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ABSTRACT

A method for creating realistic images is proposed from the view point of displaying simulation
results when designing a building in which various weather conditions are taken into account.

So far, in order to create realistic images for interior design, the concept of radiosity as ambient
light including spectral distribution has been developed. The method can display not only the
brightness but also the hue and saturation of color. In contrast, for designing a building sky light
has been treated as ambient light, in which the brightness under various weather conditions could
be calculated, but the influences on the hue and saturation of color were ignored.

The proposed method creates realistic images considering the brightness, hue and saturation under
various atmospheric conditions by taking into account the spectral distribution of both direct
sunlight and sky light. Views of buildings including the influences of the particles in the atmosphere,
i.e. clouds, fog, and beams, are useful for design not only of new buildings but also of new city
areas.

Key Words: Sky Light, Specular Reflectance, Atmospheric Scattering Model, Visual Environ-
ment, Building Design

1 INTRODUCTION

There are two approaches for rendering images: one is displaying realistic images for entertainment
and art, and the other is displaying simulation results for environmental assessment and building
design. We take the latter approach in this paper.

For designing and pre-evaluating a building, it is particularly desirable to display not only the fig-
ures of the completed building but also its images with the surroundings under various atmospheric
conditions. A building has its own attributes such as color and reflection. However when it is lit
by the sunlight under various atmospheric conditions, the hue of the building changes greatly, as
well as its brightness and saturation, caused by various influences such as spectral distribution and
intensity of light sources (direct sunlight and sky light in our applications) which are determined
by the position of the sun and atmospheric conditions, and the relationship between the position
of the building and the various objects obscuring it.

We propose here a method for displaying realistic images of 3-D objects, i.e. buildings, and particles
in the atmosphere, i.e. cloud and haze, under various atmospheric conditions taking account of
the spectral distribution of direct sunlight and sky light as an ambient light source.

Both direct light and ambient light should be taken into account in order to simulate lighting effect
for environmental assessment, and so far the following methods have been developed.
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For direct light, in the 1970s, a parallel light source was usually used. In the 1980s, methods
for shading and shadowing 3-D objects lit by various artificial light sources such as a point light
source [Nishita 85a], a linear light source [Nishita 85a], an area light source [Nishita 83], etc. were
developed by the authors. In 1987, Klassen [Klassen 87] proposed a method for displaying the
color of the sun and the hue of the sky taking into account both scattering and absorption of
the sunlight due to air molecules and aerosols in the atmosphere. Inakage [Inakage 89] improved
Klassen’s method by approximating geometric optics for large particles such as raindrops, but the
method is inadequate to generate realistic images for visual assessment because of not taking into
account sky light and specular reflectance.

For ambient light, in the 1970s, the methods of adding either an uniform ambient light to the light-
ing model or a secondary light source coincident with the viewpoint was employed. In order to
calculate exactly ambient light inside a room, Cohen et al. [Cohen 85] and the authors [Nishita 85b]
proposed a method considering the inter-reflection of light, so called radiosity. In the former the
phenomenon of color bleeding can be rendered, i.e., not only brightness but also hue and satura-
tion of color are taken into account. Furthermore, Immel et al. Immel 86] and Kajiya [Kajiya 86]
developed a method considering specular reflectance, and Rushmeier et al. [Rushmeier 87] gener-
alized the radiosity method for displaying beams of light due to particles in the atmosphere in a
room. On the other hand, for ambient light in the open air the authors [Nishita 86] proposed a
method for shading and shadowing taking into account of sky light. This method, however, only
can display the brightness under various weather conditions, without the influences on the hue and
saturation of color caused by spectral distribution of sky light.

Here a method for creating realistic images of outdoor 3-D objects such as buildings and streets
considering specular reflection is proposed. In our proposed method, based on Klassen’s model, the
colors of the sun and sky, calculated by using the atmospheric scattering model and the spectral
distribution of sunlight, are employed for direct sunlight and sky light. Ways to display not only
shading and shadowing but also beam and fog effects caused by the direct sunlight and sky light
with spectral distributions are described. The proposed method can create outdoor images taking
account of hue, brightness, and saturation.

