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Abstract

For rendering curved surfaces, one of the most popular techniques is metaballs, an implicit model based
on isosurfaces of potential fields. This technique is suitable for deformable objects and CSG model.

For rendering metaballs, intersection tests between rays and isosurfaces are required. By defining
the higher degree of functions for the field functions, richer capability can be expected, i.e., the smoother
surfaces. However, one of the problems is that the intersection between the ray and isosurfaces can
not be solved analytically for such a high degree function. Even though the field function is expressed
by degree six polynomial in this paper (that means the degree six equation should be solved for the
intersection test), in our algorithm, expressing the field function on the ray by Bézier functions and
employing Bézier Clipping, the root of this function can be solved very effectively and precisely.

This paper also discusses a deformed distribution function such as ellipsoids and a method displaying
transparent objects such as clouds.

Keywords : Metaballs, Blobs, Soft objects, Density function, Ray tracing, Bézier Clipping,
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1 Introduction

The representation of free-form surfaces can be classified into two: parametric surfaces and implicit
surfaces. For the former, Bézier patches, B-spline patches, and NURBS are used. For the latter, a set
of density functions such as metaballs[4] (blobs[1] or soft objects[11]) is often used; in this method, a
curved surface is defined by an isosurface which is a set of points having the equi-potential field value.
The field value at any point is defined by distances from the specified points in space. The features
of the metaballs are as follows: (1) the required data for metaballs is typically at least two to three
orders of magnitude smaller than that modeled with polygons[2], (2) it is suitable for use in the CSG
model, (3) it is suitable for the representation of deformable objects, so it is useful for animations. (4)
it is well suited for modeling of human bodies, animals, organic models, and liquids.

Because of such a usefulness, many commercial software packages implement such modeling tech-
niques (2]. The metaball technique has become a most indispensable technique in 3-D graphics software
these days, but its improvement in its modeling capability and calculation time are still desired.

The main task for rendering metaballs is intersection tests between rays and isosurfaces. When
the field function is defined by a high degree of function, the modeling capability becomes rich; we
can expect the surface to become much smoother. However, since the intersection between a ray and
isosurfaces can not be solved analytically for such a high degree function, a robust method with high
precision is needed. In this paper, the field function is expressed by degree six polynomial, so the
degree six of equation should be solved for the intersection test. In the proposed algorithm, the field
function on the ray is expressed by Bézier functions, so the root of this function is effectively and
precisely solved by using Bézier Clipping [6] which uses the convex hull property of Bézier curves.
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It is well known that if we use ellipsoid metaballs instead of spheres, the number of elements to
represent free-form surfaces can be decreased in some cases. The proposed method is also applicable
to ellipsoids. The metaball technique is also useful for displaying transparent objects such as clouds.
We demonstrate the usefulness of the proposed method by using various examples.

2 Previous Methods for Field Functions

In the metaball technique, a free-form surface is defined as an isosurface(equi-potential surface) of field
function; The field value at any point is defined by distances from the specified points in space. The
task of the user is to specify the center position of each metaball, its density at the center, field function,
and color. This modeling technique was first developed by Blinn[1], and he called it blods (or blobs
molecules). In Japan, Nishimura et al.[4] independently developed it, and they called it metaballs.
Recently Wyvill et al. [9][10][11] have also developed a display method for field functions, and he
called it soft objects. The main differences in these previous work are in the shapes of field functions
and the methods solving for ray/isosurface intersections. For the field functions, the following four
functions have been developed: exponential[l], piecewise quadratic, degree four polynomial, degree six
polynomial[11]. That is, the field function f; for metaball 7 is expressed by the following:
1) exponential function (Blinn[1] 1982)

fi(r) = exp(—ar?). (1)
2) piecewise quadratic (Nishimura[4] 1983)

3% P (pgrs3
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3) degree four polynomial (Murakami [3] 1987)

filr) = (1= () (3)

4) degree six polynomial (Wyvill [9] 1986)
: 64 17 T 22,7 4

where R; is the effective radius of metaball ¢, r the distance between a point from the center P;(=;, y;, 2; ).
For all functions except (1), fi(r) = 0 in the range of r > R;.

