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ABSTRACT

In many industrial designs, such as automobiles and electrical products, evaluating the quality
of curved surfaces in the design is very important. If the designer can confirm shapes of curved
surfaces visually, working with photo-realistic computer generated images, the designer’s “sense”
is well utilized. In this paper we will demonstrate method for producing images which can be
used by designers to evaluate the visual quality of free-form curved surfaces. The method uses
the reflected images of cylindrical light sources. It is important that curved surfaces be displayed
accurately, without polygonal approximation, and that the generated images be photo-realistic
images, including shadows. The shading model presented in this paper satisfies these requirements.

Many offices, classrooms, and factories are lit with multiple fluorescent lamps arrayed in parallel
rows on the ceiling. The shading technique presented in this paper is applicable to estimation of
illuminance distribution in such an environment. Our method performs hidden surface removal
and shadowing of curved surfaces without polygonal approximation, yielding accurate display.

Keywords: Cylindrical light sources, quality of curved surfaces, shadows, penumbra, Bézier sur-
faces.

1 INTRODUCTION

An accurate and photo-realistic shading method for curved surfaces which appeals directly to
the designer’s visual sense is discussed in this paper. In particular, smoothness and continuity
between curved patches are especially important in shape designs, and many mathematical methods
addressing these problems have been developed. For a designer attempting to evaluate a shape,
however, intuitive and visual methods may be desired. In current automobile design, designers
evaluate the quality of auto bodies by observing reflected images of parallel fluorescent lamps. This
procedure requires a real physical model to be produced, and making modifications or adjustments
to the shape is a time-consuming and expensive process. Furthermore, large scale equipment is
used to adjust the positions of the light sources and/or the auto body to examine reflections in
various positions. It is clear that if evaluation could be carried out using a computer graphic
simulation, time and expenses could be saved and the quality of the design improved by increasing
the speed of the modify/evaluate/modify cycle. Before this can be accomplished, however, the
following problems must be solved.

(1) An accurate representation of the curved surface must be displayed without approximation,
faithful to the designed shape.

(2) Display of accurate reflected images to display precise features of the curved surfaces must be
realized at a practical computational cost.
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(3) The displayed image must include shadows and have a highly realistic appearance adequate
to fool the designer’s senses into a feeling of being present in front of a real model.

Because conventional polygonal approximation can not produce accurate curved surfaces, a de-
signer attempting to evaluate a design using such an approximation may be working with a surface
considerably different than the actual design. Further, the smoothness of curved surfaces illu-
minated only by point or parallel light sources can not be evaluated precisely. Contour lines or
highlight curves can be displayed as line drawings, but such drawings are not adequate to allow the
designer’s visual intuition to grasp the quality of the shape. Reflection lines (or highlight curves)
can be used to detect irregularity of curved surfaces which are not brought out by contour lines.
Reflection lines are essentially the reflected image of infinitely long, linear light sources, allowing
tangents of surfaces to be visually evaluated. However, since a linear light source does not occupy
a finite area, its reflected image can not be calculated for a shaded image. What the designer needs
is a shaded image illuminated by a number of cylindrical light sources. To provide the designer
with the feeling of actually being present before a real model, very faithful shading is required.

In most offices, factories, classrooms and stores (and even in most Japanese homes), cylindrical
light sources are far more widely used than incandescent lamps. Therefore, for practical lighting
design the conventional point light source illumination model is insufficient, and a lighting model
for cylindrical light sources is required.

Shadowing is important to grasp the positions of objects. Light sources, other than point or parallel
source produce umbra and penumbra. It is very important to duplicate these shadow phenomena
in order to generate realistic images. However, calculation of penumbra is time consuming, and
calculation of shadows for curved surfaces is complex. Penumbra arise when a portion of the light
source as seen from the point being shaded is obscured by some other object in the scene. In
essence, calculation of shadows is a type of hidden surface removal. In case of curved surfaces,
calculation of shadow is more complicated than polyhedral data. We will demonstrate a method
which is applicable to cylindrical, rectangle, and linear sources of illumination.

