
Real-time Rendering of Bumpmap Shadows Taking Account
of Surface Curvature

Koichi Onoue
The University of Tokyo

5-1-5 Kashiwanoha,Kashiwa,
Chiba, Japan

Phone: +81.4.7136.3946
Fax: +81.4.7136.3943

onoue@is.s.u-tokyo.ac.jp

Nelson Max
University of California, Davis

P. O. Box 808, L-560,
Livermore, CA 94551, U.S.A

Phone: +1.925.422.4074
Fax: +1.925.422.6287

max2@llnl.gov

Tomoyuki Nishita
The University of Tokyo

5-1-5 Kashiwanoha,Kashiwa,
Chiba, Japan

Phone: +81.4.7136.3942
Fax: +81.4.7136.3943
nis@is.s.u-tokyo.ac.jp

Abstract

The bump-mapping technique is often used to represent
bumps on objects such as bark on trees and craters on the
moon. In order to render shadows cast by bumps, the hori-
zon map method was proposed. The horizon map is a table
which has, for each of a small collection of azimuthal direc-
tions, slopes from each viewpoint on the bump map (height
field) to the corresponding horizon point, which is the high-
est viewable point seen from that viewpoint. In this paper,
we propose a more precise method for rendering bumpmap
shadows using a both a horizon map and a distance map,
to take curvature of surfaces into consideration. The dis-
tance map is a table which has, for each azimuthal direc-
tion, horizontal projected distances from each point of the
bump map to its corresponding horizon point. The pro-
posed method can render shadows efficiently by using pro-
grammable graphics hardware.
keywords: shadows, bump-mapping, horizon map, curva-
ture, graphics hardware

1 Introduction

In order to render realistic images, shadows are indis-
pensable. In the field of computer graphics, many re-
searchers still study shadow rendering methods [1]. On the
other hand, bump mapping [2], which is a method to repre-
sent and render bumps efficiently, is widely used. Further-
more, since the performance of graphics hardware (GPU)
has increased rapidly, bump mapping can now be processed
on the graphics hardware. There has also been previous
work on the shadows of bumps. Max [3] proposed the
horizon map to render shadows cast by bumps. Noma pro-
posed a rendering method of shadows on bump-mapped sur-

faces cast by other objects [4]. Forsyth [5] used a three-
dimensional texture to implement Max’s method in graph-
ics hardware. However his method did not take account of
surface curvature. Shadows of the bumps on bump-mapped
surfaces are called bumpmap shadows in the rest of this pa-
per.

In this paper, we propose to render bumpmap shad-
ows more precisely by taking account of surface curvature.
When bump mapping is used, surfaces facing away from
the light source are not lit, and the shading process is usu-
ally skipped. However if the bumps on a curved surface
are tall enough, parts of the bumps on the back-facing sur-
faces may be lit. Similar cases of the illumination of bumps
beyond the shadow terminator were considered by Koen-
derink et al. [6]. The presentation of that paper inspired our
implementation, which can render such effects in graphics
hardware using a programmable shader.

The rest of this paper is organized as follows. First, re-
lated work is introduced in Section 2, and the extended algo-
rithm for horizon mapping is explained in Section 3. Ren-
dering results of bumpmap shadows are shown in Section 4.
Conclusions and future work are described in Section 5.

2 Related Work

Max [3] proposed horizon mapping as a method of
adding a shadow effect to the bump mapping that Blinn [2]
had proposed. The horizon map is a table, which has slopes
from each viewpoint on the bump map (height field) to the
highest point seen from that viewpoint. Shadows are cal-
culated by comparing the slopes stored in the horizon map
with the slope of the ray to the light source.

Sloan et al. [7] proposed a method to implement horizon
mapping in graphics hardware. They store horizon map as
multiple two-dimensional textures indexed by the azmuthal

angle, and render shadows by interpolating between the two
appropriate textures using multiple rendering passes. Kautz
et al. [8, 9] approximated, with an elliptical cone, the set of
light directions which can illuminate each point of a bump
map. Shadows are rendered by detecting whether the light
direction is included the elliptical cone. These methods
need multiple rendering passes, so rendering costs are high.

The other method to represent bumps is displacement
mapping [10]. This method subdivides the surfaces of ob-
jects and displaces the generated vertices. In order to ren-
der the shadows of the bumps, displacement mapping can
be combined with rendering methods for geometry-based
shadows, such as the shadow map method [11, 12] and the
shadow volume method [13]. However, this subdivision
greatly increases the number of vertices and polygons, and
therefore their associated access, transformation, and set-
up costs in the graphics hardware. Wang et al. [14] pro-
posed a displacement mapping method without increasing
the number of polygons. They store as textures visibility
information for a height field seen from some sample di-
rections, and do take some account of curvature. However
their method needs a lot of memory to store the textures.
Although they propose a compression method for the vis-
ibility information, the amount of memory consumption is
still much greater than that of the horizon map.

