A scanline
algorithm

for displaying
trimmed surfaces
by using

Bézier clipping

Tomoyuki Nishita!,
Kazufumi Kaneda?,
and Eihachiro Nakamae?

! Fukuyama University, Higashimura-cho,
Fukuyama, 729-02 Japan

2 Hiroshima University, Saijo-cho,
Higashi-hiroshima, 724 Japan

Displaying objects with high accuracy is
necessary for CAGD (computer-aided ge-
ometric design) and for the synthesis of
photo-realistic images. Traditionally, po-
lygonal approximation methods have been
employed to display free-form surfaces.
They bring on low accuracy of display not
only in shape, but also in intensity of ob-
jects. In this paper, a scanline algorithm
to directly display parametric surface
patches, expressed by trimmed Bézier sur-
faces, without polygonal approximation is
proposed. In the method proposed here,
curved surfaces are subdivided into sub-
patches with curved edges intersecting
with a scanline, and the intersections of
every subpatch and the scanline are calcu-
lated. This method is extremely robust for
calculating the intersections, which can be
obtained with only a few iterations; the
Bézier clipping method is used for the iter-
ation. Anti-aliased images with shadows
and texture mapping are given to show
the effectiveness of the method proposed.

Key words: Bézier surfaces — Scanline algo-
rithm — Robustness — High-quality render-
ing — Surface trimming — Silhouette detec-
tion — Shadowing

Offprint requests to: E. Nakamae

The Visual Computer (1991) 7:269-279
© Springer-Verlag 1991

1 Introduction

Traditionally, polygonal approximation methods
have been employed to display curved surfaces.
They can save calculation time and be easily imple-
mented, but the displayed shape is not so accurate
to a defined curved surface. To solve these prob-
lems, some algorithms rendering bicubic surfaces
directly from parametric description have been
proposed. One of the authors also developed a ray-
tracing algorithm for trimmed rational surfaces
(Nishita et al. 1990), in which Bézier clipping for
ray/surface intersection was proposed. The raytrac-
ing algorithm is a useful tool for rendering realistic
images, but requires expensive calculation time,
while scanline algorithms usually can save calcula-
tion time. This paper proposes a scanline algorithm
for parametric surfaces by using Bézier clipping,
which is iterative and based upon the Bézier curve’s
convex hull; i.e., the intervals of solutions of a po-
lynomial function expressed by the Bézier curve
are reduced by clipping the curve, and the process
iterates until it converges upon the solutions (Se-
derberg and Nishita 1990). This method is more
robust than Newton’s method, which requires de-
termination of a suitable initial value, is not robust,
and is difficult to guarantee finding all solutions.
Recently trimmed surfaces have become popular
in computer-aided geometric design; in CSG (Con-
structive Solid Geometry) models trimmed surfaces
play an important role. The method proposed here
can treat trimmed surfaces, too. This paper also
deals with penetrated surfaces.

Important elements for rendering curved surfaces
are robustness (in the detection of silhouettes), ac-
curacy, required memory, image quality (i.e., anti-
aliasing and shadows), and calculation time. In all
the above-mentioned methods, there are some
problems, such as lack of robustness, in accuray
caused by the approximations, and large memory
caused by a priori subdivision. Our proposal over-
comes all these problems.

The proposed method, although it is partially
based on Lane-Carpenter’s method (Lane et al.
1980) has several advantages. (a) Subpatches on
a scanline are effectively obtained, and no gaps ar-
ise between the subpatches. (b) Proposed root find-
er using Bézier clipping is accurate and robust for
calculation of scanline and subpatch intersections.
(c) This method is especially effective for displaying
scenes with a number of patches, because only the
curved surfaces intersecting with the active scanline
are subdivided. (d) Anti-aliased images with shad-
ows can be rendered.

269



—"Visual-
Computer

2 Previous work

In this section, the previous work of scanline algo-
rithms for parametric surfaces are reviewed.

Blinn (1978) and Whitted (1978) employed the
Newton-Raphson method to calculate the intersec-
tions of a scanline and curved surfaces. This meth-
od needs an initial guess and is not robust. More-
over, a weakness in Whitted’s approach is the lack
of generality in finding silhouettes. To find silhou-
ettes robustly, Schweitzer and Cobb (1982) pro-
posed a method of dividing curved surfaces into
polygons consisting of the boundary curves, which
are monotonic in y. In this method, extraction of
silhouettes is fairly complicated, because several
points on a silhouette need to be calculated by
using normals of a curved surface approximated
to cubic surfaces.

