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ABSTRACT

A high precision illumination model is indispensable for lighting simulation and realistic image syn-
thesis. For the purpose of improving realism, research on global illumination has been done, and
several papers on radiosity methods have been presented. In the most recently proposed methods, the
shapes of light sources and objects are restricted to polygons or simple curved surfaces. We present a
more general method which can handle the kind of free-form surfaces widely used in industrial prod-
ucts and in architecture. The method proposed here solves the problem of the interreflection of light
(i.e., radiosities) between patches, and form-factors, which play an important role in this process, are
precisely calculated without aliasing through the use of an area sampling method (i.e., pyramid trac-
ing). Furthermore the method can handle both non-uniform intensity curved sources and non-diffuse
surfaces.

Keywords : Radiosity, Interreflection of light, Form-factor, Bézier Surfaces, Scan line algorithm,
Shadows, Penumbra

1 Introduction

Radiosity methods have been regarded as an important approach in the generation of realistic images
or lighting simulation. In general the following functions for illumination models are required: (a)
the precise calculation of illumination (including shadows), (b) light-source geometry (e.g., free-form
sources) considering intensity distribution. (c) reflection from diffuse and/or non-diffuse surfaces, (d)
the rendering of precise shapes (especially for curved surfaces). In order to satisfy all of the above this
paper proposes a more general approach for parametric surfaces.

Radiosity methods are classified into two categories; one, the method solving simultaneous equations
relating to finite patches after subdivision of the environment, and the other, that which expands ray
tracing (e.g., the rendering equation[11]). In the former, curved surfaces are approximated by using
small polygons (in this paper we refer to a subdivided polygon element); both silhouettes of objects
and intensities on surfaces are not smooth. In the latter method, the curved surfaces are restricted to
simple shapes to allow for the application of the ray tracing method; calculation of additional sampling
points for obtaining higher precision is expensive because of the point sampling process.

The method being proposed here belongs to the former category and is especially applicable to
parametric patches; surface patches are subdivided, but in such a way that they still maintain a
curved surface and so an accurate calculation is guaranteed.

In radiosity solutions using subdivisions, the form-factor is the key element. In this method the
hemi-cube method[5] has been most commonly used[9],[6],[18]. Essentially, the form-factor is deter-
mined by the fraction of the circle (which is the base of the hemisphere covering a calculation point)
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covered by projecting the elements onto the hemisphere and then orthographically down onto the circle.
The hemi-cube method approximates a hemi-sphere by using a hemi-cube. Regarding the hemi-cube
method, some papers [1][23][19] recently pointed out the problems concerning aliasing and accuracy .
These problems result both from point sampling and from the approximation to a hemi-cube instead
of to a hemi-sphere.

The algorithm proposed here has the following advantages: (1) To improve precision of the form-
factor between free-form surface patches, the contour integration method is employed. The algorithm
guarantees the required precision of the form-factor by adaptively subdividing an element based on
its solid angle viewed from the calculation point. (2) In order to take into account shadow effect,
the shadowed ratio of the subdivided element is calculated by using the pyramid composed by the
sub-element and the calculation point (we refer this hidden surface algorithm as pyramid tracing).
The intersection test between the pyramid and surface patches employs an extended version of Bézier
Clipping which is developed for ray tracing[16]. The aliasing problem is reduced because this algorithm
employs area sampling instead of point sampling used in previous methods. (3) For the radiosity of the
non-diffuse component, the two pass solution is employed. The precision is improved by taking account
of solid angle of the element. (4) In previous methods, light-source geometry is restricted to polygons
or polyhedra. In the real world, most sources are composed of curved surfaces such as bulb lamps.
The intensity distribution on the surfaces of light sources are usually non-uniform. The lighting model
proposed here can handle curved surface sources of non-uniform luminance. As sky light is considered
to be a large hemisphere with non-uniform intensities, the proposed algorithm is useful for rendering
not only indoor but also outdoor scenes.