Forsyth [5] proposed a method to implement the hori-
zon map by using a three-dimensional texture, which is now
supported by commodity graphics hardware. Bumpmap
shadows can be rendered in one pass by his method, which
is simple and easy to implement. However, Forsyth’s
method does not consider the surface curvature of objects
so the shapes of the shadows are not accurate.

In this paper, we propose a method for rendering
bumpmap shadows which is an extension of Forsyth’s
method and takes account of surface curvature.

3 Bumpmap Shadows

In this paper, as in Max [3], we use a local coordinate
system whose axes are Pu, Pv, N/|N |1/2. Here, Pu and Pv

are partial derivative vectors along texture coordinates, and
N = Pu × Pv. Let L′ the light vector L converted into this
coordinate system, θ be an angle between L′ and N , and ϕ
be an angle from Pu when L′ is projected onto the (Pu, Pv)
plane.

Forsyth implemented the horizon mapping by storing the
horizon map β(u, v, ϕ) as three-dimensional texture. Here,
we use in addition a distance map d(u, v, ϕ) storing hor-
izontal distances between the projections of S(u, v) and
its horizon point Q, as shown in Fig. 1. In short, three
tables are used: the bump map h(u, v), the distance map
d(u, v, ϕ), and the horizon map β(u, v, ϕ). These tables are
stored on the GPU memory as textures. The table h(u, v) is

used as in [2] to determine the bump shading, and all three
tables are used for the bump shadows.

3.1 Local Curvature

The proposed method renders bumpmap shadows taking
account of surface curvature. Our method of calculating the
principal curvatures at a point is the same as the one used in
Wang et al.’s paper [14].

For each vertex, principal curvatures κ1, κ2 and principal
directions ϕ1, ϕ2 on the (u, v) plane are calculated. The
vectors V1 and V2 on the surface in the principal directions
are perpendicular on a curved surface, but their projections
are not always perpendicular on the (u, v) plane. Therefore,
in order to calculate the local curvature in a direction V
which is the projection of L′ onto tangent plane at P , the
following method is used.

First, we precompute V1 and V2 at each vertex of the
polygonal surface. Then V1 and V2 at P are calculated
at each pixel fragment by interpolation. After calculating
cosϕ = (V ·V1)/(|V ||V1|) and sin ϕ = (V ·V2)/(|V ||V2|),
we use the following formula:

κ = κ1 cos2 ϕ + κ2 sin2 ϕ. (1)

Note that ϕ need not be calculated, only the expressions
cos2 ϕ and sin2 ϕ need to be calculated. These expressions
use squares of cosϕ and sin ϕ, so the square root need not
be calculated when normalizing the vectors. That is, instead
of |V |, |V1|, |V2|, only |V |2, |V1|2, |V2|2 are calculated.

The radius of curvature R at P in direction V , that is,
the radius of curvature of the intersection curve of the plane
through P including N and L′, and the curved surface
S(u, v), is given by R = 1/κ.

3.2 Horizon Angles Taking Account of Curvature

The calculation of the horizon angle β taking account of
curvature is considered in the following two cases.

First, in the case shown in Fig. 2, the horizon angle is
calculated by using the distance d to the horizon Q. Let
H = d tan β be the difference of the height at Q and that at
P (see Fig. 1). We calculate a decrease of the height at the
horizon Q according to curvature of the surface as follows
(see Fig. 2):

d = γR, γ =
d

R
= κd

CA = 2(R + h) sin
γ

2
BC = CA cos

γ

2
= 2(R + h) sin

γ

2
cos

γ

2
AB = CA sin

γ

2
= 2(R + h) sin2 γ

2

2

P Q

H

d

h

geometry

bumped surface

Figure 1. Relation of a point P on bump map
and the horizon Q.

P

C

Q
A

h

H
/2

/2

R
geometry

bumped surface

’

Figure 2. Change of height at the horizon Q
by curvature.

EA = H cos γ = d tanβ cos γ

BE = EA − AB

= d tan β cos γ − 2(R + h) sin2 γ

2
.

Therefore, β′ is modified like this:

β′ = arctan
BE

BC

= arctan

(
d tanβ cos γ − 2(R + h) sin2 γ

2

2(R + h) sin γ
2

cos γ
2

)
.

When γ is small, cos γ ≈ 1, cos γ
2

≈ 1, sinγ ≈
γ, sin γ

2 ≈ γ
2 , therefore,

β′ ≈ arctan

(
d tan β − 2(R + h)γ2

4

2(R + h)γ
2

)

A

P

Q

h+HR
R

O

’

’

h

geometry

bumped surface

Figure 3. Horizon Q is under the horizon of
curved surface.

