
Noname manuscript No.
(will be inserted by the editor)

A Fast Method for Simulating Destruction and the
Generated Dust and Debris

Takashi Imagire · Henry Johan · Tomoyuki Nishita

Received: date / Accepted: date

Abstract Simulating the destruction of objects due to
collisions has many applications in computer graphics.
Previous methods on the destruction of objects per-
form physically-based simulation of the fracture of ob-
jects into relatively large size fragments. However, if we
observe the process of the destruction of objects, we
can see that dust and fine debris are also generated. In
particular, previous methods do not take into account
the dust generation. In this paper, we present a unified
framework for simulating destruction and the generated
dust and various sizes of debris. Our method simulates
destruction on three different scales: coarse fracture,
fine debris and dust. We compute the distribution and
the amount of fine debris and dust based on the frac-
ture energy which is the energy that causes the object
to be fractured. We demonstrate the effectiveness of the
proposed method, in terms of the generated effects and
the simulation speed, by showing the simulation results
of destruction caused by the collision between objects.

Keywords destruction simulation · fine debris · dust
generation · voronoi diagram

1 Introduction

Simulating the destruction of objects is important in
order to increase the realism in computer graphics ap-

Takashi Imagire

The University of Tokyo and Namco Bandai Games Inc.
E-mail: imagire@nis-lab.is.s.u-tokyo.ac.jp

Henry Johan
Nanyang Technological University

E-mail: henryjohan@ntu.edu.sg

Tomoyuki Nishita
The University of Tokyo

E-mail: nis@nis-lab.is.s.u-tokyo.ac.jp

plications such as games. Several physically-based sim-
ulation methods that generate impressive results have
been proposed. These methods simulate the destruction
by breaking the objects into fragments. These methods,
however, have a high computational cost. Moreover, the
scale of destruction that can be handled by these meth-
ods ranges from several cm to several mm. On the other
hand, in real destruction, fine debris and dust that con-
sists of very fine particles in the range of several µm are
also generated. Up to now, there are methods for visu-
alizing dust but there is no method for generating dust
due to the destruction of objects.

In this paper, we present a fast method to simu-
late destruction caused by the collision between objects.
Different from previous methods [1,2], our method can
efficiently generate dust and debris of various sizes. We
propose a simulation on three different scales. First, we
compute the destruction at a coarse scale based on the
Extended Distinct Element Method (EDEM) [3]. To
perform the simulation using the EDEM, each object is
represented as a set of elements and nearby elements are
connected using springs. Fracture is computed based on
the physics-based simulation of the springs between the
elements. Second, for each EDEM element, we compute
the fracture energy that breaks it. Based on this energy,
we determine the maximum size of the debris. If the
maximum size is smaller than the EDEM element, we
break the EDEM element into several smaller debris.
In this case, we compute the location and the velocity
of the debris based on those of the EDEM element. We
simulate debris smaller than the EDEM elements us-
ing a particle simulation method. Third, the amount of
dust is also computed based on the fracture energy. We
simulate dust by performing fluid simulation. Our main
contribution is the generation of dust and debris based
on the fracture energy. For the destruction at a coarse

2

level, we can use methods other than EDEM as long as
the fracture energy can be computed.

For visualization, we also perform the rendering in
three different scales. First, we compute the 3D Voronoi
diagram where the center of the EDEM elements cor-
responds to the Voronoi site. Based on the Voronoi
faces, we create a mesh for each EDEM element. These
meshes are rendered during the simulation. We pro-
pose an efficient method to render these meshes using
the GPU. Second, when an EDEM element breaks into
small debris, we use the scale-down version of its mesh
to render the results of the particle simulation. This
allows us to render small debris efficiently. Third, we
adopt the technique for rendering smoke to visualize
the dust.

This paper is organized as follows. In Section 2, we
review the previous work. In Section 3, we describe the
proposed method. In Section 4, we explain the details
for implementing our method. Experimental results are
shown in Section 5. We conclude and discuss about the
possible future work in Section 6.

2 Related Work

In this section, we describe the previous work in de-
struction simulation, the relationship between fracture
energy and the resulting debris, as well as dust and
smoke generation.

