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Abstract
Animations of hair dynamics greatly enrich the visual attractiveness of human characters. Traditional simulation
techniques handle hair as clumps or continuum for efficiency; however, the visual quality is limited because they
cannot represent the fine-scale motion of individual hair strands. Although a recent mass-spring approach tackled
the problem of simulating the dynamics of every strand of hair, it required a complicated setting of springs and
suffered from high computational cost. In this paper, we base the animation of hair on such a fine-scale on Lattice
Shape Matching (LSM), which has been successfully used for simulating deformable objects. Our method regards
each strand of hair as a chain of particles, and computes geometrically derived forces for the chain based on
shape matching. Each chain of particles is simulated as an individual strand of hair. Our method can easily handle
complex hairstyles such as curly or afro styles in a numerically stable way. While our method is not physically
based, our GPU-based simulator achieves visually plausible animations consisting of several tens of thousands of
hair strands at interactive rates.
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1. Introduction

Simulating the dynamics of a full head of hair (i.e. typi-
cally one hundred thousand hair strands) has, for a long time,
been a challenging task in computer graphics. The difficulty
mainly stems from the computational cost and numerical
stability, especially in the interactions between individual
strands of hair, which are essential for animation. Other im-
portant concerns for hair simulation include how to model
each strand to represent various hairstyles; many recent tech-
niques handle hair as clumps or a continuum to avoid the
computational issues and focus on specific hair styles such
as straight only [BNC03, Osh07, TB08] or straight plus curly
hairstyles [VMT06, BAC∗06]. Recently, an extended mass-
spring model [SLF08] undertook to simulate the dynamics
of up to 10 000 individual hair strands. However, this re-
quired a complicated configuration for the spring structure
and suffered from high computational cost.

In this paper, we undertake fine-scale animation of a
large number of individual hair strands based on ‘Lattice
Shape Matching’ (LSM) [RJ07]. LSM has been success-
fully used for simulating deformable objects because it is
simple, fast and numerically stable. While LSM assumes
that a deformable object can be approximated by a set of
particles aligned in a lattice, we represent a hair strand as
a chain of particles; therefore we call our method ‘Chain
Shape Matching’ (CSM). CSM is much simpler than LSM
because it only considers deformations along a single chain.
We can immediately use the particles’ positions in the orig-
inal shape to create a chain structure, which greatly bene-
fits the design process. While a hair strand should not be
stretched, the original LSM was not concerned with stretch-
ing because it targeted deformation only. However, we suc-
cessfully integrated a stretching constraint into the LSM
framework.
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Figure 1: Animating 10k straight strands of hair (16 parti-
cles per strand, about 12 fps on the GPU), with the dynamics
of each strand of hair.

Our proposed model is not physically based, targeting in-
teractive applications including games. Our method can be
implemented entirely on the GPU and achieve interactive per-
formance for up to several tens of thousands of hair strands
(Figure 1 ).

2. Previous Work

The early research on hair simulation handled the dynamics
of individual strands of hair using the mass-spring system
[RCT91] and projective dynamics [AUK92]. However, these
methods ignore hair–hair interactions, curliness and torsion.
Hadap and Magnenat [HMT01] use a rigid multibody serial
chain to represent a hair strand which can capture the torsion
effect, but still ignore curliness. Bertails et al. [BAC∗06]
introduced a mechanical model called super-helixes based
on Kirchhoff’s theory to represent a strand of hair. The model
can capture bending, torsion, non-stretching and the curliness
behaviour of hair at high expense of computational cost.

For computational efficiency, several techniques regard
hair as disjoint groups [DTKT93, PCP02] or a continuum
[HMT01, BNC03, VMT06], limiting the degrees of free-
dom (DOFs) of the hair motion; although human hair has a

collective tendency, a high number of DOFs is required to
represent the fine-scale motion of hair blown about by the
wind. Please refer to the survey [WBK∗07] for advances on
hair modelling, styling, simulation and rendering.

Recently, mass-spring systems have commonly been used
for simulating hair dynamics. Integrations in mass-spring
systems are performed using explicit or implicit schemes.
Explicit schemes are often preferred due to the low computa-
tional cost and ease of implementation. However, for stable
simulation, the time step in an explicit scheme should be in-
versely proportional to the square root of the spring constant
(the Courant condition). As a result, highly stiff hair is diffi-
cult to simulate at an interactive rate when using an explicit
scheme. Implicit schemes can solve the stability problem,
with higher computational cost. Selle et al. [SLF08] pro-
posed the use of additional altitude springs to simulate the
complex behaviour of human hair and semi-implicit springs
to solve the stability problem. However, this is not suitable for
stylized hair in interactive applications due to the expensive
cost and complex configuration of the springs.