2 Previous Work

In this section, the calculation methods of form-factors playing the most significant part in radiosity
solutions are reviewed. Since Cohen et al. first presented the hemi-cube method[5], it has been
employed in many papers. This method is useful not only for the calculation of form-factors but also
for shadow detection. The hemi-cube method basically is regarded as the z-buffer algorithm when
the center of an element is assumed as being the viewpoint. It is here that the problems of aliasing
and precision arise because of the point sampling employed in the z-buffer algorithm. The authors
previously calculated form-factors which takes into account shadows by using visible segments of the
boundaries of elements arrayed sequentially, assuming those boundaries as linear light sources[13].
Though this approach is more accurate than point sampling approaches by virtue of the fact that it is
a line sampling, this method is restricted to convex polyhedra.

To improve the precision of form-factors, Baum [1] solved form-factors analytically, instead of
using the hemi-cube method, but only for elements where large errors occur (e.g., between adjacent
elements).

The hemi-cube method is also regarded as hidden surface removal using rays firing from the center
of an element (a calculation point); the elements to be detected sometimes exist between rays, and
the aliasing problem occurs because of sampling miss. Wallace et al. solved this problem by firing the
rays from the elements to be detected to the calculation point[23]. Since the number of rays fired from
each element is very few (or only one) in their examples, this method, however, still lacks precision. In
other words, it is difficult to arrive at a precise solution with this method because of its use of point
sampling. Sillion [20] also employed this method.

In the hemi-cube method, the five surfaces on a hemi-cube other than the base surface are considered
as screens; sampling is then done at each pixel on the screens. Sillion [19] used only one large screen
corresponding to the top surface of a large hemi-cube, and employed hidden-surface removal using
area coherence, such as Warnock’s algorithm[24], on the screen after projecting the elements onto it.
This method can be regarded as a kind of area sampling; the screen is subdivided into a variable-size
mesh (each subdivided cell is called a proxel), each proxel contributes about the same amount to
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the form-factor. The form-factor for an element is calculated by integrating every proxel within the
visible parts of the element. However, the errors in calculation cannot be avoided since the mesh does
not have radial symmetry, as the authors themselves point out. Recently Baranoski[2] developed the
parametric differential method of form-factors for curved surfaces. However, the method is applied
only for spheres, and the occlusion test is performed by point sampling.

Radiosity solution for non-diffuse surfaces was first developed by Immel[9]. This method solves
simultaneous equations by taking into account discrete directions from each element. One of the
drawbacks of this method is that the array size requires the square of the number of elements to be
multiplied by the number of discrete directions. Shao et al.[18] developed a new radiosity algorithm for
non-diffuse environments by procedual refinement so that the calculation cost for specular reflection
is reduced. However, the method still requires a large memory capacity, and there is also the problem
of aliasing. Wallace et al.[22] proposed a two pass solution by which a combination of ray tracing and
radiosity technique is adopted. Sillion et al. [19] extend Wallace’s two pass solution and the aliasing
problem is reduced. Most of the methods mentioned above do not deal with parametric surfaces. The
algorithm proposed here can deal with non-diffuse parametric surfaces. Even though the algorithm
also employs a two pass solution, precision is improved by taking into account the solid angle of the
element.

3 Basic Ideas

Bicubic Bézier surfaces are used in this paper because almost all surfaces can be converted into these.
Curved surfaces are subdivided into sub-patches. In this paper we refer to an original surface as a
patch, and a sub-patch as an element. To calculate form-factors, elements are adaptively subdivided;
these subdivided elements are referred to as sud-elements. No element has polygonal approximation
but it still maintains a curved surface, and its edges are also curves even though each sub-element
is approximated by a polygon. Before discussing on form-factors, the basic idea of hidden surface
removal for parametric patches is described because the idea is used to calculate form-factors taking
into account shadows. In our method, full-matrix radioaitity is used.

3.1 Hidden surface removal of parametric surfaces

We propose three algorithms to realize precise hidden surface removal of parametric surfaces. Our
hidden surface removal is an extension of Lane and Carpenter’s algorithm[12]: in their method curved
surfaces are subdivided into polygons on each scanline, but small gaps arise between approximated
polygons. We solved this problem by subdividing curved surfaces on each scanline into nearly flat
subpatches with curved edges, which are rendered by scanning.

For the scanning algorithm, we employ the author’s scanline algorithm[17]using Bézier Clipping[16]
because of the following advantages: Bézier Clipping is an iterative method which takes advantage of
the convex hull property of Bézier curves, provides more robust convergence to the solution than
Newton’s method, and can be used to find a solution for curve/plane, surface/plane, and ray/surface
intersections.