2.1 Destruction Simulation

There is a large number of excellent existing research on
the subject of destruction simulation. Terzopoulus and
Fleischer [1] used a spring model to simulate physically-
based fracturing for application in computer graphics.
Norton et al. [4] simulated fracturing by calculating
the stress inside an object according to a spring model.
Smith et al. [5] achieved a high-speed computation of
fracturing by precalculating the fracture faces of the
object. Müller et al. [6] used a finite element method to
compute physically-based fracturing of objects in real-
time.

For representing small debris, the method by Zhang
et al. [7] used fine tetrahedral subdivision to create
the fragments. However, the computational cost of this
method to generate extremely fine debris and dust is
very high.

2.2 Fracture Energy and Debris Size

The research on the distribution of debris size after
crushing an object has been done for a very long time.

Rosin and Rammler [8] performed crushing experiments
using a tube mill and sorted the resulting coal frag-
ments through a sieve to determine their size distri-
bution. Gaudin [9] and Schuhmann [10] also proposed
distribution functions applicable to the comminution
production of minerals.

Objects will break into smaller fragments when they
are crushed with more energy. Some famous laws gov-
erning the relation between the crushing workload and
the debris size have been proposed by Rittinger [11],
Kick [12] and Bond [13]. The Bond work index has been
used widely in estimating the energy requirements of
mineral grinding. In our research, we use these results
to estimate the distribution of dust and small debris.

2.3 Dust and Smoke Generation

Chen et al. [17] presented a method to generate dust
caused by the pressure of the moving air behind a trav-
eling vehicle. On the subject of smoke generation, there
are work on fuel combustion that takes the underlying
chemical reactions into account [15,16]. However, these
methods cannot be applied to generate dust resulting
from the destruction of objects.

3 Proposed Method

We model the destruction of objects by combining three
different scales of simulation. Below, we describe the
characteristics of each scale of the simulation and the
rendering method.

3.1 Destruction at Coarse Scale

We consider the destruction of object due to mechani-
cal impact. For the coarse scale simulation, we use an
extension of the Distinct Element Method or the Dis-
crete Element Method (DEM) [18,19] designed to solve
the dynamic behavior of objects, called the Extended
Distinct Element Method (EDEM) [3]. In DEM, ob-
jects are represented by a set of elements and by solv-
ing the equation of motion describing the interaction of
the elements, the behavior of the entire system is calcu-
lated. Interaction in DEM is modeled by contact force
due to linear springs that exhibit a repelling force when
compressed by the elements, as well as dashpots which
provide damping of the relative velocity.

EDEM introduces connecting force due to pore springs
in addition to the contact force (see Figure 1). The pore
springs simulate the effect of a gap-filling material such
as mortar. Neighboring elements are connected by pore

3

I J

JI
JI

JI
p

cn
ct

Contact force

Pore spring

F

F

F

Fig. 1 The force between two EDEM elements.

springs. Due to the force of the pore springs, the object
retains its original shape. The pore springs disappear
when the connected elements move farther apart than
a certain distance or differ in orientation more than a
given threshold due to an external force. This repre-
sents a situation when a spring is broken and fracture
is taken place.

3.1.1 Initialization of EDEM elements

We define the EDEM elements as spheres of radius r.
To arrange the EDEM elements inside the object, we
use the following method.

1. Represent the original object as a closed surface
model.

2. Arbitrarily arrange the EDEM elements inside the
object. The elements are allowed to overlap at this
point.

3. Move the elements by performing the EDEM simu-
lation (see Section 3.1.2). However, we only consider
the contact force in this simulation.

4. Perform collision detection between the object’s sur-
face and the elements, making sure that the ele-
ments always stay inside the object.

5. Repeat (3)-(4) until the elements are stabilized.
6. Construct a Delaunay diagram from the set of el-

ements and put the pore springs on the Delaunay
edges that connect the elements.

3.1.2 EDEM Simulation

The position xI and velocity vI of element I can be
found using Newton’s equation of motion as follows:

M
dvI

dt
=

∑
J∈contact

Fc
JI +

∑
K∈pore

Fp
KI + Mg, (1)

dxI

dt
= vI . (2)

Here, g is the gravitational vector, Fc
JI is the contact

force, Fp
KI is the force due to the pore springs and M is

the element’s mass. contact contains elements {I, J} if
they are closer than 2r, the diameter of a single element,
while pore contains a pair of elements {I,K} when they
are connected by a pore spring.