As for hair–hair interactions, most of the previous meth-
ods only consider collisions occurring on guide hair strands
[CCK05, BAC∗06] and possibly miss collisions between in-
terpolated hair strands when the guide strands do not collide.
There has been little research done that takes full hair–hair in-
teractions into consideration, except for the time-consuming
bounding box hierarchy used in [SLF08] and the hybrid
technique of Eulerian and Lagrangian methods introduced
in [MSW∗09]. Tariq and Bavoil [TB08] introduced a fast
technique for inter-hair collisions using a hair density field.
All the hair strands are voxelized into a grid then repul-
sive forces are applied to hair particles in high-density areas.
However, their technique only affects volume preservation
of hair. The same limitation can be seen in the continuum
methods [HMT01, BNC03, VMT06].

Unlike most of the previous methods, our method is easy
to implement, can easily handle complex hairstyles, is inter-
active and numerically stable even if the hair is very stiff.
Also, our method handles collisions between individual hair
strands. This is accomplished by using particle–particle col-
lision detection. The advantages of our method for simulat-
ing hair strand dynamics against those described in previous
works are summarized in Table 1.

Table 1: Advantages of our method against the previous methods for hair strand dynamics

Rigid chain [HMT01] Super helices [BAC∗06] Mass-spring [SLF08] Our method

Stability Conditional Conditional Unconditional Unconditional
Hairstyle Straight only Complex configurations Complex configurations Easy
Constraint Tricky Tricky Easy Easy
Performance Off-line Off-line Off-line Interactive
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Figure 2: Illustrations for Lattice Shape Matching (LSM)
and Chain Shape Matching (CSM).

3. Hair Simulation Method

Here we briefly explain LSM [RJ07] because it forms the ba-
sis of our method. Then we describe how to model hair using
our CSM. While hair strands, in actual fact, do not stretch,
they are stretched in LSM. We also introduce strain limit-
ing for CSM. Finally, we describe the hair–hair interaction
algorithm in our model.

3.1. Lattice shape matching

LSM is an extension of the shape matching method
[MHTG05]. The main advantages of the shape matching
method are unconditional stability and high controllability
due to its geometrically motivated computation. Optimally
transformed positions are computed first, and then particles
are moved towards those positions. Since it guarantees that
all particles are updated towards the appropriate positions,
the overshooting problem that occurs in explicit integration
schemes is eliminated. This technique is later generalized as
position based dynamics [MHHR07], which can be applied
to general simulation systems.

In LSM, the particles are grouped into multiple-
overlapping cubical regions (Figure 2 b). The region half-
width value w (w = 1, 2, 3, . . .) corresponds to the stiffness
of the object. The positions of particles are updated as fol-
lows. First, they are moved independently according to the
external forces. Next, for each region, LSM computes an op-
timal rigid transformation (i.e. rotation and translation) based
on shape matching [MHTG05]. The rigidly transformed po-
sitions of the particles are called goal positions. The goal
position gi of particle i is weighed in the overlapping regions
by particle per-region mass m̃i = mi

Nr
, where mi is the mass of

particle i and Nr is the total number of regions that the parti-
cle i belongs to. The goal position of particle i is computed
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Figure 3: x0
i is the original position, xi is the position up-

dated by external forces and gi is the goal position of particle
i.

as follows.

gi = 1
Nr

∑
r∈Ri

[
Rr

(
x0

i − x0
cm,r

) + xcm,r

]
, (1)

where Ri is a set of regions that particle i belongs to, x0
i

is the original position, x0
cm,r is the centre of mass of the

original shape of the region, xcm,r and Rr are the optimal
translation and rotation for region r . Finally, for each particle,
the velocity is computed toward the goal position.

vi(t + dt) = vi(t) + gi(t) − xi(t)

dt
+ dt

fi,ext(xi , t)

mi

,

xi(t + dt) = xi(t) + dtvi(t + dt),
(2)

where dt is a time step, vi is the velocity and fi,ext the external
force.