For n» metaballs, the shape of the curved surface is defined by the points satisfying the following
equation.

x y’z) thf! =0, (5)

where T is a threshold, ¢; the density values (nega.tlve values are acceptable). The normal vector at
df(z,y,2) _ df(z,y,2) _df(w,y,Z))
dz ’ d ’ dz 8

an isosurface can be calculated by (—

The drawback in Blinn’s function is that the function is not zero even at a long distance from
the center point. Wyvill et al. modified Blinn’s technique nicely. In their model, for ' = 0, f(0) =
Ll0Y= 0 ft k) =0 F (1) =1 and f(%‘) = % (see Fig.1). T = 0.5 works well. That is, when
T = 0.5, the radius of a single ball is exactly one-half. If two balls are placed at the same location, it
has twice the volume of the isosurface for a single ball (i.e., when metaballs merge, their volumes are
added together). Thus, for geometric modeling, degree six polynomial function is useful.

One of the difficulties for rendering metaballs is to get an analytical solution of intersections between
the ray and isosurfaces. Blinn solved this problem by using “regula falsi” and the Newton method.
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Figure 1: The field function of degree six polynomial (7 dots denoted the control points of Bézier curve,
T=threshold).

In Nishimura’s method, even though the degree of the field function with respect to the radius is low,
the density distribution on the ray is a function having square root, so he employed approximation
functions. Then he uses piecewise functions; even for the intersection test between the ray and a single
ball, to express the density function on the ray, the ray should be divided into three sections. This
results in the number of sections to be solved becoming huge for multiple metaballs.

Murakami employed degree four polynomial; as he employed the bisectional method, it is not robust
and has calculation errors. Wyvill employed Laguerre’s method[8] for the intersection test. Laguerre’s
method can get every real roots; but this method has a redundancy factor, because we need only one
real root (a minimum value in the specified interval) for ray tracing. According to Wyvill, solving
every root is useful for the CSG model, but even in this case, only one or two roots are required in one
interval.

We employed Wyvill’s degree six polynomial for the field function (see Fig.1) because of its capa-
bility as mentioned before. In the proposed algorithm, the density function on the ray is expressed by
Bézier functions, a single root of this function is effectively and precisely solved by using Bézier Clipping
[6], which was developed for ray tracing of Bézier patches. This is an iterative method which utilizes
the convex hull property of Bézier curves, and converges more robustly to the polynomial’s solution
than does Newton’s method. The proposed method is more than ten times faster than Laguerre’s.

3 Intersection Test Between a Ray and Metaballs

As the density is defined within the sphere of metaball, first the intersection test between the ray and
the sphere is done, followed by the intersection test between the ray and the isosurface.

As is well known, point P on the ray is expressed by using parameter ¢ (the distance from the
viewpoint):

P =Vi+ P, (6)

where V is the unit viewing vector, Po the viewpoint.
The intersection between the ray and the sphere, whose center is P; and its effective radius R;, is
solved by
At? — 2Bt + C =0, (7

whete A =1, B (P =Po)- ¥V, U= FEZ — R?. the discriminant of this equation is given by

D= B? - AC. (8)
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Figure 2: Intersection between a ray and a single metaball.
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Figure 3: Field function expressed by Bézier curve with respect to r? (4 dots are the control points of
a cubic Bézier curve).

When the ray intersects with the sphere (D > 0), the intersected interval in the parametric domain is
expressed by (see Fig.2)

B-VD<t<B+VD. (9)

For the above interval, the density distribution on the ray should be obtained to solve equation (5).
In previous methods, as the density distribution is expressed by functions parameter ¢, the equation is
complex, while in the proposed method, the function is reparameterized to the parameter within the
intersected interval of eq.(9); the function is simplified by expressing a Bézier curve within the interval.

3.1 Intersection test between a ray and a single metaball

Because there is only a single metaball, an isosurface is a sphere (see Fig.2). Let’s consider metaball 4
with radius R;. The intersection test is enough to find the intersection points between the ray and a
sphere with a relatively small radius (< R;): Its radius is calculated as follows:

Assuming 7' = (RL,)Q , the expression in equation (4) becomes a cubic polynomial in 7'. By
converting to a Bézier function, equation (5) is expressed by

1) = Zd;’cBi(r’) . (10)
k=0

where (%, dy) (k=0,1,2, 3) is the coordinates of the control points of the Bézier curve (see Fig.3); df) =

L = %,d; = d = 0. B is the Bernstein polynomial and is expressed by B (u) = (P)ub(1 — u)*—*

for degree n. Fig.3 shows the control points of equation (10) for T = 0. In this case, the isosurface is
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Figure 4: Density distributions expressed by Bézier curves on the ray.

a complete sphere (the dotted circle in Fig.2). The 7' satisfying equation (10) can be solved by Bézier
Clipping, then the intersection point between the sphere and the ray is calculated. As shown in Fig.3,
the radius r for T' = 0.5 is exactly one-half of R; because of 7' = 0.25.