As a post-processing step, a ray tracing algorithm[16] suitable for Bézier patches is used to display
reflected objects.

3.2 = Form-factors

Form-factors are generally obtained by summing/integrating differential form-factors (i.e. a point-
element form-factor or an area-to-differential-area form-factor). We discuss here on differential form-
factors. Since form-factors depend on the apparent area (solid angles) of an element viewed {from a
calculation point (i.e., the center of a differential area), the boundary shapes of elements affect the
precision of form-factors. In cases where boundaries are straight lines, it is well known that the contour
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Figure 1: Aliasing problems in point sampling algorithm.

integration method can be used to get an analytical solution of form-factors, which will be described
in 4.2 in detail. The authors used the contour integration method for calculating direct illumination
due to area sources[15]. Baum et al. [1] also partially used it for solving form-factors. This method is
very useful when the boundaries are straight lines, while it is difficult to obtain any analytical solution
of form-factor between the surfaces with curved boundaries.

Most algorithms have approximated free-form curved surfaces by polygons, but this gives rise to a
number of sticky problems with form-factors. When a pair of surfaces is located very close together, the
form factor becomes large, and use of polygonally approximated surfaces can introduce a large error
in the form-factor calculation. Further, if surfaces are subdivided precisely, calculation of form-factors
for distant surfaces is expensive so an adaptive polygonal approximation is desirable. The error in
surface normal vectors introduced by polygonal approximation also aggravates the calculation error.
The method presented here solves these problems by using area sampling based on pyramid tracing
which is discussed in section 4.

For form-factor calculations which take shadows into account, hidden surface removal is a very
important processing step; it is complex when free-form curved surfaces are involved. To take into
account shadows, visible segments of the boundary viewed from a calculation point must be detected;
it is difficult to guarantee adequate precision in the case of free-form surfaces. Among methods which
avoid polygonal approximation are those based on Z-buffer[7] and ray tracing[10]. These methods,
however, perform computationally expensive ray/surface intersection. To overcome this problem our
method applies the Bézier clipping method described in section 4.2: We use a hidden surface algorithm
for polygons after adaptively subdividing elements into subelements until adequate precision can be
guaranteed: uniform error distributions which user expect can be realized not like the following previous
method.

Actually, our proposed method is similar to Wallace’s [23], but his method has the following prob-
lems (Fig.1 shows the relationship between calculation point P and some source elements): (1) There is
no sampling miss for source elements, the algorithm leaves the possibility of missing obstacles casting
shadows (see element a in Fig.1). Even though the sampling point on an element exists in front of
the plane which contains the calculation point, some parts of the element are hidden by the plane (see
element b in Fig.1); in this case the error is relatively large. (2) The error arises due to approximation
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Figure 2: Example of the error distribution of form-factor (point-element form-factor ) approximated
by disks (Perspective of a hexagonal box with a rectangular source).

of an element by disks. When a pair of elements are located very close together or the angle between
the normal vector of the element and the normal vector at the calculation point is large (see element
c in Fig.1), they result in a large error in the form-factor calculation. As Baum [1] has pointed out,
aliasing between adjacent faces, such as the corner edge of a wall and a floor is significant in most
of the previous methods, and Wallace’s method is no exception. Fig.2 shows one of the examples of
the error distribution of point-element form-factor calculated by his algorithm; the error distribution
on a hexagonal floor and three rectangular walls are depicted when the source element with white
rectangular is subdivided 3 by 3. For the distant faces (blue rectangular; left side of figure), the error
is very small (less than 0.2%), but for the corner of the surface large errors (more than 40%) exist. In
our method the error is 0.05 % on every calculation point.

Further, for each ray in his method its differential area (approximated by a disk) is required, but
the calculation of the area of a curved surface is difficult, and it is necessary to calculate the surface
normal at each point on the surface. Our method requires neither area nor surface normal of each
source element.
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Figure 3: Form-factor geometry between two elements.