3.2. Hair simulation using Chain Shape Matching

In our method, a hair strand is represented by a chain of
particles grouped into multiple overlapping chain regions
(Figure 2d). Each particle i is associated with a chain region
Ri ∈ Ri that centres the particle i and contains adjacent par-
ticles within the region half-width w. Each chain region uses
the same shape matching method as used in LSM (Figure 3 ).
Therefore we call our algorithm CSM. Algorithm 2 describes
the pseudocode of our algorithm.

Note that the rotation matrix R can be inverted, that is, it
can involve reflection. Reflection causes flipping of the input
shape, and therefore should be avoided for ordinary shape
matching [MHTG05, RJ07]; however, it has little influence
in our case because we employ one-dimensional shapes, and
thus can be ignored.

In CSM, we can design complex hairstyles at the strand-
level as follows. The shape of the strand can be defined by
the original particle positions, since these original positions

c© 2010 The Authors
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Algorithm 1: Pseudocode of CSM algorithm.

1: for all particles i do
2: initialize original position x0

i , xi ← x0
i

3: end for
4: loop
5: BucketGeneration() // Sections 3.4 and 4.1
6: for all particles i do
7: fi,ext ← ComputeCollisionForce() + fgravity

8: end for
9: for all particles i do

10: vi ← vi + dt
fi,ext
mi

11: xi ← xi + dtvi

12: end for
13: for all chain regions Ri do
14: xcm ← ComputeOptimalTranslation()
15: R ← ComputeOptimalRotation()
16: end for
17: for all particles i do
18: gi ← ComputeGoalPosition() // Eq.1
19: end for
20: for all particles i do
21: gi ← StrainLimiting() // Section 3.3
22: xi ← gi

23: vi ← vi + gi−xi
dt

24: end for
25: end loop

Figure 4: The original particle positions define the shapes
of the hair strands. Green particles show the original particle
positions.

define the shape of the strand at rest (Figure 4 ). The root of
each strand is fixed by several particles which are constrained
on the head. The number and direction of the constrained
particles partially determine the behaviour of the strand. The
stiffness of the strand is defined by the chain region half-
width w (Figure 5), which can be partially modified to
generate complex hairstyles; for example, soft straight hair
near the root and stiff curly hair near the tip of the hair strand.

Regarding the stiffness control of hair strands, one might
consider the use of parameters α, β ∈ [0, 1], as presented
in the original shape matching paper [MHTG05]; α controls
the tendency that goal positions are moved towards rigidly
transformed positions, and β allows goal positions to undergo
a linear transformation (see [MHTG05] for more details).

Figure 5: A bunch of 1k strands is dragged over a cylinder,
with different chain region half-width w. Small w makes the
strands softer while large w stiffer.

While α and β can control the stiffness independently of
w, we simply fix α = 1 and β = 0 according to the LSM
paper [RJ07], taking into account that α and β can make a
region softer but not stiffer. Although reducing the number
of particles makes a region stiffer, it also reduces the hair
strand’s DOFs required especially for complex hairstyles.
Nevertheless, the use of α and β in conjunction with w might
benefit to advanced stiffness control, which is left as future
work; a study on the relationship between β and w can be
found in [OKN09].

3.3. Strain limiting

In this subsection, we describe how to limit the stretching of
hair. Techniques for constraining stretching were originally
proposed in research on cloth simulation, known as strain
limiting. Most of the cloth simulations use an elastic system
to model cloth such as popular mass-spring systems. As a
drawback, the cloth becomes very elastic and looks unnat-
ural. Provot et al. [Pro95] therefore modified positions by
checking the length of each segment (a spring in the mass-
spring systems) in the cloth and then adjusting the length of
stretched segments. However, modifying one segment causes
stretching of other connected segments. Although iterative
modification can be applied, convergence is not guaranteed.
Bridson et al. [BFA02] and Selle et al. [SLF08] modified ve-
locity instead of position. In our framework, however, goal
positions are computed first and then the velocities are com-
puted so that particles are moved towards the goal positions
(Section 3.1). Therefore, modifying velocity is not appropri-
ate for our CSM framework (position based framework).

To constrain stretching, we modify the positions of
stretched segments in hair strands after the shape matching
process (Figure 6a). Since the root of a hair strand is always
attached to the head, we adjust only the near-tip particle (the
endpoint near the tip of the strand) of a stretched segment
to the non-stretched position. This adjustment process takes
place from the root to the tip of the strand, therefore an
iterative adjustment is not required.

