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Abstract—Animation of a time-varying 3-D scalar
field distribution requires generation of a set of imnages
Although,
volume rendering method can be very advantageous

at a sampled time intervals i.e. frames.
for such 3-D scalar field visualizations, in case of an-
imation, the computation time needed for generation
of the entire set of images can be considerably long.
To address this problem, this paper proposes a fast
volume rendering method which utilizes orthonormal
wavelets. The coherency between frames, in the pro-

posed method, is eliminated by expanding the scalar
field into a serial of wavelets. Application of the pro-
posed method for time-varying eddy-current density
distribution inside an aluminum plate (TEAM Work-
shop Problem 7) is given.

Index terms—=Scientific visualization, Volume ren-

dering, Wavelet transform, Eddy currents.

I. INTRODUCTION

With the increase of the computer performances, time-
varying physical phenomena becomes easily simulated
according to the results obtained by the finite element
method. Utilizing an adequate visualization technique is
very important to understand and verify the results of
such simulations. For 3-D electromagnetic field visualiza-
tion, several visualization methods have been already pro-
posed [1]. Volume rendering method is one of the meth-
ods for visualizing time-varying 3-D scalar fields such as
magnetic field density or eddy-currents density distribu-
tions. Using this method, a scalar field first is sampled
at discrete points in 3-D space generating a 3-D volume
data set. Then, images are generated by projecting this
3-D volume data set onto two-dimensional screen. How-
ever, this process often requires a lot of computation time.
Therefore, in order to reduce the calculation time, several
methods have already been proposed [2], [3], [4]. These
methods successfully solves the problem of quickly gen-
erating images with an arbitrary viewpoint. When the
volume data changes with time, however, the computa-
tion time is still considerably long as a result of the pre-
processing which is necessary to be recomputed for gen-
eration of each images at each time step separately.
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Fig. 1. Basic idea of the proposed method.

In this paper, we propose a fast image generation
method for visualization of a time variant 3-D scalar fields
using volume rendering method and orthonormal wavelet
transformation. Because, volume data in general has sim-
ilar distribution between neighboring frames, the time
variant volume data is easily transformed into wavelet se-
rial along time axis, and therefore, eliminating the redun-
dancy between frames. Next, a set of images is generated
using the already transformed volume data. Moreover,
using parallel projection and light attenuation depending
on the distance from the viewpoint, the proposed visu-
alization method provides sophisticated animation with
three to four times shorter computation time than the
conventional volume rendering methods.

II. Basic IDEA OF THE PROPOSED METHOD

With the proposed method the volume data set has to
be transformed along time axis into a serial of wavelets
in order to reduce the computation time for an image
generation as shown in Fig. 1. Note that for simplicity,
in Fig. 1, a 2-D volume data is assumed and the size of
the black circles implies the magnitude of a scalar value
at each grid point. Initially, scalar values at each grid
point are transformed into wavelets and approximated so
that the approximation error does not exceed a specified
tolerance rate. Next, intermediate images are generated
from the transformed volume data by using the splatting
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Fig. 2. Basic idea of the proposed method.

method [5]. The splatting method works as follows: First,
a grid point of the volume data is projected onto a 2-D
image plane. Next, the intensity determined by the scalar
value at each grid point is added to the neighboring pixels
corresponding to the projected point. The entire image
is generated by splatting all grid points of the volume
data, therefore, the computation time for image genera-
tion is approximately proportional to the size of the vol-
ume data, i.e. the number of grid points. The resulting
images are generated using inverse transformation of the
intermediate images.

As can be seen from Fig. 1, in the transformed volume
data, low frequency components have larger values, and
higher the frequency is, the smaller its transformed value
becomes. The coherency between each time step can be
efficiently removed by eliminating the higher frequency
components that have small transformed values. There-
fore, the size of the transformed volume data becomes
smaller than that of the original data. Consequently,
the calculation time for splatting the volume data can
be reduced and hence the images can be generated more
quickly.

A. Approzimating Volume Data Using Wavelets

Let us assume V(x;,t;) to be a scalar value at an ar-
bitrary grid point x;, at time step ;. The volume data
V(x,,t;) can be expanded into series of wavelets
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where u(t) is a wavelet basis function. In the proposed
method, the Haar wavelets and the multi-wavelets, which
both are orthonormal wavelet basis, are used as wavelet
basis functions. The Haar wavelets have an advantage
of low computational cost for forward and inverse trans-
formations. However, as shown in Fig. 77, the approxi-
mated function using the Haar wavelets is likely to have
discontinuities since they approximate arbitrary function
with a ladder function. On the other hand, multi-wavelets

can approximate a function fair smoothly although the
computational cost becomes higher than that of the Haar
wavelets. The volume data, V(x;,t;), is approximated so
that the approximation error does not exceed a specified
root mean square error.

Using the orthonormal wavelet basis functions, the root
mean square error £yqve can be obtained easily accord-
ing to (2). That is, the error is equal to the sum of the
square of coefficients of removed basis functions. Utiliz-
ing properties of the orthonormal wavelet basis functions,
the volume data can be approximated using the following
procedure:

Step - 1: Sort the coefficients, cx(x;) in descending order,
and define the current number of coefficients ¢,
as I = n — 1, where n is the total number of
coeflicients in the wavelet series. After sorting
indexes k are replaced with o(k).