4 Form-Factors Using Pyramid Tracing

4.1 Radiosity equation

Assuming the form-factor from element i of area A; to element j of area A; to be F;; (see Fig.3), as
it is well known, radiance F; at element : is given by the following;

E; = Eoi + p: Y _ F;,E;, (1)

§=0

where p is reflectance, Eo; direct radiance, F; radiance at element j, and n the number of elements.
The radiance at each element can be obtained by solving the n-dimension of simultaneous equations
derived by eq. (1).

The form-factor from a differential element dA; (surrounding point P; in Fig.3) to element j is

given by,
1 cosb;cosb;
Fiaa; = —/ ——’dA (2)
ANUA

j T'J

The form-factor, which means the fraction of energy from sending element 7 to receiving element j, is

obtained by area-averaging:
s / / cost; cosGJdA i 3)

Now, the radiance due to area sources at a vertex is calculated by the use of form-factors. The radiance
at a point on element 7 is calculated by multiplying Fyu, 4,, for the point, with the reflectance of element
¢, where element j is regarded as an area source. Intensities are usually calculated by using Faih
the radiance is calculated at the center of a receiving element, for example, in the hemi-cube method.
In previous methods, as Fj; is calculated by using the relationship, Fj; = A;i[A;F;j, the areas, A;, A;,
are required.
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Figure 4: Contour integration for area source.

4.2 Proposed algorithm

The area of each element is necessary for the calculations of the form-factor in eq. (3). The areas are
also necessary for the conversion from Fgs, 4, to Fya,a,.It is, however, difficult to get precise areas
because of free-form surfaces. In the proposed method using Fy4,4;, the area of any receiving element
is not required; radiance is calculated at every corner of the receiving element.

Let’s discuss how to calculate form-factors using the contour integration used for polygonal sources.
If the source is the m-sided polygon, calculation is simple; the following contour integral can be
employed (see Fig.4).

1 m
le= E;ﬂ;cosé;, (4)

here ; is the angle between vectors PQ; and PQ;, ,, and §; is the angle between the normal of triangle
PQ;Q;4; and the normal of the plane including point P.

In order to apply equation (4)to curved surfaces, the following polygonal approximation is required.
Essentially, the form-factor is determined by the fraction of the circle covered by projecting the elements
onto the base of the hemisphere. Then the number of subdivision of boundary curves into line segments
is determined by the flatness test[12] using control points of a Bézier patch on the base circle after
projection. When shadow effects are considered, the subdivision of boundary curves is not sufficient.
To simplify the calculation, the following algorithm is used.

If the form-factor of an element is small, the approximation error is ignored. Therefore, after the
calculation of the approximated form-factor described in the next subsection, the element is subdi-
vided into sub-elements in order to applying the contour integration for boundaries of the subelements.

4.2.1 Approximated form-factor for element

As shown in Fig.5, we set the bounded area of a projected element on the base circle. The form-
factor is calculated by employing this area. This is equivalent to the projected area of band source
used for sky light [14]. The band is determined by two planes, which contain z-axis and bound every
control points of the element: the interval of the band is obtained by the minimum and maximum
angles (Qmin and Qmaz) of control points from the z-axis. The form-factor (i.e., the projected area of



C-392 T. Nishita et al. / Radiosity Using Area Sampling for Parametric Patches

Y projected element

yma:

/—
//$ element 7,,;, / /
7

COSQUpmin COSQpgy

(a) projection onto hemisphere (b) projection onto base circle

Figure 5: Approximated form-factor for element bounded by band element.

the band) is derived by the following equation;
F = (maz = Imin)(E(¥min) = E(¥mas)), (5)
where
E(a) = (a = cosasina)/(27) (0 < a < 7),

coso is determined by the inner product between z-axis and the vector from the calculation point to
control point F;j, and ¥,,;, and ¥,,,, are determined by ¥;; which is defined by

i = Yy \JY5 + 28, (6)
where (X;j,Y;;, Zij) are control points of the element. Note that when the element is a light source,
high precision is required even though the form-factor is very small. Then the number of element sub-
division is propotional to the function s(= F intensity of light). If s is smaller than a given tolerance,
we may approximate the form-factor by F (the shadow detection also ignored). As shown in Fig.5(b),
it is clear that the true form-factor does not exceed F.

