
Creating Colored Pencil Style Images by

Drawing Strokes Based on Boundaries of Regions

Hajime Matsui∗ Henry Johan† Tomoyuki Nishita‡

The University of Tokyo

ABSTRACT

A lot of Non-Photorealistic Rendering methods have been proposed
for creating an artistic image from an image. In this paper, we pro-
pose a method for creating colored pencil style images. The feature
of colored pencil drawings is that, though colored pencil drawings
are drawn with limited number of colors of pencils, we can express
a lot of colors and gentle textures by changing the strengths when
drawing strokes and by overlapping strokes of different colors. In
order to realize this feature, we determine which colors of pencils
to use and how deep to push the pencils (equivalent to the strength
when drawing strokes), then draw several types of strokes, such as
strokes for outlines, basecoats, and shading, allowing the strokes to
overlap each other. When we create strokes for shading, we make
their directions to align along the boundaries of regions, resulting
in images that are more like drawings made by human.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithm; I.3.m [Computer Graphics]:
Miscellaneous—Non-Photorealistic Rendering

Keywords: non-photorealistic rendering, colored pencil, strokes
creation, colored pencils selection, Kubelka-Munk

1 INTRODUCTION

In the early days of computer graphics, many researches have been
done with the purpose for creating realistic images (photorealistic
rendering). However, in recent years, researches for creating im-
ages that emphasize thefeatures(for instance, edges) while omit-
ting the small details of a scene, or images that look like paintings
(artistic style images) have gained much attention. These research
fields are the examples of Non-Photorealistic Rendering. Tech-
niques for creating artistic images are proven to be useful for pro-
cessing and synthesizing images, and currently available in many
commercial image editing applications.

There are many styles of artistic images. However, most of them
can be categorized into two categories, which are region-based im-
ages, such as mosaic and stained glass, and stroke-based images,
such as oil painting and colored pencil drawing. In this research,
we focus on colored pencil drawing. Up to now, there are only a
small number of methods proposed for colored pencil drawing and
one of the limitations of the methods is that they did not consider
how to generate the strokes used in drawing. In order to help users,
in particular those who are not so good at drawing, to easily create
colored pencil style images, it is important to determine the direc-
tions of strokes automatically.

Colored pencil drawings are usually drawn with limited number
of colors of pencils. For instance, the smallest colored pencils set

∗e-mail: hajime@nis-lab.is.s.u-tokyo.ac.jp
†e-mail: henry@nis-lab.is.s.u-tokyo.ac.jp
‡e-mail: nis@nis-lab.is.s.u-tokyo.ac.jp

consists of only twelve pencils of different colors. Nevertheless,
we can express a lot of colors and gentle textures by changing the
strengths when drawing strokes and by overlapping strokes of dif-
ferent colors. This is an important feature of colored pencil draw-
ings.

To realize this feature, in our method, we determine which colors
of pencils to use and how deep to push the pencils. Then, we draw
several types of strokes, such as strokes for outlines, basecoats,
and shading, allowing the strokes to overlap each other. We cre-
ate strokes for shading such that their directions align along the
boundaries of regions. This approach is similar to strokes drawn by
human which are, in our observation, often drawn in one direction
or aligned along the boundaries.

The main contributions of our method are:

• Automatic strokes creation such that they are drawn in one
direction or aligned along the boundaries.

• Multiple colored pencils selection to express the colors in
each region of an input image.

2 RELATED WORK

In the field of Non-Photorealistic Rendering, a lot of methods have
been proposed for creating various artistic images. Since the input
to our method is an image, we only describe the related methods
that take an image as the input. Moreover, we restrict our discussion
to the methods that create artistic images by drawing strokes.