= arctan

(
d tan β − 1

2 (R + h)γ2

(R + h)γ

)
.

In the horizon map, we store δ = tan β instead of β.
The arc length is d = Rγ, so

δ′ = tan β′ =
d tanβ − 1

2 (R + h)γ2

(R + h)γ

=
d tanβ

(R + h)γ
− 1

2
γ =

Rγ tanβ

Rγ(1 + h
R)

− 1
2
γ

≈ tan β(1 − h

R
) − 1

2
γ,

or,

tan β′ ≈ tanβ(1 − κh) − 1
2
κd. (2)

The second case is the one considered by Koenderink et
al. [6], when tall bumps are lit even when they are beyond
the terminator, on a part of the surface facing away from the
light source. As shown in Fig. 3, when the horizon point
Q is under the horizon of the curved surface (the geome-
try of the object without the bumps), we calculate β′ by the
following method. In this case, d and β are not used to cal-
culate β′. The proposed method does not store information
about the height of the non-bumped horizon point B shown
in Fig. 3, so we regard the height of B as 0.

The values of cos β′ and sinβ′ in Fig. 3 are

cos β′ =
R

h + R
=

1
h
R

+ 1
=

1
κh + 1

sin β′ = −
√

1 − cos2 β′,

therefore

tan β′ =
sin β′

cosβ′ = −
√

1 − cos2 β′

cosβ′ . (3)

3

In practice, we use the larger of the two values from
equations (2) and (3) as the value of tan β′, since a point
on a bump could be shadowed either by a specific bump at
distance d as in figure 2, or by the horizon of the curved
non-bumped surface, as shown in figure 3.

All three tables β, h, d prepared in the proposed method
are not needed, because tan β can be calculated by the ex-
pression:

tan β = δ = h((u, v) + d ϕ̂)/d, (4)

where ϕ̂ is a unit vector in the direction of ϕ. However, if
only the textures h and d are prepared, more calculations are
needed. Moreover, the height by interpolation from the ta-
ble h does always coincide with the height of a point which
is calculated by using d and β.

4 Results

Fig. 4 shows a part of a sphere bump-mapped with cylin-
drical columns. Bumpmap shadows are also rendered in
this figure. Fig. 4(a) is the result rendered by the previ-
ous method [5], and Fig. 4(b) is the result of the proposed
method. The light illuminates parts of the surface facing
away from the light source (on the upper left side of the
figures) due to equation (3), and the shadows of the bumps
onto the smooth part of the surface in the proposed method
are shorter than that in the previous method, due to equa-
tion (2). A part of a sphere with smaller curvature (larger
radius) is rendered in Fig. 5. Comparing Fig. 4 with Fig.
5 shows that differences between the proposed method and
the previous method become more clear as curvature be-
come larger. The sphere consists of 8,192 polygons. The
size of the bump map is 128×128, and the number of sam-
ple directions used to create the horizon/distance map is 32.
In this example, 32 sample directions are needed to render
shadows smoothly. The frame rate is about 25 fps(frames
per second). The GPU memory used here is about 1.0MB.

A Bezier surface bump-mapped with reptilian skin is
shown in Figs.6 and 7. The heights of the reptilian skin
are inverted in Fig. 7. In this case, the shadow region of the
proposed method is also smaller than that of the previous
method. The Bezier surface is rendered as 512 polygons,
and the frame rate is about 25 fps. The size of the bump
map is 256×256, and the number of sample directions used
to create the horizon/distance map is 16. The GPU memory
used here is about 2.2MB.

In order to evaluate our proposed method, we com-
pare bumpmap shadows with shadows of a displacement-
mapped polygonal object rendered by the shadow volume
method. Fig. 8(c) is the rendering result of accurate shad-
ows by using displacement mapping and the shadow vol-
ume method, Fig. 8(b) is the result of the proposed method,

and Fig. 8(a) is a result of previous method. Although the
shadows in Fig. 8(a) are longer than Fig. 8(c), the shadows
in Fig. 8(b) are as long as in Fig. 8(c). Therefore the pro-
posed method can render shadows more accurately than the
previous method. The displacement-mapped object consists
of 77,760 polygons, while the bump-mapped object consists
of 960 polygons. This difference results in different frame
rates. The frame rates of Figs.8(a), (b), and (c) are 75, 75,
and 15 fps, respectively. Therefore the proposed method
can render accurate shadows faster than the shadow volume
method applied to the displacement-mapped object. More-
over, the bumps are rendered more smoothly in Fig. 8(b)
than in Fig. 8(c), that is, artifacts can be seen in Fig. 8(c).
The displacement-mapped object needs more polygons to
be rendered precisely.