4.2.2 Form-factor calculation taking account of shadows

As mentioned before, to apply contour integration to the calculation of form-factors, visible seg-
ments of boundary curves should be detected. In the case of free-form surfaces, the detection of
segments is complicated, even though it is easy for polygons. Then each form-factor is calculated by
multiplying the form-factor of the subelement mentioned before by the shadow ratio, which is the ratio
of visible parts to the whole subelement area; the shadow ratio is obtained by the following method.

Even if a boundary of the subelement is a curved line, the element can be approximated by a 4-sided
polygon because the element is subdivided sufficiently small to get an adequately precise form-factor.

The shadow ratio is obtained by the intersection test between the pyramid composed of the cal-
culation point and the 4 corners of the subelement and each surface patch(see Fig.6(b)). This test is
performed on a 2-D plane using the Bézier clipping method[16].

It’s assumed here that the origin of the coordinate systems is the calculation point, the z-axis
coincides with the normal at the calculation point, the z-axis is set in an arbitrary perpendicular
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. Figure 6: Pyramid tracing using Bézier Clipping.

direction to the z-axis, and a plane(z = 1) is the projection plane (see Fig.6(a)). The control points
of each Bézier patch are projected onto the projection plane. Let’s consider Bézier surface P(u ) of
degree n. The projected patch is calculated by

E?:o Z;=o w;jzi; B (u)B}' (v)

) S L e w BB )
_ Lico Lj=oWij¥i; BF(w)B} (v)
W) = e e ws BB () %

where B is the Bernstein polynomial given by B (u) = (*)u*(1—u)""*. The homogeneous coordinates
(@i, yij, wij) of each control point P;; of a surface on the projection plane are given by

Lk i iy WG BL iil &g M & Wy Lis (8)

where (X;;,Y;;, Zi;) are control points of Bézier Patch, and w;; is a control point weight.

Even though Bézier clipping was developed for ray/surface (or point/surface on 2-D plane) test,
we can employ this for the extraction of the overlapped area between the surface patch and a specified
region; the interval of parameters, v and v, which overlap the region are extracted, then the patch is
clipped by using these intervals.

First, let’s discuss the subdivision of component u by considering patch P(u,v) and subelement Q
in Fig.6. In the figure the direction of line L, is the same as the average direction of two edges of the
patch, PooFPon and ProPpn, and the line passes through the origin of the projection plane.

The distance d from an arbitrary point (z,y) to line L, on the projection plane is given by

d(z,y) = az + by + ¢, (9)
where (a,b) is the unit normal of L, (i.e., a® + b2 =1), and ¢ = 0 because L, passes through the
origin.

The projected subelement is enclosed by two lines, L; and L, (see Fig.6). Within the bounded
region the following relation is satisfied:

Wt > d(CL‘, y) > dmin» (10)
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where

dmaz = max{doo, do1,d11,d10} ,  dmin = min{doo, do1,d11,d10}, (11)
dij = d(a’:'j’y;l‘j) (i’j :Ovl)

where the four points (z{;,i;) are corners of the subelement.

Patch P can be clipped by the band between L; and Lo; clipping is performed to satisfy the two
conditions, d! = d(«,y) — dmas < 0 and d? = d(2,y) — dmin > 0. Substituting P(u,v), z and y in
equation (7), into equation (10) yields the following equation (d becomes a function of » and v instead
of z and y)

n

dl(u,'u) = ZZd}jB? (w)B}(v) > 0, d*(u,v) = Z Z d?jB?(u)B;-‘(v) <o, (12)

i=0 j=0 i=0 j=0
where
d; = wijlemi; +byij +¢*) (k=1,2), (13)
& = ¢ — dpin, c2=C_dmaz-

Therefore, by using Bézier Clipping it is possible to find the interval of u satisfying the relationship
dmas 2> d(%,v) > dpmin. When some control points exist behind the surface including calculation point
P, the points can not be projected, so the following equation in 3-D space is used instead of equation

(13).
dij = Wi(aXi; +bY; +¢42;) (k=1,2). (14)

For the v-component of the surface patch, the same algorithm as mentioned above is used. After
extracting the intervals of 4 and v-components, the surface patch is clipped. As shown in Fig. 6(b)
a small patch (solid line) is obtained. It is guaranteed that some regions of the patch overlapping
onto the subelement will always remain. If the intervals are not small enough, the surface patch is
subdivided recursively. If equation (12) is not satisfied, the patch does not overlap; this test is very
simple because of the convex hull property of the Bézier surface; if every control point exist outside
L, and L, (i.e., d,-lj < 0 for every P;; or d?j > 0 for every P;j), the patch does not overlap.