Haeberli [3] presented a method to create impressionistic images
by drawing an ordered collection of rectangular brush strokes. Sal-
isburyet al. [13] described a method for creating pen-and-ink style
images, by drawing strokes to represent texture and tone. Takagi
et al. [16] proposed a method for creating colored pencil style im-
ages by performing volume rendering on the paper modeled based
on the physical laws. Sousaet al. [15] proposed a method for cre-
ating graphite pencil drawings by performing low-level simulation
models for wood-encased graphite pencils and drawing paper. Du-
randet al. [2] described a method for interactively creating tonal
drawings. Kimet al. [7] presented a method for creating pen-and-
ink illustrations by interpolating strokes specified by user. Rudolf
et al. [12] presented a method for creating crayon drawings by us-
ing physically-inspired model of wax crayons. Many commercial
softwares, such as Painter [19], also have various artistic brushes,
including colored pencil style brushes. All the methods described
above require users to specify the directions of strokes manually,
and do not aim to create strokes automatically from the given input
image.

Curtiset al.[1] proposed a method for creating watercolor paint-
ings by using fluid simulation. In their paper, they also proposed a
method for creating a watercolor painting from an input image au-
tomatically, but basically the strokes created by using their method
have constant directions.

Litwinowicz [8] and Hertzmann [6] proposed painterly render-
ing methods, in which strokes are drawn in the direction perpen-
dicular to the gradient of luminance of the input image. Shiraishi
and Yamaguchi [14] extended Haeberli’s work [3] by automatically

h(p)

d(p)

0

1 Reference surface

p

Figure 1: d(p): the depth of the pencil at pixel p from a reference
surface, h(p): the height of paper at pixel p.

generating strokes properties such as locations, orientations, and
sizes. The methods presented by Litwinowicz [8], Hertzmann [6],
and Shiraishi and Yamaguchi [14] can create nice oil painting im-
ages, however since colored pencil drawing has different character-
istics than oil painting, their methods cannot be applied directly to
colored pencil drawing.

Yamamotoet al. [18] proposed a method for creating colored
pencil drawings by using a texture based vector field visualization
technique. However, the generated strokes are limited to straight
lines. Commercial softwares, such as Photoshop [20], also have
functions which convert images into artistic images including col-
ored pencil drawing, but the results are not good.

Ostromoukhov and Hersch [9] proposed a method, multi-color
and artistic dithering, for expressing a color by using limited num-
ber of colors. However, their method is designed for inks of printers
and not suitable for the color selections when creating colored pen-
cil style images. Yamamotoet al. [18] used the halftoning method
proposed by Poweret al. [10] for expressing a color by using two
colors of pencils. However, in colored pencil drawing, it is quite
often to draw overlapping strokes of more than two colors.

In this paper, we present a method for generating and render-
ing strokes for colored pencil drawings. The proposed method first
divide an input image into several regions and then create several
types of strokes for drawing. We create strokes based on the shape
of the boundary of each region. From our observation, this ap-
proach resembles the way human draw strokes. Several colored
pencils, whose colors are close to the color of the region, are se-
lected and used for drawing strokes in that region. The strokes are
rendered using the Kubelka-Munk model resulting in colored pencil
style images.

3 STROKE MODEL

We represent a stroke as a point sequence and each stroke has a
color. Each point of a stroke hasx, y coordinates and the depth of
the pencil from a reference surface (see Figure 1) when drawing the
stroke at that point.

A stroke is drawn by updating the information of pixels within
a radiusW (user-specified value) from each point in the point se-
quence of the stroke. The user can control the width of the stroke
by changing the value ofW. In our experiments, we set the value
W = 2. We, as well as Takagiet al. [16] and Yamamotoet al. [18],
compute the color at each pixel by using the method proposed by
Curtiset al.[1], which is based on the Kubelka-Munk model [4]. To
use this model, beside the color of the pencil, we also have to know
the thickness of the layer of the attached colored pencil pigments.
Therefore, we have to determine the thickness of the pigment at
each pixel.

In our method, the surface of paper is represented as a height
field. The height field data of the paper is downloaded from the

internet [21]. We compute the thicknessδ (p) of a pigment at pixel
p by using the following equation (see Figure 1).

δ (p) = µ(p)(d(p)+h(p)−1), (1)

whereh(p) ∈ [0,1] is the height of the paper atp, andd(p) ∈ [0,1]
is the depth of the pencil from a reference surface when drawing
the stroke atp. This equation represents the fact that the deeper we
push the pencil and the higher the paper is at a location, the more
the pigments are going to attach.