The frame rates of the results shown in this section are
measured by using Dell Precision 360 (CPU: Pentium4
3.0GHz, main memory: 1.0GB, GPU: Quadro FX 3000,
GPU memory: 256MB). The proposed method is imple-
mented by using OpenGL and Cg.

5 Conclusion and Future Work

In this paper, we have proposed a rendering method for
bumpmap shadows taking account of curvature by using the
horizon map and the distance map. The proposed algorithm
can be implemented by a programmable shader in graphics
hardware, and can be rendered at an interactive frame rate.
The effects of the proposed method stand out when a bump
map with a large height is mapped onto a surface with large
curvature.

The proposed method focuses only on the local shadows
around the bumps. Therefore it cannot render shadows cast
by distant object profiles. Although such shadows can be
rendered by the shadow map method or the shadow vol-
ume method, these methods cannot consider the bumps at
the profile edges of bump-mapped objects as viewed from
a light source. Representing such shadows is left as future
work.

References

[1] A. Woo, P. Poulin, and A. Fournier. A survey of
shadow algorithms. IEEE Computer Graphics and
Applications, 10(6):13–32, Nov. 1990.

[2] J. F. Blinn. Simulation of wrinkled surfaces. In Pro-
ceedings of the 5th annual conference on Computer
graphics and interactive techniques, pages 286–292.
ACM Press, 1978.

[3] N. L. Max. Horizon mapping: shadows for bump-
mapped surfaces. The Visual Computer, 4(2):109–
117, 1988.

4

(a) bumpmap shadows by the previous method

(b) bumpmap shadows by the proposed method

Figure 4. Bumpmap shadows on a sphere
with 0.015 curvature.

[4] T. Noma and K. Sumi. Shadows on bump-mapped
surfaces. The Visual Computer, 10(4):330–336, 1994.

[5] T. Forsyth. Self-shadowing bumpmap using 3d tex-
ture hardware. Journal of Graphics Tools, 7(4):19-26,
2003.

[6] J. J. Koenderink and S. C. Pont. Texture at the termina-
tor. 1st International Symposium on 3D Data Process-
ing Visualization and Transmission, pages 406-415,
Jun, 2002.

[7] P. P. Sloan and M. F. Cohen. Interactive horizon map-
ping. Eurographics Workshop on Rendering, pages
281–286, 2000.

(a) bumpmap shadows by the previous method

(b) bumpmap shadows by the proposed method

Figure 5. Bumpmap shadows on a sphere
with 0.005 curvature.

[8] J. Kautz, W. Heidrich, and K. Daubert. Bump map
shadows for opengl rendering. Research Report MPI-
I-2000-4-001, Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Ger-
many, February 2000.

[9] W. Heidrich, K. Daubert, J. Kautz, and H. -P. Seidel.
Illuminating micro geometry based on precomputed
visibility. In Proceedings of the 27th annual con-
ference on Computer graphics and interactive tech-
niques, pages 455–464. ACM Press/Addison-Wesley
Publishing Co., 2000.

[10] R. L. Cook. Shade trees. In Proceedings of the 11th
annual conference on Computer graphics and interac-
tive techniques, pages 223–231. ACM Press, 1984.

5

(a) bumpmap shadows by the previous method

(b) bumpmap shadows by the proposed method

Figure 6. Bumpmap shadows on a Bezier sur-
face.

[11] L. Williams. Casting curved shadows on curved sur-
faces. In Proceedings of the 5th annual conference on
Computer graphics and interactive techniques, pages
270–274. ACM Press, 1978.

[12] W. T. Reeves, D. H. Salesin, and R. L. Cook. Ren-
dering antialiased shadows with depth maps. In Pro-
ceedings of the 14th annual conference on Computer
graphics and interactive techniques, pages 283–291.
ACM Press, 1987.

[13] F. C. Crow. Shadow algorithms for computer graph-
ics. In Proceedings of the 4th annual conference on
Computer graphics and interactive techniques, pages
242–248. ACM Press, 1977.

(a) bumpmap shadows by the previous method

(b) bumpmap shadows by the proposed method

Figure 7. Bumpmap shadows on a Bezier sur-
face (heights of the bump map are inverted).

[14] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B.
Guo, and H. -Y. Shum. View-dependent displacement
mapping. ACM Transactions on Graphics (TOG),
22(3):334–339, 2003.

6

(a) bumpmap shadows rendered by using the previous
method

(b) bumpmap shadows rendered by using the proposed
method

(c) displacement mapping + shadow volume

Figure 8. Validation of the proposed method.

7