3.2 Intersection test between a ray and multiple metaballs

First we consider metaball : with radius R;. The length of the intersected interval is 2¢/D (see equation
(8) for D). Let’s consider a parameter s;(0 < s; < 1) within the intersected interval between the ray
and the sphere (see Fig.2). Assuming a; = ﬁ% and 7 to be the distance between point P on the ray

and the center of the sphere, F;, the radius ratio 7’ (= (R#)Z) is expressed by
r'(si) = 4a;5? — 4a;s; + 1. (11)
By substituting this equation to equation (4), the density function f; on the ray is expressed by

256
flo) = -Ba2sd 4

768 16
e

32 30
g s+ ?(5 — 48a;)a?s? + -9—(8a; - 5)als? + —g—a?s?. (12)

By converting equation (12) to a Bézier curve, f; is expressed by
6 .
f{5YE 3T Bi(s), (13)
k=0

where (%, di)(k = 0,1,..,6) are coordinates of control points; d;, are as follows:

16 (8a; + 5)a?
0=di=ds =d¢ =0, dy=dy g7% 4 T ’ (14)
2
When s; = 0.5, the function has a maximum value, f;(0.5) = -(-4-51_;5—)'1‘-, where 7/(0.5) = 1 — a;. That
is, this function is a symmetric function centered at s; = 0.5, and is a simple function because only

three of d are non-zero; for example, when a; = 1, dy={ 0, 0, 0.59, 2.31, 0.59, 0, 0} (see
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Figure 5: Calculation example of composition of two density distributions.

control points di in Fig.4). Though this method is applied to the degree six field function (see eq.(4)),
it can be applied to field functions with any even number of degree (for odd number of degree, the
density distribution can not be expressed by 7'). Then the method is also applied to the degree four
polynomial of eq.(3). For degree four filed function, the density function on the ray is more simple (see
Appendix).

For a section which intersects with a single sphere (section A in Fig.4), the intersection is calculated
by the method described in 3.1. But for a section which intersects with multiple spheres (section B in
Fig.4), the intersection test is carried out as follows:

As shown in Fig.4, Bézier curves, fi and f,, are clipped by the interval to be tested (i.e., section
B in Fig.4), then both of the clipped curves are composited. This composite process of the curves
is very simple, it is performed by simply adding each control points di belonging to f; and fo; i.e.,
d}c? = d,lc + d%(k =0,..,,6). After compositing the curves, the new curve, f;9, is expressed by a degree
six Bézier curve, then the roots are found by using Bézier Clipping. The intersection test is done in
order for each interval from the viewpoint: The minimum root of s in the interval is found.

In Bézier Clipping, if there is a possibility of having multiple roots, the curve is split in half and
Bézier clipping is resumed on each half. In this step, by first processing the half with the smaller
parameter, the smallest root can be found first. The well known de Casteljau subdivision algorithm is
applied for the subdivision. For opaque objects, only one intersection point closest to the viewpoint is
required. Once the first root (a minimum real root) is found, the process is stopped. For displaying
transparent objects, every root in each interval is required. But fortunately this method can output
the roots in order of distances from the viewpoint, so the sorting process is unnecessary.

