax

0 0 1 -0 1

1 0.30204 0.77151 0.40866 0.62199
2 0.58194 0.64566 0.55427 0.55657
3 0.62443 0.62530 0.55556 0.55556
4 0.62500 0.62500 0.55556 0.55556

547

run against the conventional Bézier subdivision divide-
and conquer algorithm. Koparkar’s interval algorithm,
and the implicitization algorithm. The implementation
details we used for these algorithms are discussed in
Reference 3. Some example timings are presented to
suggest general patterns of behaviour. Comparative
algorithm timings can, of course, change somewhat as
the implementations are fine-tuned, if tests are run on
different computers, or even if different compilers are
used. In fact, the authors have improved their root
finder for polynomials in Bernstein form so that it
computes roots of degree 25 polynomials twice as
quickly as does the root finder used in the timings in
Reference 3. This resulted in a significant decrease of
execution times for the implicitization curve intersection
algorithm. Timing tests were run on a Macintosh Il using
double precision arithmetic, computing the answers to
eight decimal digits of accuracy.

The columns in Table 3 indicate the relative execution
time for the algorithms Clip = Bézier clipping algorithm,
Impl = implicitization, Int = Koparkar’s interval algorithm
and Sub = the conventional Bézier subdivision algorithm.
In general, the implicitization intersection algorithm is
only reliable for curves of degree up to five, using
double precision arithmetic. For higher degrees, it is
possible for the polynomial condition to degrade so
that no significant digits are obtained in the answers.

Table 3. Relative computation times

Figure Degree Clip Impl. Int Sub.
28 3 2.5 1 10 15
29 3 1.8 1 5 6
30 5 1 1.7 3 5
31 10 1 na 2 4

Figure 28. Degree-three example

548

Figure 29. Degree-three example

Figure 30. Degree-five example

Figure 31. Degree-ten example

computer-aided design

Our experience is that, for curves of degree less than
five, the implicitization algorithm is typically between
one and three times faster than the Bézier clip algorithm,
which in turn is typically between two and ten times
faster than the other two algorithms. For curves of
degree higher than four, the Bézier clipping algorithm
generally wins.

The algorithm for computing tangent intersections
can typically compute a tangent intersection faster than
the Bézier clip curve intersector can compute two
well-spaced simple intersections. The algorithm for
computing tangent intersections is designed for first-
order tangencies, and its performance degrades for
higher-order tangencies.

ACKNOWLEDGEMENTS

The first-named author was supported in part by the
National Science Foundation under grant DMC-8657057.

REFERENCES

1 Lane,] M and Riesenfeld, R ‘A theoretical
development for the computer generation and
display of piecewise polynomial surfaces’ IEEE Trans.
RAMI Vol 2 (1980) pp 35—46

2 Koparkar, P A and Mudur, S P ‘A new class of
algorithms for the processing of parametric curves’
Comput.-Aided Des. Vol 15 (1983) pp 41-45

3 Sederberg, T W and Parry, S R ‘Comparison of
three curve intersection algorithms” Comput.-Aided
Des. Vol 18 (1986) pp 58—63

volume 22 number 9 november 1990

10

11

12

13

Markot, R P and Magedson, R L ‘Solutions of
tangential surface and curve intersections” Comput.-
Aided Des. Vol 21 (1989) pp 421-427

Ballard, D H ‘Strip trees: a hierarchical representation
for curves’ Comm. ACM Vol 24 (1981) pp 310-321

Carlson, W E ‘An algorithm and data structure for
3-D object synthesis using surface patch intersections’
Computer Graphics Vol 16 No 3 (1982) pp 255263

Sederberg, T W, White, S C and Zundel, A K ‘Fat
arcs: A bounding region with cubic convergence’
Comput. Aided Geometric Des. Vol 6 (1989) pp
205-218

Farin, G Curves and Surfaces for Computer Aided
Geometric Design, Academic Press (1988)

Bohm, W, Farin, G and Kahmann,] ‘A survey of
curve and surface methods in CAGD’ Comput.
Aided Geometric Des. Vol 1 (1984) pp 1-60

Sederberg, T W, Christiansen, H N and Katz, S
‘Improved test for closed loops in surface inter-
sections” Comput.-Aided Des. Vol 21 (1989) pp
505-508

Bézier, P The Mathematical Basis of the UNISURF
CAD System Butterworths, UK (1986)

Sederberg, T W and Wang, X ‘Rational hodographs’
Comput. Aided Geometric Des. Vol 4 (1987) pp
333-335

Salmon, G Higher Plane Curves, G E Stechert & Co
(1934)

549