The method can be outlined as follows:

(1) A scan line method displays curved surfaces accurately, performing hidden surface removal
without polygonal approximation.

(2) Shadows, including penumbrae, cast by the curved surfaces are calculated in order to produce
a realistic image.

(83) Mluminance is efficiently calculated for multiple parallel cylindrical sources. The resultant
image allows the designer to visually evaluate the smoothness and quality of the surface based
on the reflected images.

In the following sections, we will survey the previous work, explain the basic idea of our method,
describe illuminance, shadow, and specular reflection calculations, and show examples of the results
of our method.

2 PREVIOUS WORK

A number of methods for producing images which can be used to. evaluate curved surfaces have
been proposed. These methods can be classified as either line drawing or shaded image methods.
The former methods include surface contouring, lines of curvature, and reflection line. The latter
methods include high quality shaded images and curvature maps. Klass(1980) and Farin(1985)
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evaluated the quality of curved surfaces using highlight curves. Satterfield and Rogers(1984) de-
veloped a method for extracting contour lines on B-splines. Dill(1981) developed a method of
mapping color-coded curvature maps onto surfaces. Beck et al.(1986) analyzed curved surfaces
synthetically using contour curves, lines of curvature, and shaded images. Higashi et al(1990)
displayed contour curves, lines of curvature, equi-gradient and equi-brightness curves, silhouette
patterns, and highlight curves. Saito and Takahashi(1990) demonstrated a method in which the
depth and surface normal at each pixel are stored when the image is generated, and then contour
curves and pseudo-highlight patterns are extracted and displayed in line drawings generated by
image processing techniques. However, line drawings and color fringe drawings are very difficult to

appreciate, and appeal only to designers specialists. Shaded images can be far.more understand-
able.

Several researchers have attacked the problem of displaying curved surfaces without polygonal
appraximation. Kajiya(1982) developed the first ray tracing method for rendering parametrically
defined surfaces. His work was followed by many publications addressing ray tracing, including
a new ray tracing method for Bézier surfaces presented recently by one of the authors of this
paper(Nishita 1990). This method displays trimmed rational Bézier surfaces with high accuracy.
We will use a scan line method for hidden surface removal, due to its efficiency over ray tracing.
Many scan line algorithms have also appeared, including one by Lane et al.(1980) which subdivides
the curved surface into polygons at every scan line. The authors recently presented a modification
of Lane’s method which subdivides surfaces not into polygons, but into subpatches with curved
boundaries, which makes for better precision (Nishita 1991).

Next we will outline previous models of linear and finite area light sources. Verbeck and Green-
berg(1984) simulated linear and area sources by multiple point sources. However, the method
causes aliasing artifacts and results in uneven intensity in the shadow area due to the simulation
of a continuous light source as a set of discontinuous point sources. The authors of the current
paper derived analytic solutions for the illumination taking into account shadows due to linear
sources(Nishita 1985a), area sources and polyhedral sources (Nishita 1983), as well as sky light
approximated by a hemispheric light source of large radius (Nishita 1986). These methods are
applicable only to convex polyhedral objects. Poulin and Amanatides(1990) derived an analytical
solution by integration assuming that the linear light source consists of a collection of point sources
on the line segment. It is assumed that point sources have uniform luminous intensity distribution.
However, assumption of a uniform distribution is quite restrictive in comparison to actual linear
light sources, rendering this model inadequate for practical lighting designs. Many radiosity meth-
ods treat area sources. Although the methods yield realistic images, some of them are restricted to
polyhedral objects (Nishita 1985b; Baum 1989). Many radiosity methods for curved surfaces adopt
sampling methods in calculating emitted light from light sources (Kajiya 1986; Wallace 1989).