Lane et al. (1980) and Clark (1979) rendered curved
surfaces after subdividing them into small poly-
gons. That is, curved surfaces are subdivided into
subpatches until flat enough, then the subpatches
are regarded as polygons, and finally a polygon-
oriented scanline algorithm is employed. In Clark’s
method, curved surfaces are subdivided into sub-
patches before scan-conversion, while in Lane-Car-
penter’s method curved surfaces are dynamically
subdivided for every scanline. Lane-Carpenter’s
method has the disadvantage that gaps arise be-
tween approximated polygons due to the difference
between the approximated polygons and the origi-
nal surface patches. In the subdivision methods
taking into account surface flatness, only when the
tolerance of surface flatness is within one pixel size
do the silhouettes become smooth.

Griffiths (1984) dealt with curved surfaces in the
parametric space. In this method, a curved surface
is decomposed into grid cells; some of them inter-
secting with a scanline are further divided. Then,
linear interpolation is employed to obtain their
depths and intensities. In this method, silhouettes
are extracted by using normal vectors stored in
the grid cells. Pueyo and Brunet (1987) improved
upon Griffiths’ method; they proposed that curved
surfaces are decomposed into grid cells beforehand,
intersections of the restricted scanline and curved
surfaces are calculated without interpolation (mak-
ing use of the y-coordinates stored in the grid cells),
and interpolation in parametric space is employed
for intersections of the other scanlines. Silhouettes
are detected by using the z-components of normal
vectors stored in the grid points. One of the disad-

270

vantages of the previous two methods is missing
those silhouettes formed by a smaller loop than
the grid span.

3 Outline of the algorithm

Rational Bézier surfaces are used in this paper, be-
cause almost all surfaces, such as B-splines and
NURBS, can be converted into rational Bézier sur-
faces. In this paper, curved surfaces are subdivided
into subpatches on a scanline. These subpatches
are processed as polygons with curved edges, and
intersections of every subpatch and the scanline
are calculated. Finally, traditional polygon-ori-
ented scanline algorithms represented by Watkins’s
algorithm (1970) are employed to display the im-
ages.

Outline of the proposed algorithm is as follows:

Step 1: Calculate a bounding box on the projection
plane for each surface patch after the perspective
transformation of every control point of each sur-
face patch.

Step 2: Find surface patches possibly intersecting
with the scanline, and subdivide them into sub-
patches on the scanline.

Step 3: Calculate every span (called a scan segment)
where subpatches intersect with the scanline.

Step 4: Find visible parts on each scan segment.

Step 5: Calculate shadow sections on each visible
part.

Step 6: Display intensity of each pixel by using a
smooth-shading algorithm.

In Step 1, a convex hull property of each Bézier
surface is useful to determine its bounding box.
That is, the bounding box is determined by using
the minimum and maximum values of the coordi-
nates (x, y) of control points. In Step 2, each sub-
patch is recursively subdivided until a desired de-
gree of surface flatness is achieved. To find intervals
of u, v parameters that overlap with each scanline,
Bézier clipping is employed. In Step 3, the spans
of scan segments are calculated by using intersec-
tions of a curved boundary of each subpatch and
the scanline. For trimmed patches, the scan seg-
ments are clipped by the trimming curves by using
Bézier clipping in parametric space.

The proposed method basically belongs to poly-
gon-oriented scanline algorithms, but Steps 2, 3,