Further an improvement to Klassen’s model concerning calculation of the color of the sun and sky
is described in the next section. Rendering 3-D objects and clouds lit by direct sunlight and sky
light are the topics of Section 3 and Section 4, respectively, and beam and fog effects are discussed
in Section 5.

2 IMPROVEMENT OF THE ATMOSPHERIC SCATTERING MODEL

It is well known that sunlight is scattered or absorbed by the ozone layer, air molecules, and
aerosols, as it passes through the atmosphere. Generally speaking, for visible wavelengths of light,
absorption in the ozone layer is negligible compared with absorption by air molecules and aerosols.
For particles small compared with the wavelength of the light, i.e. air molecules, Rayleigh scattering
predominates. On the other hand, for large particles of a size larger than the wavelength of the
light, i.e. aerosols, Mie scattering predominates.

In Klassen’s atmospheric scattering model the distribution of Rayleigh particles is divided into
two layers with uniform distributed particles in each layer. In fact, the density of air molecules
decreases exponentially with altitude. Then, taking into account the density ratio of air molecules
to the standard atmosphere (molecular density at sea level,) the light reflected due to Rayleigh
scattering is calculated. The molecular density ratio p depends on the altitude h and is given by

p= exp(—Hio), (1)
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Figure 1: Subdivision of the sky dome into band sources (P : calculation point)

where Hy is a scale height (Ho = 7994 [m]), which corresponds to the atmosphere thickness if the
density were uniform.

For calculation of the sunlight scattered by aerosols, in Klassen’s model the aerosols distribute in
a flat layer. When the altitude of the sun is low, i.e. the case of dawn or sunset, the distance
between the sunlight and the calculation point, passing through the atmosphere with aerosols,
becomes infinite. To deal with this problem, the spherical-shell atmosphere model used for the air
molecules mentioned above is used. From the view point of a macro-sized object like the earth,
the density of aerosols decreases exponentially with altitude, like the density distribution of air
molecules does, even though the rate of decrease is different from that of air molecules. The density
can be calculated by setting the scale height, Hy, of Eq. 1 to 1.2km [Sekine 87]. Displaying fog,
in which the density has a different distribution from that mentioned above and is much higher, is
described in Section 5.

3 RENDERING 3-D OBJECTS LIT BY SKY LIGHT

The method for rendering 3-D objects lit by sky light calculated by using the improved atmospheric
scattering model taking account of its spectral distribution is described here.

The sky is taken as a hemisphere light source with a large radius (called the sky dome). The dome
is subdivided into bands in the same way as those of reference [Nishita 86], and in each band the
intensity of light varies in the band axis direction and is fixed at a constant value in the width
direction (See Figure 1). In the case of the diffuse reflectance described in [Nishita 86], the band
width is allowed to be fairly wide and is fixed because of the constant intensity of diffuse reflectance
in every direction. On the other hand, it is well known that the intensity of the specular reflectance
tends to the specified direction. Therefore, in this case a part of the sky dome may be enough for
the calculation of specular reflectance even though the band width is narrow.

3.1 Specular Reflectance due to Sky Light

For calculation of specular reflectance due to sky light, the Cook-Torrance model [Cook 82] is
employed, because of its suitability for rendering metallic objects and the fact that it takes into
account the spectral distribution.
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Figure 2: Specular reflectance due to the sky element

Let’s assume that a sky element, a small area in a band source, is treated as a point light source,
P., and the position of P, is defined by the angle a from the z-axis to the sky element and the
angle § from the horizontal plane to the sky element (See Figure 1). By adding the effect of the
specular reflectance to Eq. 1 in [Nishita 86], the intensity of the specular reflectance at P due to
the sky element is given by the following equation:

dI = R,(,6,V)-L(a,8) -sina-siné-»"%.dA, (2)

where R,(a,6, V) is the coefficient of the specular reflectance, V is the unit vector from the
calculation point P toward the viewpoint, L(a,6) is the intensity of the sky element, » is the
distance PP., and dA is the area of the sky element and is given by

dA = (r-da)-(r-dé-sina). (3)