3 BASIC CONCEPT

We assume that free-form surfaces are expressed as rational Bézier surfaces. This does not greatly
restrict the generality of our method, since most surface representations used in industrial design,
including B-splines, can be converted to rational Bézier form. Hidden surface removal is accom-
plished using the author’s scan line method without polygonal approximation (Nishita 1991). This
method calculates intersection points between scan lines and surfaces by Bézier Clipping. Bézier
Clipping is an iterative method which utilizes the convex hull property of Bézier curves, and con-
verges more robustly to the polynomial’s solution than does Newton’s method. Bézier clipping
method is also used to detect shadow regions cast by curved surfaces.

We assume that light sources are located in parallel on some plane. In other words, rectangles
corresponding to light sources are mapped onto a rectangle and rotated to face the calculation
point. Light sources are assumed to be perfectly diffuse (i.e., a Lambertian distribution).
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Before detecting shadows at a point, we extract obstacles between the point and the plane on
which the light sources are arrayed. The data is hierarchically structured for efficiency in later
calculations, allowing groups of lights to be considered together.

Diffuse and specular reflections are both taken into account in intensity calculations. In order to
evaluate the smoothness of a curved surface, it is sometimes desirable to move the light source.

The procedure can be outlined as follows:

(1) Surface control points are perspective transformed.
(2) Hidden surfaces are removed by a scan line method (Nishita 1991).
(3) Surfaces casting shadows are extracted.

(4) Contribution of each light source to intensity of the surfaces is calculated.

In this paper, we will focus our discussion on steps 3 and 4.

4 INTENSITY CALCULATION

The process will be easier to understand if we explain step 4 first. There are many types of light
source models, including point sources which possess only a location, linear sources which have
a length, area sources which occupy a finite area, and polyhedral sources which occupy a finite
volume.

Consider an area source. If a source is perfectly diffuse and has uniform luminous intensity distri-
bution, the intensity at a point P can be calculated as follows: The source is first projected onto
the surface of a hemisphere centered on P, then onto the bottom of the hemisphere. The intensity
due to the light source is proportional to the area projected onto the bottom of the hemisphere.
If the source is a n sided polygon, the calculation is simple; the following contour integral can be
employed(see Fig. 1).

n
I= Io/2Z,B,~ cos §;, (1)
=1
Here I, is luminous intensity of the light source, §; is the angle between vectors PQ; and PQ,,,
and §; is the angle between the normal of triangle Q;PQ;,; and the normal of the plane including
point P.

For light sources which occupy a volume, the contour line viewed from the point being shaded
is regarded as an area source in calculating the intensity. (See reference (Nishita 1983)). for the
treatment of polyhedral sources.) For a cylindrical light source, the disks at the ends of the cylinder
are generally quite small compared to the projected area of the cylinder, and in any case, for
actual fluorescent lamps they are generally covered by the lamp housing. Thus, a perfectly diffuse
cylindrical light source can be regarded as a rectangle, so equation (1) is applicable. Consider the
rectangle whose center coincides with that of the cylinder, and whose width d is equal to that of
the cylinder. The rectangle must be rotated about its center line so that it faces the point being
shaded. After rotation, the contour can be handled as a long slender rectangular light source.

A rectangular light source differs from a cylindrical light source only in the sense that its projected
width varies depending on viewing direction, while that of a cylinder is invariant. As shown in
Fig. 2, cylindrical light sources are arrayed on a large rectangle, parallel to one of its edges (we.
refer to this plane as the C-plane ). The vertices of the C-plane are Qqo, Qo1, Q11, and Qio. The
light sources can then be treated as rectangles mapped onto the C-plane. Consider the intensity



T

433

Figure 1: Intensity due to area source by contour integral.