The contact force Fc
JI is made up of a normal com-

ponent Fcn
JI and a tangential component Fct

JI . Fc
JI =

Fcn
JI + Fct

JI . The normal direction is defined as a di-
rection towards the center of a pair of elements {I, J}
and the tangential direction points towards a plane per-
pendicular to the normal. The normal component of
the contact force between elements I and J is given by
Fcn

JI = −kcn∆xcn
JI−ηcnvcn

JI . Here, kcn, ηcn are the linear
spring’s spring constant and the dashpot’s decay con-
stant, respectively. ∆xcn

JI is the change in the normal
direction for the pair of elements {I, J} in a position
where they are not in contact. vcn

JI is the normal com-
ponent of the relative velocity vector. The tangential
component of the contact force between elements I and
J is given by Fct

JI = −ηctvct
JI , where vct

JI is the change
of the relative speed vector subtracted the normal com-
ponent of the change.

The force due to the pore springs, Fp
KI , is defined

as a restoration force to keep the shape of the object.
The restoration force in each element is caused in the
direction opposite to the change of a relative position
with another element, Fp

KI = −kp∆xKI . Here, ∆xKI

represents the changes of the relative position with re-
spect to the initial state and kp is a pore spring’s spring
constant

Finally, we also need to handle the interaction with
other objects. Planes like the ground are represented
using a polygon mesh and the contact force between
the EDEM elements of the simulated objects and these
polygons are used to calculate the behavior of the ob-
jects. Other objects are modeled using a single EDEM
element or a set of EDEM elements connected by pore
springs. The collision response between EDEM objects
are based on the contact force, not by the force of the
pore springs.

3.2 Fine Debris Generation and Simulation

To generate fine debris using the EDEM simulation, we
must set the size of the EDEM elements to be very
small. This approach is not practical because it results
in an extremely large number of elements, making it
difficult to realize fast simulation. To efficiently gen-
erate fine debris, we break the EDEM elements into
several debris when the energy that causes the fracture
is big. We then use the particle simulation method [20]
to simulate the debris.

In order to determine whether the EDEM elements
break into fine debris, we introduce fracture energy.
We define the fracture energy WI corresponding to the

4

EDEM element I as the energy of the pore spring.

WI =
∑

K∈pore

kp

2
∥ ∆xKI ∥2, (3)

where ∥ · ∥ is the Euclidean norm of a vector.
We used the Bond’s law [13], well-known as a mea-

surement of the work index representing crushing ef-
ficiency, to calculate the fineness of the debris result-
ing from objects broken by fracture energy. The Bond’s
law expresses the work W required to fracture an ob-
ject of size Rf into debris of size Rmax with the formula
W = CB

(
1/

√
Rmax − 1/

√
Rf

)
, where CB is a constant

coefficient. The second term on the right side of the
equation can be ignored if the initial size of the object
before fracturing is considered to be infinite. Therefore,
following the Bond’s law, the maximum size Rmax of
the debris produced during the destruction can be de-
termined from a work WI that causes the destruction:

Rmax = (CB/WI)
2
. (4)

In our method, we consider the EDEM element I to
be broken when Rmax, the maximum fragment size due
to the fracture energy, is smaller than the EDEM ele-
ment’s size r.

Broken elements are taken out of the EDEM simula-
tion and inserted into the particle simulation as multi-
ple debris. We determine the size of the debris based on
the Gaudin−Schuhmann distribution [9,10], which is
widely used in mineral crushing. The Gaudin−Schuhmann
distribution expresses the distribution of the debris size
of a crushed object as the retained weight fraction [%]
of debris smaller than Rmax with the formula URmax =
100 (Rmax/Re)

m, where debris size modulus Re and de-
bris size distribution modulus m depend on the mate-
rial. m takes on values of 1.0 or less.

We assume that the element I is broken into N

pieces of debris where N is the number of faces on the
mesh that corresponds to the element I (see Section
3.4). The size of the n-th debris out of a total of N

debris is calculated as follows (see Appendix A):

R =

(
(N − n)R−(3−m)

dust + nR
−(3−m)
max

N

)−1/(3−m)

, (5)

where Rdust is the size of debris that considered as dust
particle (in the range of several µm).