» subpatch
S — Co
\ S cm———" -
[}
' (X, Y, Zi)
]
I
1 scanline
I‘ C(t) Y=1Ys X
/ AT
,’ ds Ch viewpoint
/
S
i = L Ca
~~~\
e
1 Cs
dl
d A b subpatch
0 \ \\u ——1 CU
\ e mmaam—— H
' )
> ! ]
:2. ] tnun
tma.r 3 ]
+ T .
t'ﬂl”l Vi scanline
! 4 tmar
dl ]F """" /
/
1] J /
Tk s f S ESD e /
o Y //
! ' -
d:ﬂ ------------------------- ~e’ Cs
3a b

Fig. 1. Intersection test of a boundary curve and a scanline
Fig. 2. Relationship between control points of a curved surface and a scan plane

Fig. 3a, b. Calculation of intersections in parametric space and clipping a boundary curve

and 5 are different from them. In the following
sections, these steps are discussed.

4 |ntersections of curves and a
scanline

In the proposed method, after subdividing curved
surfaces into subpatches on each scanline, sub-
patches are scan-converted into scan segments. For
the convenience of explaining this method, first the
calculation method of the intersections between
curves and the scanline in Step 3 is described, al-
though it follows Step 2.

Let’s assume that a curved surface is defined by
rational Bézier surface of degree n [refer to Eq.
(4)], and the boundary curves of the surface P(u, v)
are expressed by P(u, 0), P(u, 1), P(0,v), and P(1,v).

These curves are also expressed by rational Bézier
curves of degree n. Then, each boundary curve C(t)
in a space is defined by the following.

W; C; B{(t)

C(t)="=2 ; (1)
Y. W Bi(1)

0

n
n
o=

where C;(X;, Y, Z;) (i=0,1,...,n) are control
points, W; are its weights, and B is the Bernstein

basis polynomial expressed by B?(t)z(’?)(l
. i

=ty

The calculation for the intersections of a projected

curve C(t) and a scanline y =y, (Fig. 1) is discussed

in the following. Let’s assume that control points

C;(i=0,1, ..., n) are defined in the eye coordinate

271



— "Visual —
Computer

system (X, ¥ Z), as shown in Fig. 2; the origin is
set to the viewpoint and the z axis is perpendicular
to the projection plane. After perspective transfor-
mation of C;, the curve C(t) is expressed by the
following rational Bézier function (small letters are
used to express perspective-transformed coordi-
nates):

x(O)= 3 Wi X, Bl(0)/z(0),
Y= W, Y, Bi(o)/z(t), and
2(0)= Y. W, Z; Bi(1), )

i=0

where z(t) corresponds to the depth of the curve.
The homogenous coordinates (x;, y;, w;) of each
control point of the projected curve are given by
x;=X,/Z;, y;=Y/Z;, w;=RW,/Z,, where R is the
distance from the viewpoint to the projection
plane. Then the curve on the projection plane is
expressed by

x(t)= i W; X; B?(t)/i w; B} (t) and

i=0

v =) wiy Bi (1)) Y. wi Bi(1). 3)
i=0 i=0

Because the line equation of the scanline is ex-

pressed by y—y,=0 (the scan plane is expressed

by Y—(ys/R)Z=0 in 3D space), the following

equation is derived by substituting this into Eq.

(3):

3. di Bi(1)=0. @

where
di=w;(yi—y)=w; d;.

d; corresponds to the distance between the scanline
and a control point C; on the projection plane (d;
=(Y,—(y/R)Z) W, in 3D space, as shown in
Fig. 2). If a parameter ¢, which satisfies Eq. (4) is
calculated, then the depth z and x coordinates of
the intersection on the projection plane can be de-
rived.

The parameter ¢ in Eq. (4) can be solved by using
the Newton-Raphson method, because the equa-
tion is a polynomial of degree n; however, the cal-

272

culation is not always robust. To overcome the
problem, the authors employ Bézier clipping meth-
od (Nishita etal. 1990; Sederberg and Nishita
1990). When the curve intersects with the scanline,
the root of Eq. (4) always exists between the inter-
sections of the convex hull determined by the ver-
texes (i/n, d;) (i=0, 1, ..., n) and the t-axis, because
the curve defined by Eq. (4) is a non-parametric
function (Fig. 3a), while the curve does not inter-
sect with the scanline when d;(i=0,1, ..., n) are
positive for all i or negative for all i. Only when
d; has both positive and negative value (in this
condition the roots exist), the outside of the interval
[fmin> tmax] Of the curve is clipped away, as shown
in Fig. 3a. As the intersections of the convex hull
formed by the control points of the clipped curve
(as shown in Fig. 3b) and the t-axis are recursively
calculated, the interval where the roots exist be-
comes narrow. The root of ¢ converges with the
advance of the clipping process. If Eq. (4) has more
than two roots, the ratio of the convergence of
the interval becomes small. In this case, the curve
is divided into two curves and the same process