For clarifying our model, a calculation example having two metaballs, B; and B,, on the ray is
described below (see Fig.5). The density functions, f; for metaball B, and f, for metaball By on
the ray, exist on the intervals [2 5] and [4 6], respectively, in the parameter domain (t in this case).
The intersection test for interval [4 5], which is the intersection of f; and f,, is described here. f;
and f, are expressed by parameters s; and sz, respectively. And the composited function, fi2, Is
expressed by parameter sj5. Let’s consider the density values, q; and gs for both metaballs as 1
(i.e,, g1 = g2 = 1), and a used in equation (11) for B; and Bj to be 0.5 and 1 (i.e., a1 = 0.5,ap =
1), respectively. By using (14), the coordinates of the control points of density functions are di={
0, 0, 0.148, 0.4, 0.148, 0, 0}and d2={0, 0, 0.59, 2.31, 0.59, 0, 0 }. To express these functions
by parameter s, defined in the interval [4 5], f; and f, should be subdivide at s; = 0.666 and at Sy =
0.5, respectively. After subdivision we can get new functions, { 0.15, 0.12, 0.08, 0.04, 0.01, 0, 0
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}and {0, 0, 0.15, 0.51, 0.83, 1, 1}. By adding these coordinates of the control points, those of
the composited function fi2 are { 0.15, 0.12, 0.23, 0.55, 0.84, 1, 1 } (see Fig.5(b)).

The root, s12 = 0.46, is obtained by applying Bézier Clipping to fio — T = 0, where T' = 0.5. By
converting from s;2 to ¢, distance ¢ (= 0.46(5 — 4) + 4: see Fig.5(b)) from the viewpoint is obtained,
and (z,y, z) coordinates at the intersection point can be calculated by using equation (6).

3.3 Process for ellipsoids

In this subsection we demonstrate that the proposed method using Bézier curves can be applied to
ellipsoids.

Let’s denote the viewpoint FPy(zo, Yo, 20), and unit viewing vector V(V,, Vy, V2). For simple de-
scription, consider an ellipsoid with center at the origin and radii a, b, and c in x, y, z axes. Then the
coeflicients 4, B, C in equation (7) for the ellipsoid are expressed by

A=(Zp ey Ly, B=

Zo 20

Vs V, V.2
mhe o AEED el o (=

a? b2 ez’

= ¥ -1. (15)

By using these coefficients A, B, and C, the discriminant is obtained from equation (8), and the length
between two intersections of the ray and the ellipsoid is 2—‘{4—5. 7'(s) is obtained by using equation (11)

by setting a; = %, and the density function on the ray is obtained by equation (13). For arbitrary
ellipsoids, 4, B, C' are calculated after rotation and translation of V and P,.

4 Comparisons of Computation Time

The comparisons between our method and Laguerre’s in terms of computation time is discussed here.
Wyvill employed Laguerre’s method [8] to find roots of degree six polynomial. The comparisons are
as follows:

(1) In Laguerre’s method, the roots necessary are selected after finding all roots: n roots should
be found for the degree n equation. In the ray tracing method, however, one positive minimum root
is enough. In our method, only the minimum root within the specified interval can be solved. In the
case of rendering transparent objects, all roots required in a specified interval can be solved in order
of distances from the viewpoint.

(2) For finding sections having no root, as the density function on the ray is expressed by Bézier
curves in our method, it is easy to test by using the convex hull property of Bézier curves; if every
value of dy in eq.(13) is positive (or negative), no root exists. In Laguerre’s method, however, the
result is only obtained after finding all roots.

(3) Bézier clipping uses only linear equations in each iteration, while Laguerre’s method includes a
square root in each iteration.

Many overlapped metaballs are usually required to get smooth surfaces in practical applications.
As a result, the number of metaballs on a ray is large and many intervals to be solved exist, but
fortunately only very few intervals have roots. In some cases, more than 50 metaballs exist on a ray.
In our examples (see section 6) only 10 to 30 % of the intervals have effective roots (10% would mean
that the first time a root is met is the 10th interval from the viewpoint). A quick test as to whether
each interval has some roots or not is very important in metaball technique. For this reason, the
proposed method is very effective.

The comparison of computation time for testing our method and Laguerre’s is as follows: Table
1 shows the computation time of the degree six polynomial of equation (5) in several thresholds T's;
equation (14) is used for the control points (a = 1, dy={ 0, 0, 0.59, 2.31, 0.59, 0, 0 }; see fo
in Fig.5). As shown in Table 1, our method is almost ten times faster than the Laguerre’s method
in the case T'= 0.5. For T'= —0.2 and T = 1.2, any root does not exist in a specified interval (i.e.,
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0 < s < 1). In the case an interval having no roots, our method is 30 to 200 times faster than the
Laguerre’s method.