By integrating Eq. 2, the intensity of the specular reflectance due to the band source S is obtained
as T phi+Ag
I = / / R,(a,8,V)-L(a,8) -siné -sin’ a - dé - da. (4)
o Ja-a;

In such a narrow band as defined above, § — A; < § < § + A, (2A; is the angular width of a
band source), both the intensity of the sky element and the coefficient of the specular reflectance
can be held constant. Then L(a,6) and R,(a,6, V) are expressed by L(a,6;) and R,(a,8,V),
respectively. In this paper, the angle & is sampled as cos(§ — A;) —cos(§; + A;) = 1/N (constant).
Thus, Eq. 4 becomes

L = %/ R,(a,6,,V)-L(a,6,)-sinza-da- (5)
0

Then, the intensity of the specular reflectance due to the sky dome is given by

I1=Y"1, (6)
=1

where N is the number of the band sources.

3.2 Calculation of Specular Reflectance

It is almost impossible to obtain look-up tables like those for the intensity of the diffuse reflectance,
because the coefficient of specular reflectance depends on the direction of the viewing line. Using
the following property of specular reflectance, however, may save calculation time: if the direction
of regular reflection of the sky element P, is almost coincident with the direction of viewing line as
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Figure 3: Determination of the integral region for specular reflectance

shown in Figure 2 (a), the intensity of the specular reflectance toward the viewing line is extremely
large, and if not as shown in Figure 2 (b), much less intensity of specular reflectance due to the
element, P, arrives at the viewpoint. These facts suggest that the intensity of specular reflectance
due to the sky dome can be calculated without any compensation for preciseness by integrating a
part of the sky dome in Eq. 6, that is, with an appropriate integral width and range.

If we define the function to determine the integral range for the sky element P. as follows:
G(a,8,V) = L(e,6) - R,(,6, V) -sina, (7)

and set a threshold value ¢, then the integral range is limited in the regions where G(a,6,V) is
greater than ¢. The integral area cannot be determined a priori, because the function not only
depends on the specular distribution of the lit object but also some objects casting their shadows
on it affect the area. The integral starts from a location where the function has a large value
and proceeds to a small value area, that is, from the sky element in the direction of the regular
reflection to away from the sky element. The details of the integration is as follows (See Figure 3):

(1) Obtain the point, Q, where the direction of the regular reflection for the viewing line intersects
with the sky dome. We assume that the point Q is located between two sample lines of
the band sources 5; and S;y1, where a sample line is defined by the center line of the band
source. Then the tilt angle & of the sample plane which is defined as the plane including the
sample line of the band source, S;, and z-axis is calculated.

(2) Search for the sky element P; which is closest to the point Q along the sample line of the band
source Sj, and calculate the angle a;; between z-axis (PPo) and PP.. If G(au1, 6, V) > e,
then integrate over the band source S; as follows:

(2.1) Execute trapezoidal integration along the sample line from the sky element Pagp, &)
toward one of the end of the line with a pitch da corresponding to the width of a
segment, until the condition, G(ay1,6;, V) < ¢, is satisfied. When a segment of the
sample line is obscured by some objects, the integral of that segment is skipped. The
visible segments are obtained by calculating the intersections of the sample plane and
those objects.

(2.2) Integrate the sample line from the sky element Py(ayy,8;) toward the other end of the
line in the same way as explained in (2.1).
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Figure 4: Scattering due to clouds

(3) For an adjacent band source Sj_i, the process (2) is employed, when G(a1,6;, V) > € at the
border of S;.

(4) Continue the above-mentioned process for the band sources S;_3, S;—3 and so on. If at the P;
which is the closest sample segment to the point @ on the sample line of the band source
S; (i=1-1,1—2,---,1) the condition, G(a1,8;, V) < ¢, is satisfied, then the integral is
suspended.