as mentioned above is continued for each divided
curve; thereafter all of the roots can be calculated.
This clipping method consists of two processes,
that is, calculating the interval of ¢ and clipping
a curve. Generally speaking, the latter process
needs extensive calculation time, because curves in
a space have the three components x, y, and z,
while in our method, calculation time can be saved,
because only one component d’ is used to clip a
curve; de Casteljau’s subdivision algorithm is em-
ployed for the clipping.

5 Clipping a curved surface
on a scanline

The method generating for subpatches intersecting
with the scanline is described here. In Lane-Car-
penter’s method, a curved surface is subdivided
into four subpatches. The subpatches on the scan-
line are extracted, and the subdivision is recursively
continued until surface flatness is satisfied. In this
method, not only the subdivision process, but also
the extraction of the subpatches existing on the
scanline are necessary. We propose a more efficient
method of generating subpatches on the scanline.
A region of a curved surface is recursively subdi-
vided by clipping away where the surface does not
intersect with the scanline. In many cases, a sub-



patch intersects with several scanlines. In this
paper, subpatches intersecting with every few scan-
lines (e.g., every three or four scanlines) are generat-
ed, and the intersections of the boundary curves
of subpatches and the scanline are calculated.
Assuming that the coordinates of a control point
are (X;;, Y;;, Z;;) with weights W; in the eye coordi-
nate system, ratlonal Bézier surfaces of degree n
are defined as

n

Y. W;; X,; Bi(u) B}(v)

M:

X(u,v)zizonjzon 5
Y. Y. W; B} (u) Bi(v)
i=0j=0
) Z ij Yy Bi (u) Bj(v)
Y(u,v) ==%=2 ,and
Y. Y. W;Bj(u) Bi(v)
i=0j=0
2. X Wy Zi;Bi(w) Bj()
Z (u, v) ==%4=0 ; )

HPﬁ:

Z ;B! (u) B!(v)

When the range for generating subpatches is a
band between the two scanlines y{ and y (yV)
>y{?), as shown in Fig. 4, equations of the scan
planes determined by each scanline and the view-
point are

Y—(®/R Z=0 (k=1,2). (6)

“Visual —
Computer

If the functions D and D® are expressed as
DY(XZ)=Y-(¥/R)Z (k=1,2),

the region formed by these two scanlines satisfies
the condition D’ <0 and D®>0. From this, the
interval of u and v intersecting with the scan planes
defined by Eq. (6) satisfies the conditions

DY=Y 3 (Y—(/R) Zy)
i=0j=0

W, B'(u) B}(t)<0 and

D‘z’—z Z 0?/R) Zy)

i=0j=0
- W,; Bi (u) Bj(v) > 0. (7
That is,

Y DY B (u) B! (v) <O,

M:s

i=0j=0

1) Z D{? B}(u) B}(v)>0, and

i=0j=

DS?’=(Y“- VW/R Zy) Wy (k=1,2). 8)

Note that D =(y;—y®) w; on the projection
plane. The Bézier clipping described in the previous
section is also available to calculate the interval
of u and v in Eq. (8).

A curved surface is clipped taking into account

the obtained interval of u and v. If flatness of the

clipped surface, a subpatch, is not enough, the sub-
patch is divided into two subpatches and this pro-

curved surface patch

Fig. 5. Subpatches on a scanline

curved surface patch

subpatch in the
second subdivision

y =y

Fig. 4. Intersection of a group of scanlines and a surface patch

scan segment

subpatch

273



cess is continued until every subpatch satisfies the
flatness tolerance given in advance. Finally, several
subpatches intersecting with the scanline are gener-
ated, as shown in Fig. 5. Surface flatness is mea-
sured by the maximum distance between the
curved surface and the plane determined by three
corner control points (Whitted 1978; Lane et al.
1980).

6 Hidden surface removal
and shading

After generating subpatches, a line segment be-
tween intersections of a subpatch and each scanline
located between y=y{" and y=y{? is calculated
by using the method described in the previous sec-
tion. This line segment is called a scan segment.
Scan segments can be reckoned as straight lines,
because subdivided subpatches are flat enough. Ex-
cept for the original boundaries, boundary curves
consisting of subpatches are classified into two
types. One is a boundary caused by clipping away
the outside of the region determined by the interval
of u or v obtained by Eq. (8), and the other is
a boundary caused by dividing a subpatch into
two subpatches. In the calculation of intersections
of subpatches and the scanline, it is enough to ex-
amine only the latter’s boundaries (usually, two
edges as shown in bold lines in Fig. 5), because