More than half of the intervals have no root as described above, so the total processing time of
our method, irrespective whether roots exist or not, is very short. As calculated from Table 1, in
the case of 30% of intervals having roots, our method is 25 to 200(i.e.,1.18 x 70% + 1.17 x 30% :
0.04 x 70% + 0.12 x 30%) times faster than Laguerre’s.

Table 1: Comparison of cpu times for filed function of degree six polynomial (terminate condition :
tolerance is 0.001)

T Laguerre’s method Bézier Clipping
(msec.) (msec.)
-0.2 0.934 0.006
0.5 1 0.12
1.2 1.18 0.04

5 Rendering Transparent Objects

Rendering transparent objects is required to display inner structure such as in a human body or density
distributions such as clouds. The intersection test between rays and isosurfaces can be carried out by
using the technique described in the previous section, but the subject in this section is how to calculate
the intensity of distributed density taking into account scattering/absorption effects due to particles in
space. The density distribution of particles play an important part. In our model multiple scattering
is ignored.

Intensity arriving at one’s viewpoint P, from point P;, I,, is calculated by

Py
I, = Iyexp(7(Lys)) + / I F(¢)pexp(r(l))dl, (16)
where I is the intensity at P, (behind the transparent objects), 7(Lyp) the optical length between
P, and P, (7 is obtained by integration of densities), L,, the distance between P, and P, I, the
incident at P on the ray, F(¢) the phase function (this is the function of angle ¢ between the incident
direction and the scattering direction), p the density of particles, [ the distance between P and P,
(i.e., integration variable).

There are two cases, uniform density and non uniform density of particles. For uniform density, the
analytical solution can be obtained, while for non-uniform density the numerical integration along the
ray is required. For the calculation of the density distribution on the ray equation (13) can be used.
The main purpose of this paper is not to discuss a shading model, so the details of the integrations
are omitted. See reference [5],[7], because the basic ideas are from these references.

6 Examples

Fig. 6 shows some examples. Fig.(a) shows the stomach and the intestines consisting of 190 metaballs.
Fig.(b) and Fig.7(a)"show a killer whale (the killer whale consists of 890 metaballs and the water
bottom consists of 740 metaballs). Fig.7(b)*shows an example of ellipsoids; the hand consist of 94
metaballs (the ellipsoids are used for the fingers).

The calculation was done on an IRIS CRIMSON. The computation times for Fig.6(a),(b), Fig.7(a),
and (b) were 25.9 sec., 35.4 sec., 159.8sec., and 28.8 sec, respectively (image width=512 pixels). In
these examples the average number of iteration for a single intersection is only 2.0.

Fig.8 shows an example of transparent objects with nonuniform density; the clouds consist of 77
metaballs. The computation time is 226.9sec. In this case, the cpu time is relatively slow because the
numerical integrations of the density are included.

* See page C-533 for Figure 7.
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Co (b)

Figure 6: Examples of metaballs.

As is shown in these examples, the proposed method is very effective for rendering objects consisting
of a large number of metaballs.

7 Conclusions

As shown in the examples, the proposed method gives us photo-realistic images with smooth surfaces.
In the proposed algorithm, the field function on a ray is expressed by Bézier functions, the root of this
function is effectively and precisely solved by using Bézier Clipping. The conclusions of the proposed
method are as follows:

(1) In this method, the density function on the ray is reparameterized to the parameter within an
intersected interval; the function is simplified by expressing the Bézier curve within the interval,
and the root finder is accelerated while maintaining the required precision.

(2) Intersection tests are performed by Bézier Clipping resulting in few iterations. Especially, it is
very fast in the case of them being no root in an interval.

(3) The proposed method can be applied to field function expressed by any even number of degree
of polynomial; even if more ideal density functions are found in the future, the basic idea of the
proposed method can be applied to them.
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Appendix : Distribution on a ray in case of degree four field function
By substituting v’ in equation (11) for the field function of equation (3), the density distribution
on the ray expressed by parameter s; is

fi(si) = 16a2 (s} — 253 + 5?) (17)

By converting equation (17) to a Bézier curve, coordinates of control points in equation (13), di, are
as follows: .
do=dy=d3s=ds=0, dy = ga?. (18)

The equation (18) is a very simple function because only dy is non-zero. When s; = 0.5, the function

has a maximum value, f;(0.5) = a2.
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T. Nishita et al.: Figure 7. Examples of metaballs. (a) 1630 metaballs, (b) 94 metaballs including
ellipsoids