In order to save calculation time, the bounding box test on the projection plane is performed before
the above test; the maximum and minimum of y coordinates are used for equation (6).

By using the test mentioned above differential patches overlapping the subelement are obtained.
Since these subpatches are small, they can be approximated by polygons. The visible area of the
subelement is calculated by conventional hidden surface removal algorithm for polygons such as the
Weiler-Atherton clipping algorithm, scanline algorithm, or Z-buffer algorithm (hardware). In this pa-
per a scanline algorithm is employed.

4.2.3 Specular reflection

In this paper Phong’s reflection model is employed. In general point sampling (or ray tracing) is
used for the calculation of specular reflection. Here we consider the solid angle of the source element.
In Phong’s model, specular reflection I, for the element is expressed by[21]

1
gt )/(R-L)”dw, (15)
27 Q
where R is the reflected vector, L, the light vector, Q, the solid angle for the element, Iy, the intensity
of the source element, r,, specular reflectance, and n, the degree of sharpness. Even though the
analytical method for the specular reflection of area light sources has been developed by Tanaka [21],
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this method is not applicable to shadow effects. We use the following numerical method; equation (15)
is descretized

T o
1. :IoT,( 5 )E(R-Lk) Awg, (16)

where Awy, is the solid angle for subelement k, and m is the number of subelements. The solid angle
of a subelement is obtained by the its form-factor because it is defined by the projected area of the
solid angle onto the base circle of unit hemisphere. The solid angle is calculated by dividing the form-
factor by cosy angle of which is formed by the direction from the calculation point to the center of the
subelement,L;, and the normal at the point. If the inner product between vector R and the vector
Ly, is larger than a given tolerance €;, rays are increased to calculate the term of (R - Ly )™ precisely
(Lg is distributed on the subelement). On the other hand, if the inner product is smaller than a given
value €3, the calculation can be ignored. That is, for the elements towards the reflection direction the
sampling points are increased, else the specular component can be ignored.

5 Curved Surface Sources

Intensities on the surface of a source are not always uniform; e.g., a bulb lamp has stronger intensity
around its illumination axis. Curved sources are dealt with in the same manner as the illuminated
elements mentioned in the above section; by subdividing the curved surfaces into small curved elements,
the sampling method mentioned above can be applied. The proposed method can also deal with non-
uniform intensity sources with perfect diffuser (i.e., Lambertian source) by specifying intensity at
every corner point of each element; the intensity of each element is estimated by the average value of
intensities at the four corners of the element. Note that a curved source is different from a flat source
because of its sometimes cutting the light by itself, which is why the shadow processing described in
the previous section is necessary. Sky light is considered to be a large hemisphere called a sky-dome;
sky luminance has non-uniform distribution, and the distribution and spectrum depend on the sun
position[14]; the algorithm proposed here can be applied to sky light.

6 Patch Subdivision

Cohen et al.[6] developed an adaptive subdivision method in which environments are subdivided into
small elements and further subdivision is done for areas with high radiance gradients - a binary sub-
division technique splitting an element into four smaller elements. In this method, however, once a
curved patch is approximated by polygons, the further subdivided polygons do not always exist on
the original surface. Campbell et al.[3] recently developed new adaptive subdivision methods for dis-
playing shadow boundaries, but these methods are limited to polygonal environments. The proposed
method also employs adaptive subdivision, but the subdivided elements are still curved surfaces; This
means that the algorithm guarantees exact surfaces after further subdivisions. In our method, the de
Casteljau Algorithm, which is well known, is used for the subdivision of Bézier patches.

Generally, we find some areas with high gradients of intensity, such as neighbors of shadow bound-
aries and light sources (the intensity follows the inverse-square law of distance). Since these areas
depend on direct light from the sources, the elements to be subdivided are detected after calculation
of direct illumination. If the intensities at the four corners of an element are considerably different,
the element is subdivided into four sub-elements; this process is similar to the adaptive supersampling
used in a ray tracing algorithm. If there are still larger differences between those subdivided elements,
the elements are subdivided again.
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(a) torus source (b) sky light

Figure 7: Basic Examples.