(5) For the other side of the band sources, Si+1, Si42,+*,Si, "+, SN, the processes from (2) to (4)
are employed until the condition, G(a;1,8;, V) < ¢, is satisfied.

4 CLOUDS

The size of particles in clouds is larger than that of air molecules or of aerosols mentioned before.
Light scattered by large particles such as those in clouds is little influenced by wavelength. However,
the spectral distribution of the sunlight onto clouds depends to a fair degree on the position of
the sun. Therefore, the light passing through a cloud should be determined by the following
three components: i) sky light attenuated by passing through the cloud, ii) light scattered and
absorbed by cloud particles illuminated by direct sunlight, and iii) ambient light caused by multiple
scattering due to atmospheric particles and cloud particles.

For i), the intensity of sky light, I;, toward the viewpoint is obtained by using the before-mentioned
atmospheric scattering model. For ii), the intensity of direct sunlight, I,, is assumed to be constant
everywhere on the face of a cloud because the cloud thickness is much smaller than that of the
atmosphere. Therefore when the distance between the cloud center and the top of the atmosphere
is @, the intensity of direct sunlight on the cloud surface is given by

I, = L(X) exp(—t(Q, A)), (8)

where I,()) is the solar radiation at the top of the atmosphere, and ¢(Q, A) is the optical length of
the distance @ for the wavelength A. For iii), ambient light due to atmospheric particles is obtained
by using the model mentioned before, and ambient light due to cloud particles is assumed to have
uniform intensity for all directions.
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Figure 5: Calculation of the particle density

Finally, the intensity of light just after passing through the cloud, I., taking into account the three
components mentioned above, is obtained by the following equation (See Figure 4):

() = Is(r\)'exp(—t(Si))+/o‘i(fq('\)'F(9)+Ia)-exp(—t(a)—t(s'))~/>c(8)'d8» (9)

where I, is the ambient light, and both the phase function F and the density of the cloud, p.,
are assumed to be uniform. The shape of the cloud is defined by mapping a thickness function
(Fourier series composed of a polynomial of sine waves [Gardner 85]) onto an ellipse.

5 BEAM AND FOG EFFECTS

The space where light passes through atmosphere with vapor and particles brightens, and the
intensity of the light weakens before arriving at the viewpoint, because the light is scattered or
absorbed by these particles.

Displaying beam and fog effects caused by direct sunlight and sky light calculated by using the
atmospheric scattering model is described here.

In Max’s model [Max 86], the particles distribute in a flat layer; however, it is well known that
the density of particles which cause beam or fog, density of vapor and aerosols, decreases in
an exponential or similarway. If the distribution of particles is approximated as an exponential
function, and a unit vector from the viewpoint P (z,,y,,2,) to the point Q is expressed by
V (24,%y,2,), then the particle density at a point R is given by the following equation (See
Figure 5):

z(s)

P(s) = po-exp(===), (10)

where py is the particle density at the altitude of zero meters, hg is a scale height for the particles,
and z(s) = z, + z, - 8, where s is the distance between the points P and R. The attenuation
coefficient, the scattering ratio of light during passing through a unit distance in the atmosphere,
is proportional to the particle density and is given by

(5) = plo) 7o (37, (1)
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where A is the wavelength of incident light, A¢ is a standard wavelength, 7o represents the scattering
coefficient of the standard wavelength with unit particle density, and b is a coefficient decided by
particle size of fog. Then, the optical length, #(s), from the viewpoint P to the point R is obtained
by

ts) = /O'T(s)-ds. (12)

If the distance between P and @ is s’ and the intensity of the surface at Q is Iy, the intensity of
the ray arriving at the viewpoint P is given by

I = Iy -exp(—t(s')) + Z /‘ 7(8) - Jr(8) - exp(—t(s)) - ds, (13)
+ Jo

where Ji(3s) is the light function of the light source k at the viewpoint P and is given by
Ji(8) = Iu(s) - exp(—t;(s)) - F(6(s)), (14)

where I;(s) represents the intensity of the ray arriving at the point R under the condition of no
particles and is calculated by direct sunlight and sky light which are obtained by the atmospheric
scattering model, t}(s) is an optical distance between the light source k and the point R, and
F(0%(8)) is a phase function.