the former never intersect with the scanline.

After calculating scan segments, visible parts of
each scan segment are determined by using a tradi-
tional scanline algorithm and Phong’s shading al-
gorithm (1975) is employed to display curved sur-
faces. In this paper, penetrations of each curved
surface are allowed; hidden surfaces are removed
by taking account of the intersection of scan seg-
ments in the depth direction.

For the visibility test and smooth shading men-
tioned above, a depth z and a normal vector at
both endpoints of a scan segment are required.
Normal vectors at both endpoints of a scan seg-
ment are only slightly different, because of flatness
of the subpatch. When the difference between the
normal vectors at both endpoints is greater than
a threshold, the subpatch is divided again. There-
fore, accurate intensities can be obtained, even if
a linear interpolation is employed to calculate the
normal vectors on the scan segment.

To discuss accuracy of shading proposed here,
some previous methods are referred to here. In

274

Schweitzer and Cobb’s method (1982), a cubic in-
terpolation is employed to calculate normal vectors
on a scan segment. However, the accuracy of the
normal vectors is not sufficient for faithful display
of an original curved surface, because the normal
vectors on the scan segment are interpolated by
using only the normal vectors at the intersections
of the scanline and a fairly large subpatch (and/or
a silhouette). In Pueyo and Brunet’s method (1987),
a curved surface is decomposed (equidistantly in
parametric space) into grid cells, and linear inter-
polation is employed for the normal vectors on
the grid cells. As the difference between the normal
vectors at the adjacent grid points depends upon
the size of grid cells, the grid cells should be small
enough to obtain accurate normal vectors. In order
to obtain more precise coordinates and normals
at pixels within the scan segments, a marching tech-
nique, such as Satterfield and Roger’s method
(1985), may be effective, even though their method
is developed for generating contour lines from a
B-spline after triangular mesh approximation.

7 Silhouettes of a curved surface

The detection of accurate silhouettes of a curved
surface is one of the important elements for dis-
playing realistic curved surfaces. As described in
Sect. 2, traditional calculation methods are neither
always robust nor so accurate for silhouette edges
(Blinn 1978; Whitted 1978; Schweitzer and Cobb
1982). Even some methods addressing these prob-
lems still have some disadvantages, such as a very
complicated process and missing silhouettes
formed by relatively small loops. In the subdivision
methods taking into account surface flatness (Lane
et al. 1980; Clark 1979), only when the tolerance
of surface flatness is within one pixel do the silhou-
ettes become smooth; in this case every curved sur-
face needs to be excessively subdivided even though
it does not always have silhouettes. To solve these
problems, the authors propose the following effi-
cient subdivision method.

It is useful to classify all curved surfaces into two
types — those which probably have silhouettes, and
those which never have them before scan-conver-
sion, because all the curved surfaces do not neces-
sarily have silhouettes. After subdividing curved
surfaces into subpatches on the scanline, only the
subpatches probably having the silhouettes are ex-
amined to see whether they really do have silhou-



ettes or not. If they do, the subdivision process
is applied until the flatness is satisfied. (The lower
tolerance of flatness should be set to the subpatches
with silhouette). This method never leaves any sil-
houette undetected. In the following paragraph, we
will discuss how to examine whether a curved sur-
face has a silhouette or not.

First, for closed surfaces the classification into a
front face, a back face, or the other (i.e., surfaces
probably having silhouettes) is necessary. A front
face has a normal vector toward the viewpoint
throughout the surface (an inner product of the
viewing vector and the normal vector is positive),
while a back face has a normal vector away from
the viewpoint. The front/back test for curved sur-
faces is described in the Appendix.

Curved surfaces requiring scan-conversion can be
reduced in number by culling back faces in the
step of the wedge test, because of the invisibility
of back faces. (Of the total CPU time, 15% was