In the particle simulation, debris is treated as point
entities without size. The initial position of the debris
is at the center of the original element and its veloc-
ity is given by adding a relative velocity to the original
element velocity. The direction of the relative velocity
is set such that the particles are scattered in different
directions from each other. Specifically, the normal vec-
tors of the faces on the mesh that corresponds to the

element (see Section 3.4) are used as the directions of
the relative velocities. The relative speed of the debris
is calculated as the speed of the original element mul-
tiplied by a user-specified value. In this way, we can
represent the scattering of debris when an element is
broken into small pieces. To visualize the debris, we
use the scaled-down mesh of its corresponding EDEM
elements.

3.3 Dust Generation and Simulation

When an EDEM element is broken, we determine the
density of the dust by estimating the amount of dust
particles. We consider debris smaller than Rdust to be
dust particles. When determining the distribution of
debris size using the Gaudin−Schuhmann distribution,
for a maximum debris size Rmax, the ratio of debris
smaller than Rdust is given by the following formula:

P = URdust
/URmax = (Rdust/Rmax)m

. (6)

The ratio of dust P generated by the fracture energy
WI is calculated from Eq. (4) and (6) as follows:

P = C W 2m
I . (7)

We determine the values of the coefficient C = (Rdust/C2
B)m

and the particle size distribution modulus m from ex-
periments.

We simulate the generated dust using a grid-based
fluid simulation method [14]. We calculate the amount
of dust in proportion to Eq.(7) and add that amount
to the density field at the grid cell nearest to the cen-
ter of the corresponding EDEM element. We set the
fluid’s velocity at the grid cell to be the velocity of the
corresponding EDEM element.

3.4 Visualization of the EDEM Simulation

In the EDEM simulation, objects are represented as a
set of EDEM elements. After we arranged the EDEM el-
ements inside the object (Section 3.1.1), for each EDEM
element, we compute a mesh that represents the region
inside the object corresponding to this EDEM element.
We compute the mesh as follows.

1. Calculate a 3D Voronoi diagram with the center of
the elements as Voronoi sites (see Figure 2(a)).

2. Create a mesh for each element from its Voronoi
faces (see Figure 2(b)).

When rendering each mesh based on the position
and the orientation of its corresponding EDEM element
I, cracks may appear between the meshes even if the
elements only move slightly (see Figure 3). To elimi-
nate this problem, when a pore spring is still intact

5

(a) The Voronoi diagram. (b) The generated meshes.

Fig. 2 The Voronoi diagram and the meshes generated from it.
The meshes are slightly scaled down to show their structure more
clearly.

Fig. 3 Meshes rendered using only the position and the orienta-
tion of the corresponding elements. Cracks between the meshes
appear even when their corresponding elements move only by a

small offset.

between two elements, the corresponding meshes are
displayed as being smoothly connected and only when
a spring is removed we render the meshes as a separate
disconnected parts. This way, no cracks occur in the
visualization.

Specifically, the following formula is used to obtain
pA, the coordinates of vertex A of the mesh that be-
longs to element I:

pA =
∑

J∈ΩA

ωJ
AxJ/

∑
I∈ΩA

ωJ
A. (8)

Here, ΩA is the set of EDEM elements whose meshes
share the vertex A, xJ is the position of element J and
ωJ

A is a weight whose value is one or zero depending
on whether or not there is a pore spring connecting
elements J and I. The value of ωI

A is one.

4 Implementation

In this section, we describe the implementation details
of each scale of the simulation and the visualization
method.

4.1 EDEM Simulation

We perform the EDEM simulation on the CPU. In the
EDEM simulation, in order to quickly detect which el-
ements are affected by the contact force, we subdivide
the space into a uniform grid where the grid size is

set to the elements’ diameter. We store each element
in the grid cell corresponding to its center and per-
form intersection tests only against other elements in
the corresponding grid cell or one of its surrounding
cells, checking a total of 27 grid cells. To enable fast
lookup of elements connected by a pore spring, each
element stores the indices of its connected pairs.

The integration through time is accomplished through
the following steps:

1. Calculate the external force of gravity etc.
2. Move the elements using the external force.
3. Move the elements using the contact force.
4. Move the elements using the pore springs force.
5. Perform collision detection and response with other

EDEM objects.
6. Perform collision detection and response with polyg-

onal objects forming the floor.