7 Rendering

7.1 Hidden surface removal

As mentioned in section 3, hidden-surface removal is done by scan-line algorithm[17]. Patches are sub-
divided into almost flat sub-patches, the intersections between scanlines and the edges of sub-patches
are calculated. Since intersection segments between the scan line and sub-patches are assumed as
straight lines (after finding intersection points), the visible segments are obtained by using a conven-
tional scan-line algorithm. One of advantages in the proposed method is that the same technique,
Bézier Clipping, used for calculation of the form-factor, can be used.

7.2 Shading at each pixel

In methods developed until now, both direct and indirect intensities at inner points of an element are
interpolated by using the intensities of its corners. Since the intensity gradient of a direct component
is relatively large especially around shadow boundaries, it is difficult to render fine variation even if
the subdivision of elements is considerably dense. To overcome this, direct and indirect components
are stored in separate arrays, and then all of the indirect components and the direct components with
small gradients of radiosity are interpolated from intensities at the four corners, and only the remaining
direct components with large gradient of radiosity are calculated at every few pixels.

8 Examples

Fig. 7 demonstrates two basic examples of the proposed method. Fig. (a) is an example displaying non-
diffuse surfaces illuminated by a curved light source; a teapot with a non-diffuse surface is illuminated
by a torus source which is a perfect diffuse source; highlights are observed. Fig. (b) is an example of a
curved object with a non-diffuse surface illuminated by a curved source with non-uniform intensity; the
object is illuminated by sky light (i.e., a large hemi-sphere) with clear sky luminance distribution[15]
and direct sunlight. Here the sun is treated as a small area source whose apparent angle is only 16
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minutes, even though it is usually dealt with as a parallel light; most previous radiosity approaches
may have shadow problems due to very small light sources such as the sun.

Fig. 8*(a) displays the lighting effects of an interior (a room with a curved wall) illuminated by
direct and indirect lighting; two curved sources are set on the ceiling and on the left wall, and two
hidden sources, a rectangular source and a curved source, are put behind the walls. All curved surfaces
in the room, the curved wall and pots, are dealt with as non-diffuse surfaces, while the others are diffuse
surfaces. For the mirror the ray tracing method is used. In this figure, 79 Bezier patches(1700 elements)
are used, and the cpu time is 18.5 min.(500 x 400 resolutions) by using Iris Indigo Elan(R4000).

Fig.(b) shows a racing car illuminated by two area light sources. The scene is composed by 762
Bezier patches(5440 elements), and the cpu time is 74.7 min.. Fig.(c) shows a lobby (data from
Yamagiwa Co. Ltd.) as a practical example. There are 4 light sources, a large curved boundary
source (ellipse-like) surrounding by a concave curved surface, a rectangle source in the elevator, two
hidden vertical rectangle sources (left side of the curved wall and left side of the elevator). This scene
is composed of 81 Bezier patches(1450 elements). The cpu time is 95.2 min.(500 x 400 resolutions). In
Fig.(a) and (c), light sources are very close to the ceiling or walls, and lit them; the proposed method
is effective for such close light sources.

Fig.(d) shows a conference room illuminated by 24 area light sources. This scene is composed of
919 Bezier patches(7520 elements). The cpu time is 518.7 min..

The method proposed here is useful for lighting pre-evaluation including such complex curved
sources and surfaces.

9 Conclusion

A calculation method with accurate radiosities for environment including curved surfaces has been
discussed. The advantages are as follows;

(1) The method can calculate radiosity for diffuse and non-diffuse parametric surfaces.

(2) Precise form-factors with anti-aliasing are calculated by using an area sampling(pyramid trac-
ing); no sampling miss occurs even for small elements.

(3) The method gives sufficient precision of radiosities and effective adaptive subdivision of elements
with high intensity gradients because of non-polygonal approximation.

(4) The method can deal with curved light sources with non-uniform intensity distribution.
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T. Nishita er al.: Figure 8. Application in lighting of an interior taking into account of interreflec-
tion.