cut down by culling back faces in our experi-
ment.)

A Dbisectional method is employed to calculate the
intersection of silhouettes and each scanline, be-
cause the interval between the parameters at the
endpoints of a scan segment is very small. That
is, if normal vectors N; and N, at the endpoints
(0, and Q, in Fig. 6) of a segment have an opposite
direction with respect to the direction of the view-
point, subdivision of the subpatch is executed, be-
cause the scanline intersects with the silhouette (at
Q5 in Fig. 6). The subdivision process is continued
until the viewpoint direction component of both
normal vectors at the endpoints becomes smaller
than a specified tolerance.

silhouette

project'm“ plane

viewpoint

Fig. 6. Subpatch with a silhouette

“Visual —
Computer

8 Trimmed surfaces

The intersection test between a scan segment and
trimming curves (in Step 3 in Sect. 3) is performed
in parametric space, and the scan segments are
clipped by the trimming curves. The trimming
curves representing holes on the surface are ex-
pressed by Bézier form with degree n in parametric
space and expressed by

u(t)= i u; B}(t) and

i=0

v(t)= ), v; Bi), ©)

i=0

where (u;, v;) (i=0,..., n) are control points of a
trimming curve. For simple calculation, translation
and rotation are performed; one endpoint of the
scan segment is set as the origin and the scan seg-
ment coincides with the u-axis (Fig. 7). Let’s denote
the coordinate system as (u/,v') after transforma-
tion. Because the scan segments lie on the line
v'=0, the following equation is obtained by substi-
tuting curve Eq. (9) to the line equation:

n
V()= v; B (). (10

i=0
The above equation is a nonparametric Bézier
function whose control points are (i/n, v}). This
equation is also solved by Bézier clipping. After
solving parameter ¢ satisfying the above equation,
the intersection point on the scan segment is ob-
tained from ¢. Even in the case where there is no
intersection on the scan segment, sometimes the
scan segment should be removed (see Q, Q5 in
Fig. 7b); whether the scan segment should be re-
moved or not is determined by counting the
number of positive intersections on the " axis. That
is, if the number of intersections is even, the scan
segment is surrounded by the trimming curves.

9 Shadowing

Even though the papers referred to here use scan-
line algorithms (Blinn 1978; Whitted 1978; Clark
1979; Lane et al. 1980; Schweitzer and Cobb 1982;
Griffiths 1984; Pueyo and Brunet 1987) none of
them mentions shadowing. Shadows are one of the
important elements for displaying realistic images.

275



“Visual
Computer

scanline

(us, v3)

Fig. 7a, b. Intersection test be-
tween a scan segment and trim-
ming curves. a Projection plane, b
parametric plane

(w0, v0)

A calculation method for shadowed sections on
each scan segment is discussed here. Shadows are
invisible sections when a light source is reckoned
as a viewpoint. Therefore, a shadow cast by a
curved surface can be calculated as follows. If a
triangle formed by both endpoints of a scan seg-
ment and the light source (Fig. 8) intersects with
a curved surface, the shadows due to the curved
surface are cast on at least a part of the scan seg-
ment. By reckoning the light source as a viewpoint,

Q

light source

#7 scan plane
s

viewpoint

Fig. 8. Shadow area on a scan segment

276

the triangle formed by the scan segment and the
light source is treated as a scan plane; the scanline
algorithm mentioned before can be employed. That
is, the shadow sections on the scan segment can
be determined by using the intersection test be-
tween the scanline and curved surfaces when
viewed from the light source.

10 Examples

Four examples are shown in Fig. 9. Figure 9a
shows a teapot as an example of standard data.
It consists of 32 patches, and the CPU time was
273s (144.6 s in the case with shadows) when
IRIS-4D/120GTX was used with a screen
500 x 500. Table 1 shows relationships among the
tolerance of the parameter ¢t regarding the calcula-
tion of intersections of a scanline and subpatches,
the average number of iterations, and the CPU
time. It is evident that iterations are fairly few, be-
cause of quick convergence due to the fact that
the shapes of boundaries of every subdivided sub-
patch are close to straight segments. When the tol-
erance is set at 1073, even one patch covering all
of the screen size (1000 x 1000) is displayed with
accuracy within one pixel. Therefore, it is set at