/ Qo

Light source

Figure 2: Allocation of light sources.
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Figure 3: Intensity due to rectangular light source.

at point P illuminated by rotated rectangular light source Q1Q2Q3Q4 on the C-plane (Fig. 3). The
lengths of Q1Q2 and Q3Q4 are equal because of a cylindrical source, and are much longer than the
widths, Q1Q4 and Q2Q3. 1 and r4, the distances from P to Q; and Q4, are equal, as are r; and
r3. The light source width, d, is small enough to consider angles Q1 PQ3 and Q3 PQ4 to be equal.
Call these angles expressed by 8; and B;. Then equation (1) can be written as:

I=15/2{(cos 6, — cos83)B1 + B2 cos bz + (B4 cos 84} (2)

When d is very small compared to 71, T2, 73 and r4, G2 and B4 can be approximated by 82 = d/r;
, Bs = d/r4. In general, a number of light sources will be colinear, and thus have the same value
of (cos §; — cos83).

When the light source lies partially below the plane including the point P, P receives light only
from the exposed portion of the source, which must therefore be divided into two parts based on
the plane. When there are obstacles between P and the light source, shadows must be calculated,
as discussed in the following section. A light source may be obscured by the other sources viewed
from the calculation point when the calculation point is close to the C-plane. In this case we
neglected the calculation of shadow effect.

5 SHADOWS

When the light source as viewed from the point to shade is partially obstructed, the visible portion
of the light source must be calculated. Because the width of the rectangular light source simulating
a cylindrical light source is generally quite small relative to its length, we perform the visibility
calculation as if it were a linear light source. After all visible parts of the linear source are
calculated, each visible part is regarded as the new rectangular source, and equation (2) is applied.
The process of dividing a linear light source which is partially obstructed does not change 6, or
3. Extracting segments of the linear source visible from point P, then summing equation (2) for
these segments yields the intensity due to a linear source. The total illuminance is calculated by
applying this procedure to all linear sources. When the C-plane lies below the plane including P,
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Figure 4: C-plane coordinate system.

the intensity is zero. When a part of the C-plane is below the plane including point P, the lower
part of the linear source is clipped away. Extraction of visible parts when dealing with curved
surfaces is not easy. Therefore, before detecting shadows due to linear sources, the curved surfaces
likely to cast shadows are extracted in advance. We utilize the fact that the C-plane bounds a set
of light sources; surfaces likely to cast shadows lie within the pyramid consisting of point P and
the C-plane. By treating P as a viewpoint and C-plane as a screen, the linear sources (which are
parallel to a side of the C-plane) correspond to scan lines on the screen. Thus, scan line based
hidden surface removal algorithms can be used to extract visible portions of the linear light sources.

5.1 Extraction of Curved Surfaces Casting Shadows

First, in order to simplify calculation, we translate the coordinate system to locate P at the origin,
and rotate it so that the z and y axes are parallel to the sides QoQ;o and Qo0Qo1 of the C-plane
(the light sources are assumed to be parallel to QuoQ10)(see Fig. 4). We also define unit vectors
U and V parallel to these edges.

After rotation the y component of U is zero, P is a viewpoint, the z axis is the normal of the
projection plane, and the C-plane is the screen perpendicular to the z axis. In other words, the
pyramid whose bottom is the C-plane and whose apex is P becomes the field of view. We refer to
this coordinate system as the C-plane coordinate system. Note that Qo, the intersection of the 2
axis with the screen, might even not lie between QoQo; Q11 Qi0)(Fig. 4).

Bézier surfaces are bounded by the convex hull of their control points. We use this property to
detect surfaces within the pyramid which may obstruct light based on the relation of each surface’s
control points to the four sides of the pyramid.

Expressing the control points of a Bézier surface of degree n after transformation into the C-plane
coordinate system as (X, Y;;, Zi;), and the weights as W;;, the surface is expressed by

Lizo Lj=o WisXi; B} (u) B} (v)

Xlwo) = Lizo Xj=o Wis BY(u) B} (v)
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Yo X0 Wi;Yi; Bl (u) B} (v)
Yico 2j=0 Wi Bl (u) B} (v)
Yio Xy=o Wi Zi; Bl (u) B} (v)
> im0 2j=0 Wi; BI'(u) B} (v)

where B is the Bernstein polynomial, given by

Y (u,v)

Z(u,v)

Bf(u) = (P)u'(1—u)* ™"

Consider the plane determined by P and vertices Qpp and Qo; of the C-plane, and let the distance
from point P to the screen be z;. If all control points P;;(X;j,Y:;, Zi;) of a surface satisfy the
following equation, the surface lies outside the pyramid.