For displaying beams taking into account obstacles, the integration is performed only for vis-
ible sections of light on the viewing line, where the section is obtained by using shadow vol-
umes [Nishita 87]. Integration in the cases of direct sunlight and sky light is described below.

5.1 Direct Sunlight

F(6r(8)) in Eq. 14 has a constant value, because 8,(s) is constant as the direct sunlight is a parallel
light source. Then, Eq. 13 is able to be calculated analytically (See Appendix).

5.2 Sky Light

Beams often appear when direct sunlight with high intensity is passing through particles in the
atmosphere. On the other hand, when the component of sky light is larger than that of direct
sunlight, i.e. in a fog or a mist, the whole atmosphere illuminated by the sky light is brightened.
In the latter case, Eq. 13 must be calculated by using numerical integration because the analytical
integration used for a parallel light source (direct sunlight) cannot be employed. For simplifying
the calculation, we assume the conditions of a uniform phase function and no shadow effects of
obstacles in this case.

The intensity of sky light, Ji(s), arriving at the point P; (See Figure 6) is obtained by integrating
the sky elements along all band sources which the sky dome is divided into, that is,

N x
T(s) = YW [ 1e8) sina - exp(~'(s0) - da, (15)
1=1 0
where N is the number of the band sources, W; is the angular width of the band source I, L(«, )
is intensity of sky light, and ¢'(s;) is a optical distance between the point P; and each sky element.

By introducing the two assumptions described above, Ji(s;) can be expressed by only the function
of the altitude of P;; in other words, the relationship with the « and y coordinates of the point P;

P Y

- N b ) el

-
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and the directions of viewing line and ray may be neglected. Therefore, look-up tables of J(s;)
at every altitude can be created in advance.

Trapezoidal integration is employed for integrating the intensity of the scattered light along the
viewing line. That is, the integral starts from the viewpoint with a pitch, ds;, which is determined
by using the following equation (See Figure 6):

dao
7(8:) - Ju(s:) - exp(—t(s:))

where ds,,;, and ds,,,, are the minimum and maximum pitches, respectively, and dsg is a standard
pitch. The integral is continued until the condition, 7(s;) - Ji(s;) - exp(—t(s;)) < e, is satisfied.

ds; = max(dsmin, min(dsmas,

), (16)

6 EXAMPLES

Figure 7 shows an application to building design. The walls of the building in Figures (a) through
(c) are made of white tiles (which have mainly diffused reflectance), and the material in Figures (d)
through (f) is aluminum (which has almost only specular reflectance). Figures (a) and (d) are the
case of early morning (solar altitude is 8 degrees), Figures (b) and (e) are also in the morning (20
degrees), and Figures (c) and (f) are at sunset (3 degrees). These figures demonstrate not only
the variation in the hue and brightness of the building but also that of the sky color. Figures (a)
through (c) show the variation of the hue of the building due to sun position. Human eyes usually
don’t perceive such a large differences of the hue on the walls, even though actual color varies
as shown in these figures. Because human visual perception takes into account expectations of
color and color difference of various objects in the environment rather than their absolute spectral
distribution, people do not ordinarily notice this type of color shift.

Figures (b) and (e) show that the color of the highlight on the building is mainly influenced by
specular reflectance of the direct sunlight, and Figures (d) through (f) show that except for the
highlight region the hue of the building varies according to the sky light. In Figures (a) through
(¢), the influence of the hue of sky light comes out on the walls whose surface is nearly parallel to
the viewing line, because the more parallel the reflection plane is to the viewing line, the greater
the effects on the specular reflectance component.