103 in the examples. Even when the resolution
of the screen becomes higher and the tolerance is
set at 1077, the average number of iterations in-
creases by only 0.8, and the CPU time increases
by less than 1%. Calculation time for generating
subpatches takes 60% of all calculation time, and
for calculating intersections of subpatches and a
scanline and hidden surface removal, 22%.

Figure 9b shows an example of texture mapping
to Fig.9a. Figure 9c shows an example of a




e

Fig. 9a—g. Examples. a teapot, b textured teapot, ¢ trimmed patch, d cleaner, e base
(133 patches), f automobile (555 patches), g balloons (1064 patches)

Table 1. Relationship between the tolerance, average iterations,
and CPU time (in the case of Fig. 9a)

Tolerance Average iterations CPU time (s)
1073 1.6 27.3
1073 2.1 28.9
1077 24 29.1

trimmed patch. Figure 9d shows a commercial
product design (a hand-held vacuum cleaner) con-
sisting of 56 patches; the CPU time is 45.6 s. Figur-

e 9e shows a base and an ash tray consisting of
133 patches. Figure 9f shows an automobile com-
posed of 555 Bézier patches; the CPU time is 55.3 s
(222.0 s in the case with shadows). In Fig. 9g, de-
picting hot-air balloons considered foggy effect, the
CPU time is only 228.8 s, although all of the bal-
loons consist of 1064 patches. These examples show
that the greater the number of patches, the more
effective the method is. Even though raytracing al-
gorithms are usually very powerful for obtaining
realistic images, for hidden surface removal (ex-
cluding shading) the method proposed here is five

277



times faster than our raytracing algorithm (Nishita
et al. 1990).

In these examples, a multi-scanning method (Nishi-
ta and Nakamae 1984) developed by the authors
was employed for anti-aliasing, the area of each
surface in a pixel is calculated by trapezoidal inte-
gral, and the precision of the area depends on the
accuracy of the intersections between sub-scanlines
and boundaries of surfaces. That is, the accuracy
of anti-aliasing is improved. Anti-aliased image
composition (Nakamae et al. 1986) were used for
Fig. 9¢g.

11 Conclusions

A robust and fast method for rendering parametric
surfaces is proposed. The method has the following
advantages:

1) Boundaries of displayed objects are quite faith-
ful to the defined curved surfaces, and therefore
extremely smooth, because intersections of sub-
patches and each scanline are calculated accurately
and robustly. No gap arises between subpatches.
Intersections can be calculated by few iterations
(about two iterations).

2) Even in the area where the changing of normal
vectors is drastic, the intensity is accurate, because
curved surfaces are sampled in proportion to curv-
ature of the surfaces.

3) Shadowed boundaries are always smooth, be-
cause shadows faithful to the defined curved sur-
faces can be displayed.

4) In terms of calculation time, it is low cost
especially when a number of patches exist in a
scene.

5) The accuracy of anti-aliasing is improved, be-
cause of calculating the accurate intersections.

Acknowledgements. We would like to thank Dr. Thomas W.
Sederberg for his discussion about the method for calculating
intersections by Bézier clipping when the first author stayed
at Brigham Young University.

Appendix. Front/back test

for curved surfaces

The normal vector at a point (x(u, v), y(u, v), z(u, v))
on surface P(u,v) is defined by a vector product

of P(u,v) and PB(u,v) (ie, B,=0P(u,v)/du, F,
=0P(u,v)/dv). If the condition P(u,v):E,(u,v)

278

x P (u, v)<0 is satisfied for all u(0<u=<1) and
v(0<v<1) in the eye coordinate systems, then the
curved surface is a front surface toward the view-
point. To find out the curved surfaces having sil-
houettes, this condition may be used; however, the
calculation cost is probably very high. Following
perspective transformation, the signs of the z-com-
ponent of the normal vectors are used for the test.
The z-component of the normal vector, N, is given
by
0x(u,v) 0y(u,v) 0y(u,v) dx(u,v)

N, v)= du v ou ov (11)
For B-spline surfaces, Elber and Cohen (1990) used
the fact that if the first term on the right side of
the above equation is positive everywhere and the
second negative everywhere, N, is positive every-
where (i.e., front face). However, in some cases, N,
is positive everywhere even if the first term is not
positive; e.g., x or y component of the partial deriv-
ative includes 0. In such cases, their method may