4.2 Particle Simulation

We perform the particle simulations of small debris on
the CPU. When an EDEM element is determined to
have been broken, a number of particles correspond-
ing to the number of Voronoi faces are created. During
the particle simulation, for performance reasons and for
saving memory, particles are displayed by rendering the
scaled-down version of the mesh of their corresponding
EDEM elements. The scaling coefficients are computed
by dividing the values of Eq.(5) and the diameter of the
EDEM elements.

4.3 Dust Simulation

We use a grid-based fluid simulation method imple-
mented on the GPU [14] to calculate the fluid’s velocity
and density fields. When an element breaks due to the
fracture energy in the EDEM simulation, the amount
of dust to be generated is calculated using Eq.(7) and
inserted into the fluid simulation by adding density to
the corresponding grid cell. Furthermore, by adding an
animated noise function [21], we achieved more realistic
images.

4.4 Visualization of the EDEM Simulation

As mentioned in Section 3.4, we compute a mesh for
each EDEM element. We propose the following GPU-
based method to efficiently render these meshes.

During rendering, when processing the vertices of
the mesh, the relative coordinates from the center of
the adjoining EDEM elements to the vertex position are

6

I

J

K

A

I

A

J

A

K
d

A d

Relative

coordinates

Elements

Vertex

d

Fig. 4 The relative coordinates for the vertex A.

required for each vertex (see Figure 4). Since an EDEM
element may be accessed from several vertices, we store
the elements’ position and orientation in a texture in
graphics memory in order to retrieve them efficiently
by sampling the texture during vertex processing.

Additionally, we also need to know whether or not
the adjoining elements for a given vertex are connected
by pore spring. We assume that every tetrahedron in
the Voronoi diagram’s dual graph, the 3D Delaunay
diagram, has a set of points in a general position; that
is, no four points are on the same plane and no five
points are on the same sphere. Then, the vertex of a
mesh corresponds to the center of mass of a tetrahedron
in the Delaunay diagram or a vertex on a face at the
surface of the object, therefore they are equidistant to
at most four EDEM elements. Consequently, we create
a texture of the same size as the number of vertices
called the weight texture and store at each texel the
connectivity information of the four elements belonging
to the corresponding vertex, one for each of the four
available channels (RGBA).

When the pore spring disappears between a pair of
elements {I, J} in the EDEM simulation, the weight
texture is updated at the texels corresponding to the
vertices of the polygon created from the Voronoi face
between the Voronoi sites represented by elements I

and J . This way, only a small amount of data needs to
be sent to the GPU, enabling efficient rendering. When
there are less than four elements equidistant from a
given vertex, the remaining weight values can be set to
zero in the weight texture.

Specifically, the vertex processing consists of the fol-
lowing steps (see Figure 5):

1. Fetch the positions and the orientations of the ad-
joining elements using the indices of the adjoining
elements.

2. Sample the weight texture to determine whether ad-
joining elements are connected.

3. Calculate the vertex position from the relative co-
ordinates to the adjoining elements using Eq.(8).

4. Perform perspective transformation to calculate the
screen coordinates.

1

Element index 2
2
I

Element index 3
3
I

Element index 4
4
I

Element index 1
1
I

Vertex data for A

Relative coordinates 2

Relative coordinates 3

Relative coordinates 4

Relative coordinates 1

1

Texture coordinates t

Normal n

R
G
B
A

A

Fetch weight texture

Blend

Perform perspective

Fetch position and

Compute matrix

Transform

Shading

Texture

Pixel Processing

∑

∑

=

== 4

1

4

1

n

I

A

n

A

I

II

A
A

n

n

nn

w

dMw

x

)(### III
qRTrM =

A

I

I
dM

#

#

A

Id 1

A

Id 2

A

Id 3

A

Id 4

1I
Aw

orientation of elements

Position

Orientation

1)

2)

3)

4)

#ITr
#Iq

2I
Aw

4I
Aw3I

Aw

sampling

transformation

Fig. 5 Vertex data and the flow of computation.

Fig. 7 The destruction of two fragile objects.

Table 1 Performance under various settings.