µ(p) represents the probability that the pigments are going to
attach atp, and computed as

µ(p) =

{

µ0(1−
δ (p)
δF

)+ µ1
δ (p)
δF

(δ (p) ≤ δF)

µ1 (δ (p) > δF)
, (2)

whereδF is a threshold to determine if a location at the paper has
already filled with pigments or not. We setδF = 0.5 in our exper-
iments. µ0 is the probability that pigments are going to attach to
the paper when a location in the paper has no pigment (δ (p) = 0),
whereasµ1 is the probability when a location in the paper has al-
ready filled with enough pigments (δ (p)≥ δF). In our experiments,
by settingµ0 = 0.2, µ1 = 0.05, we represent the fact that pigments
are less likely to attach to the parts where other strokes have already
been drawn.

4 IMAGE SEGMENTATION

Generally, when human draw a scene, he/she first selects the objects
in the scene, and draw the objects in the scene one at a time. In
our method, we perform image segmentation in order to extract the
objects in the scene. We use the method presented in Healyet al.[5]
for image segmentation. However, automatic image segmentation
does not always produce results that satisfy the user. For example,
if the input image is a photograph of natural scenery, the automatic
image segmentation does not always work well, resulting in colored
pencil style image that might not be nice. Therefore, we allow the
user to modify the result of the image segmentation.

5 STROKES CREATION

Although the number of colors of pencils that are available to be
used to draw colored pencil drawings is limited, nevertheless col-
ored pencil drawings that are rich in both the color and the texture
can be created. This is possible due to the technique of overlapping
strokes of different colors and strengths when making the drawings.
To achieve these features, we create three types of strokes, that is
the strokes for outlines, basecoats, and shading, on each region ob-
tained in the image segmentation process. The directions of each
type of strokes are determined based on the observation of strokes
drawn by human.

In order to emphasize the objects in the foreground, sometimes,
for the background regions, human only draw the basecoats. There-
fore, we also allow the user to divide the input image into fore-
ground and background area, then we draw only the basecoats in
the background regions.

The three types of strokes are created as follows:

Outlines: Strokes for outlines are created by connecting the pixels
on the boundaries of the regions.

Basecoats: Since the basecoats are seldom drawn by considering
the boundaries of the regions, the strokes for basecoats are
created by drawing strokes in a constant direction. In order to
make the strokes look hand-drawn, we add some randomness
when drawing the strokes.

Figure 2: One of the drawings that we observed (Courtesy of Rie
Matsubara [11]).

Shading: From our observation of colored pencil drawings drawn
by artists (see Figure 2), we found out that strokes for shading
are often drawn in one direction or aligned along the bound-
aries. Therefore, in our method, these strokes can be drawn in
one direction for producing rough sketches or aligned along
the boundaries of regions for producing more precise draw-
ings. We will describe our method for aligning strokes along
the boundaries in the rest of this section.

The basic idea of our approach is to select a partC1 from the
boundary of a region and to draw strokes that move away from
C1 (Figure 3(a)), and move closer to another partC2 of the
boundary (Figure 3(b)). In order to produce a nice shading,
it is important to change the shapes of the strokes, that is,
when drawing a stroke nearC1, then it shape should be almost
align alongC1, whereas when drawing a stroke nearC2, then
it shape should be almost align alongC2. To achieve this, in
our method, we first divide the boundary into several parts
(feature edges) and then compute the direction field of the
strokes (stroke fields).

5.1 Boundary Division

When human draw strokes for shading, they usually do not draw
strokes with complicated shapes, but draw strokes with the shapes
of simple curves, that is curves with no high curvature regions and
almost can be represented using quadratic equation. Therefore, in
our method, we divide the boundary into simple curves and we call
them feature edges. We use two thresholdsθL and θA. θL is a
threshold to divide a boundary at a location with large curvature,
andθA is a threshold to divide at a location which has a large cu-
mulative of curvature so the curve has a shape close to a quadratic
curve. In our experiment, we setθL = 0.2π andθA = 0.5π.