leave some unsolved surfaces. To address this prob-
lem, we propose the following method, which re-
duces unsolved surfaces.

The test can be performed on the projection plane
by using only the x and y components, because
in Eq. (11) the sign of the z-component of the nor-
mal vector is defined only by the x and y compo-
nents of P/ and P/, where P’ is a perspective trans-

sl
Py

sl
Py

Ly

Fig. 10. Hodograph for calculating directions of nor-
mals




formed curved surface. B/ and P, are rational Bézier
surfaces and the range of their tangent direction
is bound by the hodograph of non-rational surfaces
(Sederberg and Meyers 1988). Derivatives of non-
rational Bézier surfaces can be obtained from the
control points geometrically. For example, the con-
trol points Ej;; of B, are expressed by n(P; ;—F.;)
(i=0,1,...,n—1, j=0,1, ..., n). For a degenerate
Bézier surface with a side collapsed to a point, the
derivative at the point cannot be obtained. In this
case, it can be obtained by approximated control
points, which are very close to the original point.
The range of their tangent direction of B/ and P/
can be obtained by hodograph (Sederberg and
Meyers 1988); the direction of the tangent with
respect to the parameter u exists in the wedge area
intercepted by the lines L, and L,, which hold
P/, as shown in Fig. 10 (hatching part). The equa-
tions of the lines L; and L, are defined by

fi(x,y)=a; x+b, y=0 and

fa(x,y)=a, x+b, y=0. (12)
Every control point E; belonging to E/ locates in
the positive side of the line L,, while E;; in the

negative side of the line L,. That is, the straight
lines satisfy the conditions

VEB;: f1(Xuij> Yuij) =0
VBt f2(Xuij» Vuij) <O. (13)
Therefore,
(a) IfVR;: f1(xyij» Yuij)=0and
f2(X,ij> ¥ij)=0 then a front face.
(b) If VRt fi(Xyij> Yuij) <0and
f2(Xyij, Yoij) <0 then a back face.
(c) Other than the above, a twisted face. (14)

In other words, if any P, overlaps with the wedge
intercepted by L, and L,, then the curved surface
is a twisted surface. Note that the curved surface
classified into a twisted surface does not always
have a silhouette. For a more detailed test, the
curved surface must be further subdivided, but it
is enough to find out only the probability of having

silhouettes. In this process of face classification, if
L, and L, cannot be obtained the surface probably
has silhouettes.

Note that in Elber and Cohen’s method (1990),
the case of Fig. 10 is classified into a twisted face

(i.e., % includes O) although it is classified

into a front face with our method.

References

Blinn JF (1978) Simulation of wrinkled surfaces. Comput Graph
12(3):286-292

Clark JH (1979) A first scan-line algorithm for rendering para-
metric surfaces. Comput Graph 13(2):174

Elber G, Cohen E (1990) Hidden curve removal for free form
surfaces. Comput Graph 24(4):95-104

Griffiths JG (1984) A depth-coherence scanline algorithm for
displaying curved surfaces. CAD 16(2):91-101

Lane JM, Carpenter LC, Whitted T, Blinn JF (1980) Scan line
methods for displaying parametrically defined surfaces.
Commun ACM 23(1):23-34

Nakamae E, Harada K, Ishizaki T, Nishita T (1986) A montage:
the overlaying of the computer generated images onto a
background photograph. Comput Graph 20(4):207-214

Nishita T, Nakamae E (1984) Half-tone representation of 3-D
objects with smooth edges by using a multi-scanning meth-
od. Trans IPSJ 25(5):703-711

Nishita T, Sederberg TW, Kakimoto M (1990) Ray tracing ra-
tional trimmed surface patches. Comput Graph 24(4):337-
345

Phong BT (1975) Illumination for computer generated pictures.
Commun ACM 18(6):311

Pueyo X, Brunet P (1987) A parametric-space-based scan-line
algorithm for rendering bicubic surfaces. IEEE 7(8):17-24

Satterfield SG, Rogers DF (1985) A procedure for generating
contour lines from a B-spline surface. IEEE CGA 5(4):71-75

Schweitzer D, Cobb ES (1982) Scanline rendering of parametric
surfaces. Comput Graph 16(3):265-271

Sederberg TW, Meyers RJ (1988) Loop detection in surface
patch intersections. CAGD 5(2):161-171

Sederberg TW, Nishita T (1990) Curve intersection using Bézier
clipping. CAD 22(9):538-549

Watkins GS (1970) A real-time visible surface algorithm. Uni-
versity of Utah Computer Science Department UTEC-CSC-
70-101, NTIS AD-762 004

Whitted T (1978) A scan line algorithm for computer display
of curved surfaces. Comput Graph 12(3):26

For author’s biographies and photos see pp. 267
and 268.

279