A simple option for strain limiting is to shrink segments
individually and then connect them together (Figure 6b);
however, our experiments yield unnatural results. Instead,
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Figure 6: Comparison of stretched particles adjustment.

we move each near-tip particle along the direction of the
previous segment that is already adjusted (Figure 6c). As a
result, each hair strand becomes a smooth curve from the
root to the tip (Figure 6d). Note that just moving particles
to the non-stretched positions leads to the loss of linear and
angular momenta. To conserve the momenta, our method
modifies velocity, similarly to [MHHR07].

3.4. Collision detection and response

For hair–hair and hair–head interactions, we employ simple
sphere–sphere collision detection that can be easily imple-
mented on the GPU. Particles of hair strands required in CSM
are used for collision detection. Note that, to handle collisions
more accurately, we can increase the number of particles in-
dependently of those used in CSM, while our implementa-
tion uses identical particles. Particle–particle collisions are
detected using a uniform grid of voxels that store the indices
of particles. The pair particles colliding are found from the
neighbouring 3 × 3 × 3 voxels, and the penalty forces are
added to them. For hair–head interactions, the head model
is represented by a set of large spheres, and collisions with
each particle are calculated.

4. GPU Implementation

For the GPU computation, the physical values of particles
are stored in 2D textures in the GPU memory. We use 32bit
floating-point RGBA textures, and thus each texel can store
up to four values for a particle. Our implementation uses ten
textures, that is, two position textures, two velocity textures,
one property texture (region half-width w, particle index,
strand index and non-stretched length), one original position
texture, one texture for optimal translation and three textures
for optimal rotation (3 × 3 matrix, nine components). Strand
indices (see Figure 7 ) are required to distinguish strands be-
cause values for all particles are stored in the same textures,
and each strand can contain a different number of particles.
In addition, our implementation requires one bucket texture,
where each texel represents a voxel that stores particle indices

2D textures

strand index = 1

strand index = 2

strand index = 3

A texel with 4 color channels

AR   G   B

Figure 7: Physical values of particles are stored in textures
(up to four values per texel). Particles of each hair strand
are distinguished by the strand index. These are shown by
different colours in this figure.

for nearest-neighbour searches in the collision detection pro-
cess.

4.1. Simulation step

In each simulation time step, five passes of the GPU com-
putation are assigned (see the black rounded rectangles in
Figure 8 ). The detail of each GPU pass is explained together
with corresponding line numbers of Algorithm 1 as follows:

Passes 1 and 2 : Position update and collision detection
(lines 5–12) First, the bucket texture is generated for nearest-
neighbour searches using a GPGPU technique [Har07]. The
velocity of each particle is updated according to external
forces such as gravity and penalty forces calculated in the
collision detection process (Section 3.4). Then, the position
of each particle is updated according to the updated velocity
and the time step.

Pass 3 : Chain shape matching (lines 13–16) The optimal
rigid transformation of each chain region is computed from
the particle positions in the region. Hair particles are stored
sequentially in a texture. See Figure 9 for an example of
the texture layout. Particle a has a half-width size w = 3.
Particles contained in the region can be found in three texels
to the left and right hand sides. In the case of particle b with
a half-width size w = 5, five adjacent particles can be found
on the right hand side, while the last two particles are found
in the next row by computing their addresses with the texture
width. However, the last three particles on the left hand side
have a different strand index. Therefore, only two adjacent
particles can be found. The region does not have to contain
a maximal number of particles (11 in case of w = 5).

Pass 4 : Goal position computation (lines 17–19) After
the optimal translation and rotation computation, the goal
position of each particle is computed by averaging the goal
positions of overlapping regions (Equation 1). This process

c© 2010 The Authors
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Figure 8: Simulation flow of a single step on the GPU. Blue
rectangles represent the texture data, black rounded rectan-
gles represent operations and green directed line segments
represent the flow of data.

can be computed in a similar way to the chain shape matching
pass (Pass 3). Instead of particle positions, the computed
optimal translation and rotation of the overlapping regions
can also be read from the adjacent texels.

Pass 5 : Strain Limiting (lines 20–24) The final pass is
the strain liming process (Section 3.3). The non-stretched
position of each particle can be computed from the length
starting from the root particle of the strand to the particle
(see particle c in Figure 9). After updating particle positions,
the velocities are also updated in this pass.