Let the point sequence representing the boundary be{Pi}, and
angle6 Pi−1PiPi+1 beθi , we divide the boundary as follows:

1. For each pointPi , if θi ≥ θL, setPi as the division point.

2. For each pair of the adjacent division pointsPs, Pt , if a point
Pi between them (s< i < t) satisfies(∑s< j<i θ j) ≥ θA, setPi
as the division point.

3. Repeat 2 until a new division point cannot be added.

We regard the curve between the adjacent division points as fea-
ture edge.

C1 C1 C2

(a) (b)

C1

C2
C1

(c) (d)

C1

(e)

Figure 3: (a) Stroke directions along C1, (b) stroke directions between
C1 and C2, (c) undesired interpolation, (d) insertion of an additional
edge (dashed line), and (e) the stroke field for the additional edge.

5.2 Stroke Fields for Shading

We make a stroke field like the one shown in Figure 3(b) for each
feature edge by interpolating its two adjacent feature edges. How-
ever, in the case when the angle made by a feature edge and its
adjacent one is concave, the interpolation of its two adjacent fea-
ture edges does not make natural stroke directions (Figure 3(c)). In
this case, we can make a more natural stroke direction by insert-
ing an additional edge (dashed line in Figure 3(d)). We also make
a stroke field starting from the additional edge, by translating the
adjacent feature edge (Figure 3(e)). We also regard the additional
edges as the feature edges.

The additional edges are inserted as follows. For each example
in Figure 4, we need to insert an additional edge at pointPi because
angle6 Pi−1PiPi+1 is concave. We have the following four cases.

1. The case when both6 Pi−2Pi−1Pi and 6 Pi+2Pi+1Pi are convex
(Figure 4(a)), we insert an additional edgePiP′

i by interpolat-
ing Pi−1Pi−2 andPi+1Pi+2 with the ratio of|PiPi+1| : |PiPi−1|
(|PQ| means the length of line segmentPQ).

2. The case when6 Pi−2Pi−1Pi is concave and6 Pi+2Pi+1Pi is
convex (Figure 4(b)), we insert an additional edge by trans-
latingPi+1Pi+2 such thatPi+1 is translated toPi .

Pi+2

Pi+1

Pi

Pi−1

Pi−2

Pi
′

(a)

Pi+2

Pi+1

Pi

Pi−1

Pi−2

Pi
′

(b)

Pi+2

Pi+1

Pi

Pi−1

Pi−2

Pi
′

(c)

Pi+2

Pi+1

Pi

Pi−1

Pi−2

Pi
′

(d)

Figure 4: Additional edges when (a) both 6 Pi−2Pi−1Pi and 6 Pi+2Pi+1Pi

are convex, (b) 6 Pi−2Pi−1Pi is concave and 6 Pi+2Pi+1Pi is convex,
(c) 6 Pi−2Pi−1Pi is convex and 6 Pi+2Pi+1Pi is concave, and (d) both
6 Pi−2Pi−1Pi and 6 Pi+2Pi+1Pi are concave.

3. The case when6 Pi−2Pi−1Pi is convex and6 Pi+2Pi+1Pi is con-
cave (Figure 4(c)), we insert an additional edge by translating
Pi−1Pi−2 such thatPi−1 is translated toPi .

4. The case when both6 Pi−2Pi−1Pi and 6 Pi+2Pi+1Pi are con-
cave (Figure 4(d)), we insert an additional edgePiP′

i such that
6 Pi−1PiP′

i = 6 Pi+1PiP′
i and that the length ofPiP′

i is the aver-
age length ofPi−1Pi andPi+1Pi .

f h

g
v0

v1

v2

v3

v0

v1

v2

v3

stroke field R

v0

v1

v2

v3

v0

v1

v2

v3

D (before adding v3) D (after adding v3)

Figure 5: The addition of v3 makes the difference between the ref-
erence image R and the drawn image D larger, so we do not add
v3.