It is assumed that in Figure 8, the position of the sun was behind the building. In this figure,
where the sun is in front of the viewpoint, the edges of the clouds are brighter than their central
area because of their thickness. When the sun is behind the viewpoint, on the other hand, as in
Figure 7, the side of the clouds lit by direct sunlight is brighter than the other side.
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Figure 7: Examples of changing color of the building according to the solar altitude and the

material of the walls
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Figure 8: Example of the counter-light
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Figure 9: Examples of beam and fog effects
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Figure 9 demonstrates how fog reacts to direct sunlight as well as sky light and shows the variation
in the appearance of the buildings. In Figure (a), the parameters po and ko (in Eq. 10) are set to
0.59 and 10.0, respectively, so the higher the altitude, the lower the density. On the contrary, in
Figure (b), the parameters pg and hg are set to 0.037 and —15.0, respectively. Figures (c) and (d)
display the silhouette and beam effects. In the former, po, ho, and the sun altitude are 0.16, 80.0,
and 40 degrees, and in the latter, 0.088, 80.0, and 35 degrees. By using IRIS-4D/70GT, it took
about 17 and 20 hours to calculate Figures 8 and 9 (a), respectively.

7 CONCLUSIONS

A method for displaying realistic outdoor images taking into account the spectral distribution of
both direct sunlight and sky light is proposed from the view point of displaying the simulation
results for designing buildings and performing assessments of their environmental impacts.

The proposal described in this paper has the following advantages:
1. The hue of the sky, clouds, and buildings vary according to both the position of the sun and
atmospheric conditions.

2. Buildings lit by both direct sunlight and sky light can be displayed taking into account
specular reflectance.

3. Fog and beam effects caused by direct sunlight and sky light with spectral distribution can
be displayed.
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APPENDIX
INTENSITY OF PARALLEL LIGHT SCATTERED BY FOG
We assume that fog distributes in a flat layer because fog usually distributes in a local area.

The illuminance at the point R and F(0x(s)) without fog is given by
Iu(s) = I, (17)

F(0i(s)) = Fu, (18)
where both I, and F, have a constant value because of a parallel light (See Figure 10). By

integrating the attenuation coefficient between the point R and the light source (the distance is
infinite), its optical distance, ¢’ (8), is given by

A Zp+ 2y -8, hg
t! - e o (=)0, _Ir v Ty, -,
O (19)
Then, the light function, J,(s), is given by
J,,(a) = I]. . Fk . exp(—t'(s)). (20)
Intensity of light scattered by fog between s, and s, is given by
™
I= / 7(8) - Ju(s) - exp(—t(s)) - ds. (21)
o
To simplify this equation, the following substitution is introduced:
A z
a = PO'To'(,\—)_b'exP(—h—p)- (22)
0 0

Then, Eq. 21 is solved by
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(1) for z, =0,
82
I=1 ‘F;.-/ exp(—a-h—o)-a~exp(—a‘s)-ds
ZLk

L3}

= I, - Fy - exp(—a - —z’%) - [exp(—a - 8)]31. (23)

(2) for z, # 0,

TS h
I= Ik-F,.~/ a-exp(—z—"-s)-exp(—a-—0)-exp(a-ho-(l—L)~exp(—f"—-a))-ds. (24)
s ho 2y 2y ZLk ho

1

Eq. 24 is solved by the following:

(2.1) for z, = zr,

'H
I=1-F, / a-exp(—a"-l—o)'exp(—z—"w)-dc
s Zy h()
_ hO hO 2y s
~ B Bueacexp(-a 22)- 22 fexp(— 3 o)l (25)
(2.2) for z, # zLk,
We use the following integration by substitution:
Zy
u = f(s) = exp(—h—-s). (26)
0
Therefore,
du d Zy 2y
s d—sf(") = —E]“CXP(—EO‘ 8). (27)

Then, Eq. 24 can be expressed by the following:

1(s3) zZ. ho 1
I=I;.-F;.v/ o -exp(—=-8)-exp(—a- —) 5
#(o2) ho = G

1 1
-exp(a-ho-(;———z;‘-)~u)~du

exp(—a - 22) 1 1 exp(- £2-s1)
= Ih * Fh ° T—? . [exp(a . ho ' (;: - a) . u)]exp(——{{;»,)‘ (28)
light source k
%
%
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Figure 10: Analytical integral for displaying fog effect caused by direct sunlight
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