Xij — (z00/20)Zi; < 0 (4)
Each surface can be checked against any of the pyramid’s sides in the same manner.

Because the direction of the axes of the C-plane coordinate system are independent of P, rotation of
control points need only be performed once, and each point can be processed with only a translation
of the control points to bring the point to the origin.

The y component of a control point projected onto the screen is 29Y;;/Z;;. Thus, surfaces which
interrupt light are easily located using the calculated maximum and minimum y values of control
points.

5.2 Extraction of Visible Part of Light Source

As discussed above, light sources are considered to lie on scan lines, so a visibility calculation
performed for scan lines yields the visible portions of the light sources. Let the y coordinate of a
scan line be y,. Regions of the “screen” which may be obstructed have already been calculated
based on surface control points, so surfaces which may overlap a scan line can be very quickly
located. For each such surface, the following test is performed.

The distance between an arbitrary point (X, Y, Z) and the scan plane is proportional to the function
dX,Y,Z)=Y —ys/2Z. (5)

For points located on the scan plane, d = 0. Substituting equation (4) into (5) yields

d=Y " Wi;di;B(u)B}(v) = 0. (6)

1=0 5=0

where d;; ( = Yij —ys/#02i;) is proportional to the distance between control point P;; and the scan
plane. The intervals of u and v satisfying equation (6) are extracted by Bézier Clipping (Nishita
1990, 1991).

Discarding portions outside these intervals yields a subpatch. If the u and v intervals are not
sufficiently shortened, the surface is divided and Bézier Clipping is again applied. This process is
iterated until the subpatch is sufficiently flat (Fig. 5). Next, intersections of these subpatches with
the scan line are calculated. For example, on the v = 0 edge of a subpatch, substituting v = 0 in
equation (6) and the u which satisfies d = 0 is found by Bézier clipping. If d;; for all of a subpatch’s
control points are of the same sign, the subpatch does not intersect the scan line. Further, because
subpatches lying behind point P are irrelevant, the subpatches whose control points have z < 0
are discarded.
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Figure 5: Subpatches on a scanline.

After the intersection point of a subpatch and a scan line is found, its ¢ and 2 coordinates are
used to locate the intersection projected on the screen (i.e., 29z/z). From these intersections, the
visibility intervals of the scan line (which represents a linear light source) are obtained. Quantitative
invisibility is used to determine the visible intervals (Appel 1967).

6 CALCULATION OF SPECULAR REFLECTION

The specular reflection is calculated only over visible intervals of light sources obtained by the
method described in section 5. This calculation includes calculation of reflected sources on surfaces
with high reflectance. As shown in Fig. 6, the specular component is calculated by integrating the
incident light weighted with a distribution function centered on the specular reflection vector,R.
The intensity of the specular component at point P due to the source is obtained by integrating
light from differential area dS including point Q on the source.

cos ¢
I =k / I 52 pis, m
S r

where ko is the specular reflection component of reflectance, Iy is the luminous intensity per unit
area of the light source, r is the distance between points P and Q, « is the angle between QP
and the normal of the source, and p is a distribution function. Here we use the distribution
function of the Phong model (Phong 1975). In this model, p = (cosf)"; 6 is the angle between
the reflection vector R and PQ(we refer the vector PQ as Lq; cosf = (R-Lq)) , and n is the
reflection characteristic(associated with the surface roughness); a larger n produces a narrower
highlight. Note that cos a/r2dS is equivalent to the solid angle of differential area dS.