5.3 Strokes for Shading

In order to create strokes on a region, we prepare two images, a
reference image Rand adrawn image D. Reference imageR is an
image which represents where and how many strokes we want to
create. We first set a parameterr, which determine the density of
the strokes, and then initializeR(p) = r if pixel p is located inside
the region being processed andR(p) = 0 if pixel p is located outside
the region. Drawn imageD is an image which represents where and
how many strokes we have created. We initializeD(p) = 0 at every
pixel p and increase the value at each pixel by one if the pigment
of a colored pencil is attached to the pixel. By creating strokes
such that the difference between the reference image and the drawn
image is minimized, we can make, on average, the number of drawn
strokes at each pixel in the region tor strokes. We setr = 2 in our
experiment.

The strokes creation algorithm is as follows.

1. Select an unprocessed feature edgef .

2. Select a stroke fieldG where we can create strokes that are
aligned alongf .

3. Create strokes based onG.

In step 1, we select the longest feature edge because long feature
edges have high possibilities that they represent the features of the
regions. However, we do not select the additional edges because
they are not on the boundaries of the region.

In step 2, we can create strokes alongf based on the stroke field
of the feature edge next tof . Since there are two feature edges
next to f , there are two stroke fields that can be used to generate
the strokes. We select the stroke field as follows. We first compute
the priority for the stroke field of each adjacent edge off , and then
select the stroke field with a higher priority asG. We define the
priority Pr of a feature edge, based on the lengthsL1, L2 of its two
adjacent feature edges, as

Pr = 1−
|L1−L2|

L1 +L2
. (3)

f

g

hG G
′

(a)

G

G1 G2

e

f

g

h

i

(b)

Figure 6: Realizing strokes coherency by (a) drawing strokes based
on G′ after drawing strokes based on G, and in another example, (b)
drawing strokes based on G1 and G2 after drawing strokes based on
G .

This equation is based on the observation that a stroke field is not
good when the lengths of the two edges used in the interpolation
differ a lot. We set the priority of the additional edges to be zero.

In step 3, we select a starting pointv0 on G and add the next
point to the point sequence of the stroke one after another based
on G. When we add a pointvi , we update the drawn image and
check if the difference between the reference image and the drawn
image is increasing or not. If the difference is increasing, we stop
adding a point and restore the drawn image (Figure 5). We repeat
this process until we cannot add any new stroke.

In step 3, after we created strokes based onG, we have to choose
other stroke field and create strokes on it. In order to produce
natural results, it is important to consider the coherency between
strokes. To achieve coherency, we select the next stroke field as fol-
lows. In Figure 6, we assume that we have created strokes aligned
along f in G by interpolating f and h. We can make strokes to
appear more continuous (coherency between strokes) by taking the
following two cases into account. Ifh is an additional edge, we se-
lect the stroke fieldG′(6= G) (Figure 6(a)) on which we can create
strokes aligned alongh asG and perform step 3. Ifh is a boundary
edge, we select each of the stroke fieldsG1,G2(6= G) (Figure 6(b))
on which we can create stroke alonge(6= g) andi(6= g) respectively
asG and perform step 3.

We perform the strokes generation algorithm until there is no
feature edge left to be processed.

6 COLORED PENCILS SELECTION

Colored pencil drawings are drawn with limited number of colors
of pencils. However, the input image can consist of variety of col-
ors. In colored pencil drawings, by controlling the strength when
drawing strokes, we can create many gradating colors. This is be-
cause, the stronger we push a pencil to a paper, the deeper the pencil
is pushed and the more pencil pigments are attached to the paper.
Thus, for each stroke, we need to determine which colored pencil to

’RED’

-10
 0

 10
 20

 30
a* 0

 10
 20

 30
 40

b*

 60

 70

 80

 90

 100

L*

Figure 7: The graph of plotting the color (in the L*a*b* color space)
produced by the red pencil when we vary the depth of the pencil when
drawing strokes.

use and how deep to push the pencil when drawing strokes. In our
method, we use multiple colored pencils whose colors have small
differences with the color of the region being processed. We use
the L*a*b* color space to compute the color difference because it
reflects much the human perception.