320×180 640×360 960×540 1280×720

fps 9.0 8.9 8.9 8.8

(a) Screen resolution

128 256 512 1024 2048

fps 11.0 10.7 10.7 10.6 8.8

(b) Number of EDEM elements

83 163 323 643

fps 9.1 9.1 9.0 8.8

(c) Resolution of fluid simulation

128 256 512 1024 2048

fps 320 160 75 30 9.1

(d) Number of EDEM elements (without rendering)

5 Results

We used a machine with an Intel Core 2 Extreme X6800
2.93GHz and a NVIDIA GeForce 8800 GTX in the
experiments. To accelerate the EDEM simulation, we
made use of the dual core architecture of the CPU by
implementing the EDEM using the OpenMP. As the
graphics API, we used Direct3D 10. The screen reso-
lution was 1280×720. The resolution of the simulation
domain for dust (fluid) simulation was 643.

Figure 6 shows the results of the proposed method.
A rigid ball coming from the back of the scene breaks
through a wall. The wall has 2048 EDEM elements. The

7

(a) (b)

(c) (d)

Fig. 6 The destruction of a wall due to a rigid ball can be seen in (a)-(c). We can see the effects of dust and various sizes of debris.
In (d) we can see the EDEM elements.

radius r of the EDEM elements is 1.7×10−2. Here, the
height, the width and the depth of the wall are 1.0, 1.0
and 8.0×10−2, respectively. The rigid ball is represented
using one EDEM element with a large radius. The size
Rdust of a maximum dust particle is 1.0 × 10−6. When
the rigid ball collides with the wall (see Figure 6(a)-
(c)), the interaction between the ball and the EDEM
elements of the wall is computed through the contact
force. Figure 6(d) shows the EDEM elements of Figure
6(b). In this experiment, the rigid ball destructed a part
of the wall and various sizes of debris and dust were
generated. In this simulation, we achieved 0.5 fps. If we
do not use the advected textures [21] during the dust
simulations, the performance is up to 8.8 fps.

Table 1 shows the performance when the resolution
of screen (a), the number of elements (b) and the resolu-
tion of the fluid simulation (c) are changed. We can see
that both the processing loads of the simulation and of
the rendering are high since the values hardly change. If
we turn rendering off, the performance is proportional
to the number of the EDEM elements (see Table 1(d)).
This shows that the rendering is the bottleneck when
the number of the EDEM elements is low.

Figure 7 shows other result of destruction simulation
of two fragile objects. The wall and the ball are com-
posed of 2048 and 256 EDEM elements, respectively.
Different from the results in Figure 6, in this experi-
ment, the ball crumbles after the collision.

Figure 8 shows other result of destruction simulation
of a column due to a rigid ball. The column is composed
of 2048 EDEM elements.

6 Conclusion

We have presented a fast method for destruction sim-
ulation due to the collision between objects. Different
from previous approaches, our method is able to gener-
ate the effects of dust and various sizes of debris. In or-
der to generate these effects, we perform the simulation
on three different scales. Firstly, we compute the coarse
scale fracture on the objects based on the EDEM. Sec-
ondly, based on the fracture energy, we predict the size
distribution of the debris and use particle simulation
to animate fine debris. Thirdly, we use the fracture en-
ergy to determine the amount of the generated dust and
perform fluid simulation to animate the dust. Through
experimental results, we have shown that our method
can render destruction phenomena with wide range of
effects. In addition, our method achieved interactive
frame rates for the simulation involving moderate num-
ber of EDEM elements. The proposed dust and debris
generation can be combined with other destruction sim-
ulation methods such as [6].

Our method can be extended in several ways. One
would be the fast simulation of destruction involving ex-
plosive materials. In our current method, we do not take
the temperature of the surrounding into account. How-

8

(a) (b)

Fig. 8 The destruction of a column due to a rigid ball.

ever, in the presence of explosive materials, we must
be able to handle the rise in the temperature and also
the shockwave. As mentioned above, for a moderate
number of EDEM elements, our current implementa-
tion achieves interactive frame rates. To model a larger
scene with a large number of EDEM elements or to ap-
ply our method in real-time application such as games,
we still need to further accelerate the simulation.

References

1. Terzopoulos D., Fleischer K.: Modeling inelastic deformation:

viscolelasticity, plasticity, fracture. Proceedings of the 15th
Annual Conference on Computer Graphics and Interactive
Techniques, 269–278, (1988).