Let’s consider a single rectangular(band) source. Let the center line of the source be z'-axis, the
length of the source L, width direction y', and the width of the source d. Since dS = dz'dy’, the
intensity of the specular component at P is then rewritten as

B rdja cos
I =kI/ / R:Lq)"dy'dz’. 8
o=kl [ TR Lgra ®
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Normal vector : N ' R: Reflection vector
View direction :E .'// Bidirectional function

Figure 6: Specular reflection due to rectangular source.

The above equation is solved by numerical integration. Since the width of the source is generally
small, cosa/r? is regarded as constant for y-direction; the equation is discretized by the following
equation.

L=kl ), =5 > (R Lqg,)"Ay;Azi, ©)
i t

where Ay and Az are integration(sampling) intervals. Let the intersection point between the
specular reflection ray and the C-plane be Py(zo, o, 20) (see Fig. 7). The point from which intensity
at P is strongest is the nearest point(P; in Fig. 7) of the source to P;, which is the intersection
between the source and the line £ = zo. The value of (cosf)"™ decrease sharply depending on
any decrease(or increase) of z. Then integration is started at ¢ = z¢ after subdividing the source
at ¢ = z, into two segments. If the value of cosf becomes less than a given tolerance €, the
calculation is stopped.

For y’-component, cos is calculated at the center line of the source. If its value is larger than a
given value €; the sampling points for the calculation of cosf are added. If its value is smaller,
however, than a given tolerance ¢;, the calculation is stopped. By this method, integration is
performed adaptively and only in the limited regions. For a highly specular surface, the integration
region is very small, then cosa/r? is regarded as a constant over the whole region.

The luminous distribution of a cylindrical (or linear) surface differs little from that of a rectangular
one. That is, even though the normal of the rectangular source is fixed, the normal of the cylindrical
source rotates so as to exist within the plane including the calculation point P and the center line
of the source, because the cylindrical source is assumed as a rotated rectangular one as mentioned
before. In other words, the intensity of the cylindrical source can be calculated by substituting
sina' for cosa in equation (9); o' is the angle between the center line of the source and Lq.

The efficiency of the calculation is increased by restricting the region to be integrated as follows.
The intersection of the C-plane with the circular cone containing the reflection distribution is
determined, and the integration is performed only for light sources within the bounding box of the
region (see Fig. 7).

Let the intersection point between the specular reflection ray and the C-plane be (zg,y0, 20), and

le
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Reflection R lew
vector v’ direction

Figure 7: Calculation range for specular reflection.

1
let the apex angle of the circular cone be 6y; 6, is determined by the relation, cosf = €. The
bounding box on the C-plane ([z;, z2], [y1,¥2]) is expressed by the following equations.

z; = (xo— 20tanfo)/(1 + zo/z tanby)
z3 = (xo+ 20tanfy)/(1 — zo/z tanby) (10)
y1 = (yo—2o0tanby)/(1+ yo/z tanéy)

Yo (vo + zo tanbp)/(1 — yo /20 tanfy)

The integration is performed only over visible intervals of light sources within this bounding box.

6.1 Positioning Light Sources

When using the reflected image of a light source to evaluate the smoothness of a curved surface,
the position of the light relative to the surface must be adjusted. This can be achieved either
by translating the light source or by rotating the surface. We will discuss translation of the light
source here.

For a given viewpoint and view angle, the angular range covered by the specular reflection cones
of all visible surfaces in the scene is in general quite large, making it difficult to set the position
of the lights. If no restriction is put on the angle and position of C-plane, there are so many
degrees of freedom that the C-plane can not be set up. In fact, the actual physical setup with
which designers are accustomed to evaluating surfaces of physical models is quite large (generally
occupying the entire ceiling and/or one wall of the room), and therefore cannot easily be rotated
to an arbitrary position. Therefore, in this simulation we specify a slope. This slope determines
a reference plane, on which the C-plane can be translated. Generally, the reference plane will be
set either horizontally or vertically. The orientation of light sources on the plane can be freely
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rotated. The reference plane is then divided into small regions and the number of reflected rays
striking each region is counted. C-planes are set on regions where the number of hits exceeds some
threshold.