The color of a region is computed by averaging the colors of the
pixels in the region. As we stated before, the color produced by
a colored pencil varies depending on the depth of the pencil when
drawing strokes. Therefore, for each colored pencil, we compute a
color curve. A color curve is a result of plotting the color (in the
L*a*b* color space) produced by a colored pencil when we vary
the depth (i.e, depth is the parameter of the curve). The example
of the color curve is shown in Figure 7. The color at each point of
the curve is the result of drawing a stroke on a white paper with a
specified depth. The color is computed based on the Kubelka-Munk
model [4].

In order to determine which pencil to use and how deep to push
it when drawing a region, we compute the distance from the color
of the region to the color curves of all pencils. The colored pencil
whose color curves have distances to the color of the region less
than a threshold are selected as the pencils used in drawing. When
we compute the distance to the color curve, we compute the closest
point on the curve. We use the parameter value at the closest point
as the depth of the pencil when drawing strokes.

In the case when only one colored pencil is selected, we use
this pencil for drawing all types of strokes. In this case, we vary
the depth such that the outlines and the basecoats are drawn with a
shallowly pushed pencil whereas the shading are drawn with deeply
pushed one. In the case when more than two pencils are selected,
we use the pencil with the brightest color for drawing strokes for
outlines and basecoats, and use the rest of the pencils in the order
of decreased brightness for drawing strokes for shading. This ap-
proach is based on the suggestion found in the book by Matsubara
and Miyoshi [11].

Although we perform the image segmentation by color, each seg-
mented region can have color gradation in it. In order to express
color gradation, in our method, we perform color clustering in each
region using the k-means algorithm [17]. We set the number of
clusters to the number of available colored pencils and the colors
of the initial clusters to those of colored pencils when drawing on
paper. Usually, most of the clusters resulting from the clustering are

Table 1: The computational time and the number of strokes for
creating the examples.

Image Image size Time #Strokes
Figure 11(a) 435×535 45 s 5485
Figure 11(b) 360×360 49 s 8414
Figure 11(c) 603×410 238 s 24775

empty sets. For each cluster that is not empty, we select color pen-
cils based on the average color of the pixels in it using the method
described above, and create strokes based on the boundaries of the
region (not the cluster). Through experiment, we found that, by us-
ing color clustering, detailed variations of colors in regions can be
expressed.

7 RESULTS

In our experiments, we used twelve colored pencils (see Figure 8).
In Figure 9, we compared a hand-drawn colored pencil drawing
and an image rendered using the method described in Section 3. We
confirmed that our rendering method produces results that resemble
real drawings.

Figures 10(a)-(c) show the input images and Figures 11(a)-(c)
show the resulting colored pencil style images created automati-
cally using the proposed method. Strokes aligned along the bound-
aries of regions can be seen. We can also see that multiple colored
pencils were used to draw overlapping strokes. The computational
times and the numbers of strokes are shown in Table 1. The com-
putations were performed on a machine with a Pentium 4 3GHz
CPU.

For comparison, Figure 11(d) was created using the gradient-
based method proposed by Litwinowicz [8] for determining the
stroke directions. Generally, the gradient-based method produces
stroke directions that suit for oil-painting but not for colored pencil
drawing. It is obvious that our method produces results more re-
semble to colored pencil drawing than the gradient-based method.

8 CONCLUSION

In this paper, we have presented a method for creating a colored
pencil style image from an input image. The proposed method first
divide the input image into regions and then create strokes on each
region. The features of our method are as follows.

• In order to simulate the drawing techniques for colored pencil
drawing, we create several types of strokes, such as strokes
for outlines, basecoats, and shading, allowing them to overlap
each other.

• We create strokes for shading so that they align along the
boundaries of the regions by interpolating two feature edges
after dividing the boundaries into feature edges. This ap-
proach is similar to the approach used by human when draw-
ing strokes for shading.

• In order to produce various colors from limited number of col-
ors of pencils, we compute color curves and use these curves
for selecting colored pencils and determining the depths of the
pencils for drawing strokes.

• We use a simple model to compute the thickness of pigments
on the paper and use the Kubelka-Munk model [4] for the final
rendering, resulting in colored pencil style images.

Figure 8: Available colored pencils set.

Hand-drawn drawing

Proposed method

Figure 9: Comparison between a hand-drawn drawing and our ren-
dering result.