2. O’Brien J., Hodgins J.: Graphical modeling and animation of
brittle fracture. Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques, 137–146,

(1999).
3. Meguro K., Hakuno M.: Fracture analyses of concrete struc-

tures by the modified distinct element method. Structural
Eng./Earthquake Eng., JSCE 6, 2, 283–294, (1989).

4. Norton A., Turk G., Bacon B., Gerth J., Sweeney P.: Anima-
tion of fracture by physical modeling. The Visual Computer
7, 4, 210–219, (1991).

5. Smith J., Witkin A., Baraff D.: Fast and controllable simula-
tion of the shattering of brittle objects. Computer Graphics
Forum 20, 2, 81–91, (2001).

6. Müller M., McMillan L., Dorsey J., Jagnow R.: Real-time sim-
ulation of deformation and fracture of stiff materials. EU-

ROGRAPHICS 2001 Computer Animation and Simulation
Workshop, 27–34, (2001).

7. Zhang N., Zhou X., Sha D., Yuan X., Tamma K., Chen B.: In-
tegrating mesh and meshfree methods for physics-based frac-
ture and debris cloud simulation. Symposium on Point-based
Graphics, 145–154, (2006).

8. Rosin P., Rammler E.: The laws governing the fineness of pow-
dered coal. J. Inst. Fuel 7, 31, 29–36, (1933).

9. Gaudin A.: An investigation of the crushing phenomena.
Petrolenm Development and Technology 73, 253–316, (1926).

10. Schuhmann R.: Principles of comminution: I, size distribu-
tion and surface calculations. AIME Technical Publication,

1189, (1940).
11. von Rittinger P.: Lehrbuch der aufbereitungskude. Berlin:

Ernst and Korn (1867).
12. Kick F.: Das Gesetz der proporionalem Widerstand und seine

Anwending. Felix, Leipzig, (1885).

13. Bond F.: The third theory of comminution. Trans. AIME
193, 2, 484–494, (1952).

14. Crane K., Llamas I., Tariq S.: Real-time simulation and ren-
dering of 3D fluids. GPU Gems 3 2007, 633–675, (2007).

15. Stam J., Fiume E.: Depicting fire and other gaseous phe-
nomena using diffusion processes. Proceedings of the 22nd An-

nual Conference on Computer Graphics and Interactive Tech-
niques, 129–136, (1995).

16. Nguyen D., Fedkiw R., Jensen H.: Physically based modeling
and animation of fire. Proceedings of the 29th Annual Con-
ference on Computer Graphics and Interactive Techniques,

721–728, (2002).
17. Chen J., Fu X., Wegman E.: Real-time simulation of dust

behavior generated by a fast traveling vehicle. ACM Trans-
actions on Modeling and Computer Simulation 9, 2, 81–104,

(1999).
18. Cundall P., Strack O.: A discrete numerical model for gran-

ular assemblies. Geotechnique 29, 1, 47–65, (1979).
19. Bell N., Yu Y., Mucha P.: Particle-based simulation of

granular materials. Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
77–86, (2005).

20. Reeves W.T.: Particle system - a technique for modeling a

class of fuzzy objects. Computer Graphics 17, 3, SIGGRAPH
83, 359–376, (1983).

21. Neyret F.: Advected textures. Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Anima-

tion, 147–153, (2003).

A Calculation of Debris Size

We calculate the size of the nth debris in a group of N debris
based on the Gaudin−Schuhmann distribution. Assuming that
the debris are spheres with radius R and constant density ρ, the

total mass M of the N debris can be written as follows.

M =

N∑
n=1

ρ
4π

3
{R(n)}3 →

∫
ρ
4π

3
R(n)3dn. (9)

The right-hand side was obtained by taking the continuous limit
assuming that N is very large.

When the debris size follows the Gaudin−Schuhmann dis-
tribution, 100

(
R
Re

)m
∝
∫

ρ 4π
3

R(n)3dn. By differentiating both

sides and solving this expression for R, we get R = (R0 + R1n)−1/(3−m),

where R0, R1 are constant coefficients. The coefficients are cal-
culated, assuming the debris size to be Rdust at n = 0 and Rmax

at n = N . The size of the nth debris can finally be obtained in
the form of expression (5).