5. Results

The prototype implementation was written in C++, using
OpenGL and GLSL. All experiments were conducted on a
PC with an Intel Core 2 Quad 3.00GHz, 2GB RAM and an
NVIDIA GeForce GTX 280 graphics card. The structure of
hair is rendered as connected line segments between par-
ticles, and the visual quality is enhanced by Catmull-Rom
splines on the GPU using the instanced tessellation tech-
nique [BS05]. As for the shading and self shadowing of hair,
we used the Kajiya-Kay shading model and Deep Opac-
ity Maps[YK08], respectively. All simulation and rendering
were entirely conducted on the GPU. The frame rates in this

(a)

(b)

(c)

w = 3

w = 5

Figure 9: Layout of hair particles on a texture memory. (a)
The region half-width w = 3. The particles in the region can
be found in the adjacent texels. (b) The region half-width w =
5. All five adjacent particles in the right half can be found.
The left half has only two adjacent particles in a strand. (c)
Access pattern for strain limiting. The non-stretched position
is computed by tracing the length of each segment from the
root particle.

Figure 10: Moving bunch of hair strands with (left) and
without (right) strain limiting.

Figure 11: Increasing hair strands greatly improves the vi-
sual quality. From left to right, there are 1.25k, 5k and 10k
hair strands on the head.

paper include both simulation and rendering. We perform
only a single simulation step per frame. Figure 10 shows
the result of hair simulation with and without strain limiting
described in Section 3.3. The hair strands are stretched due to
the external forces without strain limiting. Figure 11 shows
the result with different numbers of strands on the head. With
more strands the visual quality is increased.

Figure 12 shows animation sequences of straight, curly
and complex hairstyles flowing in the wind. Each strand of

c© 2010 The Authors
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Figure 12: Animation sequences of straight (top row, 12 fps), curly (middle row, 7 fps) and complex hairstyles (bottom row, 4 fps)
in the wind. There are 10k strands (160k particles), 10k strands (580k particles) and 23k strands (764k particles), respectively.
The stiffness configurations of the straight and curly hair are w = 2 and 5. Each strand of the complex hairstyle is straight near
the roots and curly near the tips with chain region half-widths of w = 2 and 6, respectively.

the complex hairstyle is straight around the top and curly
around the bottom. Each scene consists of 10k strands (160k
particles), 10k strands (580k particles) and 17k strands (764k
particles), respectively. The breakdown computational time
used in each GPU pass and rendering for each result is shown
in Figure 13 . The simulation and rendering speeds of each
sequence are 12, 7 and 4 fps, respectively.

6. Conclusions

We have presented a simple model for simulating hair based
on shape matching. Our method can achieve visually plau-
sible animations with complex hairstyles in a numerically
stable way, even for highly stiff and curly hair like an afro.
We have also demonstrated that a GPU-based simulator can

achieve interactive performance up to several ten thousand
hair strands.

There are some limitations in our method. Our model is
non-physically based, thus to specify the physical proper-
ties of hair strands such as elastic properties is impractical.
We used trial and error to get the desired result. We do not
consider the torsion of hair in our model. Torsion has less
significant effects for straight hair in common animations,
because the external forces that twist straight hair are rare.
However, it does occur in curly hair. We would like to im-
prove our model to capture the torsion of hair. One idea is
the use of the torsion spring presented in a rigid multibody
serial chain [HMT01] which represents a hair strand as a
chain of rigid segments could be adapted. Because the hair
strand in our model is also represented by a chain of particles,
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Figure 13: The computational time in milliseconds used in
each GPU pass and rendering. The detail of each GPU pass
is described in Section 4.1. The numbers of hair strands and
particles used in each result are shown as (no. of strands, no.
of particles).

torsion springs between particles could be added to capture
the torsion effect. In addition, collisions between hair seg-
ments cannot be detected in our model due to the use of
sphere–sphere collision detection. We would like to employ
a fast and robust collision detection that could find the inter-
sections between lines as well. The stiction force influenced
by the electrostatic pull-in also has to be taken into account
to generate more realistic results.

Although our method simulates each strand of hair in-
dividually, an interpolation technique such as [CJY02] and
[BAC∗06] can be applied for an application which prefers a
better performance to finer detail. For example, in the case
of one thousand hair strands with 30k particles (Figure 5),
our model can run at 61 fps, which is sufficiently fast for
interactive applications such as games.
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