As for the future work, we aim to extend this method for creating
colored pencil style animations from an input video sequence.

REFERENCES

[1] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, KurtW. Fleis-
cher, and David H. Salesin. Computer-generated watercolor.In Proc.
of SIGGRAPH 97, pages 421–430, 1997.

[2] Frédo Durand, Victor Ostromoukhov, Mathieu Miller, FrançoisDu-
ranleau, and Julie Dorsey. Decoupling strokes and high-level attributes
for interactive traditional drawing. InProc. of the 12th Eurographics
Workshop on Rendering, pages 71-82, 2001.

[3] Paul Haeberli. Paint by numbers: Abstract image representations. In
Computer Graphics (Proc. of SIGGRAPH 90), 24(4):207–214, 1990.

[4] Chet S. Haase and Gary W. Meyer. Modeling pigmented materi-
als for realistic image synthesis. InACM Transactions on Graphics,
11(4):305–335, 1992.

[5] Christopher G. Healy, Laura Tateosian, James T. Enns, andMark
Rempel. Perceptually-based brush strokes for non-photorealistic vi-
sualization. InACM Transactions on Graphics, 23(1):64–96, 2004.

[6] Aaron Hertzmann. Painterly rendering with curved brush strokes of
multiple sizes. InProc. of SIGGRAPH 98, pages 453–460, 1998.

[7] Hye-Sun Kim, Hee-Jeong Jin, Young-Jung Yu, and Hwan-Gue Cho
Creating pen-and-ink illustration using stroke morphing method. In
Proc. of Computer Graphics International 2001, pages 113–120, 2001

[8] Peter Litwinowicz. Processing images and video for an impressionist
effect. InProc. of SIGGRAPH 97, pages 407–414, 1997.

[9] Victor Ostromoukhov and Roger D. Hersch. Multi-color andartistic
dithering. InProc. of SIGGRAPH 99, pages 425–432, 1999.

[10] Joanna L. Power, Brad S. West, Eric J. Stollnitz, and David H. Salesin.
Reproducing color images as duotones. InProc. of SIGGRAPH 96,
pages 237–248, 1996.

[11] Rie Matsubara and Takako Miyoshi. Pleasant colored pencil - Any-
body can easily draw. Nagaoka Publications, 1998.(in Japanese)

[12] David Rudolf, David Mould, and Eric Neufeld. Simulatingwax
crayons. InProc. of Pacific Graphics 2003, pages 163–175, 2003.

[13] Michael P. Salisbury, Sean E. Anderson, Ronen Barzel, and David
H. Salesin. Interactive pen-and-ink illustration. InProc. of SIG-
GRAPH 94, pages 101–108, 1994.

[14] Michio Shiraishi and Yasushi Yamaguchi. An algorithm for automatic
painterly rendering based on local source image approximation. In
Proc. of NPAR 2000, pages 53–58, 2000.

[15] Mario C. Sousa and John W. Buchanan. Observational models of
graphite pencil materials. InComputer Graphics Forum, 19(1):27–
49, 2000.

[16] Saeko Takagi, Issei Fujishiro, and Masayuki Nakajima. Volumetric
modeling of artistic techniques in colored pencil drawing. In Proc. of
Pacific Graphics 99, pages 250–258, 1999.

[17] Julius T. Tou and Rafael C. Gonzalez. Pattern recognition principles,
Addison-Wesley, Reading, MA, 1974.

[18] Shigefumi Yamamoto, Xiaoyang Mao, and Atsumi Imamiya. Colored
pencil filter with custom colors. InProc. of Pacific Graphics 2004,
pages 329–338, 2004.

[19] Corel. Corel Painter.
[20] Adobe Systems. Adobe Photoshop.
[21] http://fweb.midi.co.jp/˜burunyan/download/

(a) (b) (c)

Figure 10: The input images, (a) a doll, (b) a bag, and (c) flowers.

(a) (b)

(c) (d)

Figure 11: The resulting colored pencil images, (a) a doll, (b) a bag, (c) flowers created using the proposed method, and (d) flowers created
using the gradient-based method.