In order to reduce shadow calculation time, hidden surface removal and calculation of reflected
specular rays are performed in advance, without considering shadows. The reference plane is
divided into a grid. For a given viewpoint and view angle, the specular rays from all visible
surfaces are intersected with the reference plane, and the number of rays striking each grid element
is calculated.

7 EXAMPLES

A simple example of a curved surface is shown in Fig. 8. The curved surface is illuminated by
48 (4 rows of 12 columns) cylindrical light sources. The réflected images of lights are obtained
by calculating specular component as a highly specular surface. The parallel intensity gradations
visible in the penumbra area are due to the parallel located light sources; the stripes appear in
shadows because shadowing is done by assuming linear light sources (This artifact may be reduced
if a cylindrical light source is approximated by multiple linear light sources).

Figure 9 shows a close-up of the car’s front hood in Fig. 10. In (a) contour lines and patch
boundaries are drawn. In this figure we can observe smooth continuity of patches, but we can not
find irregularity of surfaces. In (b), the hood is illuminated only by a point source, and appears
to be smooth. However, the reflected images of light sources visible in (c) reveals problems in the
smoothness of the surface.

Figure 10 shows a commercial application, an automobile composed of 204 Bézier patches. This
figure shows the car illuminated by 12 long cylindrical sources. The appearance of the penumbra
on the floor is very realistic.

As an example of a lighting simulation, Fig. 11 shows a conference room composed of 1127 Bézier
patches illuminated by 48 cylindrical sources(6 rows of 4 columns, 2 sources in a case). llluminance
calculation on the ceiling is ignored, and is set constant value. On the desks the highlights due to
specular reflection of cylindrical sources are observed. This method gives us realistic images, but
calculation of interreflection of light(i.e., radiosity) may be desired for precise lighting simulation.

These images were calculated on a NEC EWS4800/260 workstation. For Fig. 10, hidden surface
removal was accomplished in 35.0 seconds, while shading with the cylindrical light sources required
181.9 minutes. For Fig. 11, hidden surface removal was accomplished in 22.0 seconds, while shading
with the cylindrical light sources required 53.5 minutes.

In these examples the multi-scanning method (Nakamae 1986) developed by the authors was used
for anti-aliasing.

8 CONCLUSION

The parallel cylindrical light source shading model is useful for evaluating the smoothness of curved
surfaces and for lighting design. The advantages of the proposed method are as follows:

(1) The curved surfaces are displayed faithfully, without polygonal approximation. As a result, the
reflected images of cylindrical light sources provide effective information for visually, intuitively
evaluating the smoothness of the surfaces.

(2) Many cylindrical light sources (linear light sources and rectangle light sources) are located
in parallel on a plane. Treating this plane as an area source is very effective for increasing the
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Figure 8: An example of a single patch.

(a) Contour lines. (b) Point light sources.

(c) Cylindrical light sources.

Figure 9: Comparison of display methods.
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Figure 10: An automobile illuminated by parallel cylindrical sources.

Figure 11: A conference room illuminated by 48 cylindrical sources.
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efficiency of illuminance and shadow calculations. The set of lights can be treated as texture thus
reducing the amount of illuminance calculation.

(3) Calculation of shadows, in particular of penumbrae, requires extracting the parts of the light
sources visible from the point being shaded. By regarding the point as a viewpoint and each linear
source as a scan line, an efficient scan line based hidden surface removal algorithm can be applied to
calculation of shadows. By utilizing the convex hull property, those patches which are likely to cast
shadows are determined in advance. Moreover, tests for intersection between linear light sources
(ie., scan lines) and curved surfaces are performed robustly and accurately by Bézier Clipping.
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