Step - 2: Calculate the approximation error using &:

Step - 3: If error € < &€yque, Or I = 0, then stop after
i =1+ 1, where 7 is the final number of basis
wavelet functions. Else, go to Step - 3 after

l=1-1.

Using 7 obtained by the above procedure, V(x;,
proximated by the following equation.
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B. Image Generation

Using the splatting method, intensity of a pixel p, of the
intermediate image i(p,t;), is expressed by the following
equation.
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where n,,; is the number of grid points in the volume,
h(p) is called a reconstruction kernel [5]. Equation (4)
can be rewritten using (3) as follows.
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where,

Ci,a(k) = Co(k)(xi)h(p’ Xi)' (6)
Equation (5) implies that intensity of the intermediate im-
ages is also expressed with a series of wavelet basis func-
tions. Therefore, the resulting images can be obtained by
inverse transform of the intermediate images.

C. Error Estimation

Let I(p,t;) be the intensity of a pixel p, of an image
at time step t; generated using the original volume data.
Similarly let Iapp(p, ;) be the intensity of the pixel p, of
an image generated using the approximated volume data.
Then, the relative error between I(p,t;) and Iy, (p, ¢;) is
calculated by the following equation
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The user specifies a threshold value £,4,-, in the sense of
the above relative error of the resulting images. However,
as described in the section II.A, the threshold &40, in
the sense of the root mean square error has to be specified
to approximate the volume data. Therefore, the threshold
for wavelet transform must be calculated from ¢,4.. In the
following, the calculation method of &4, is proposed.
Putting (4) into (7), the relative error is expressed with
the following equation.
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Let us assume that the absolute error of each grid point

is less than &(¢;). Then,
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We call g(p, t;) a normalized intensity. Therefore, to sat-

isfy the condition Fy.q(p,t
the following equation

i) < Eusr, £(t;) is calculated by

(11)
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Fig. 4. TEAM Workshop problem 7.

The threshold value €,q0e, used for wavelet transform is
given by the following equation

(12)
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To calculate £(f;) using (11), the normalized intensity
g(p,t;) must be evaluated for each pixel. However, the
computation cost for the normalized intensity is equal to
the generation of the resulting images. Therefore, we es-
timate the normalized intensity using the Monte-Carlo
method as follows. In order to estimate the normalized
intensity, several projection planes are placed around the
volume data, as shown in Fig.3. Then several initial
sample points are randomly generated on the projection
planes. After calculating the normalized intensity for each
sample point at each time step, additional sample points
are added around the initial sample point with high value
of the normalized intensity and the normalized intensity
is calculated again. The maximum value of the sampled
normalized intensities is used for calculating the (¢;) us-

ing (11).

III. APPLICATION

The proposed method was applied to visualize the time-
varying eddy current density distribution inside an alu-
minum plate as shown in Fig. 4 (TEAM Workshop prob-
lem 7).

A. Pseudo-Color Display

Pseudo-color is used for visualizing 3D scalar fields in
the following example. Blue is assigned to small values,
green to middle values, and red to large values.

To achieve the pseudo-color display, first, the scalar
values are converted to pseudo-color using a color map-
ping function [6]. Three scts of volume data arc gencr-
ated, each volume data corresponds to Red(R), Green(G),
and Blue(B) components respectively, as shown in Fig.5.
Next, images corresponding to R, G, and B components
are generated by applying the proposed method to each
volume data. Finally, the resulting images are generated
by superposition of the images.



color mapping
nction

I image

nage
l generation

/

l /composition

Fig. 5. Pseudo-color display.

TABLE T

COMPUTATION TIME [sec]

Proposed Method

Traditional Method

Haar Wavelets ‘ Multi—wavelets

399.3 ‘ 559.8
SGI PowerIndigo2

1643.0 H

B. Obtained Results

One time cycle is divided into 2° = 32 steps. An im-
age generated by the proposed method using the Haar
wavelets at time step ¢ = 15 is shown in Fig. 6(a). The
user specifed error, e4s» (see. sectoin ILC), is 0.02(~
5/256). Fig. 6(b) shows the relative error distribution
between traditional method [5] and the proposed method.
The maximum relative error using the Haar wavelets was
10%, while using multi-wavelets was 7%. The quality of
the generated images is very high which means that the
proposed visualization method is very useful for image
generation and animation of a time-varying 3-D scalar
field distributions. Finally, as shown in Table I, the pro-
posed method can generate the entire set of 32 images
four times faster (using the Haar wavelets) or three times
faster (using multi-wavelets) than the traditional method.

IV. CONCLUSION

We proposed a fast volume rendering method for time-
varying scalar field distributions by expanding the volume
data into orthonormal wavelet basis along time axis. Us-
ing the proposed method, high accurate images can be
generated three to four times faster than the traditional
method. As for the future work, further speeding up of the
computation process can be achieved by wavelet expan-
sion of the volume data along space axis as well as along
time axis and exploiting the coherency between both the
space and time axis.
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(a)an image using the proposed method.

(b) relative error distribution.

Fig. 6. Obtained eddy-current density distribution at time step
t =15.



