
Compositing 3D Images with Antialiasing
and Various Shading Effects

Eihachiro Nakamae
Hiroshima University

Takao Ishizaki
Daikin Industries, Ltd.

Tomoyuki Nishita
Fukuyama University

Shinichi Takita
Kagawa University

A dvances in 3D rendering techniques have given rise
to a variety of geometric models and shading models:
polygonal objects, curved surfaces, and fractal faces,
reflection, refraction, transparency, texture mapping,
bump-mapping, fog effect, and various types of light
sources. To process all these models in a single program
is usually difficult. That is, the program becomes large
and complex, it requires tremendous time to develop,

and as the amount of data becomes large, it becomes
troublesome to check. Subdividing the processing so that
it is performed by a collection of separate programs can
lead to a more flexible and more easily maintained
system.

To address this problem, Whitted and Weimer’ pro-
posed a flexible scan-conversion processor that can
simultaneously display several different surface types on

March ISRS 0272.1716/89/0300-0021$01.00 1989 IEEE :! 1

do = 116

d,=1/3
al scanline
d,=1/3
d,=1/6

Figure 1. Density calculation for pixel ABDC, using
the multiscanning method.

an image. This is designed to be a “test-bed” that can eas-
ily incorporate a variety of user-defined techniques. Data
passed from the scan converter to the shader can be
routed through a “span buffer.” In the span buffer, all
segment information (e.g., intersections between poly-
gons and scanlines, and depths at each intersection) on
every scanline is stored. Visible-surface processing and
various shading effects are carried out on the data in the
span buffer. This method can display high-quality
images.

Crow* divided the display process into scene analysis
and object rendering. A supervisory process determines
the priority of objects, and the image is produced by over-
writing objects into a frame buffer. This system can also
merge different types of objects into an image.

Porter and Duff 3 proposed a cornpositing method
adding a mixing factor (called an alpha-channel) to the
color channels. This method can easily produce compos-
ite images with pixel-by-pixel antialiasing. However, it
requires the priority of images to be manually entered.
To overcome this drawback, Duff’ added z-values to the
four channels. However, the z-values apply only to the
corner of each pixel. In addition, these two methods do
not apply when the edges of multiple polygons project
onto a single pixel.

For various types of texture mapping, Perlin developed
the Pixel Stream Editor.’ In this system the stored image
contains the surface number, 3D coordinates, and sur-
face normal at each pixel. In this way many types of tex-
ture mapping are easily processed by the PSE.

These developments indicate that the notion of sepa-
rate modules is an excellent way to create complex
scenes and handle many types of objects-composite
images with antialiasing, map textures, fog effect, etc. A
general-purpose processor should have the following

22

capabilities in addition to those available in previously
developed systems:

1. Antialiased images with scaling: Zooming is some-
times used in animation. In CAD systems, scaling of
a generated image is useful for displaying details of
shapes. For shape design, independent stretching in
the vertical and horizontal directions is useful.
Therefore, it is desirable not only to composite
images but to be able to scale the composited images.
Whitted’s method displays high-quality images by
using an antialiasing tiler such as Catmull’s,’ but
the antialiasing process is complicated. Methods
uiing alpha-channel are simple because of the pixel-
by-pixel nature of the processing. However, none of
these methods can composite images with scaling.
In this article we perform antialiasing based on the
multiscanning method,’ with visible faces stored
for each sub-scanline. That is, sufficient data is
stored to display antialiased images with arbitrary
scaling factors.

2. Variety of light sources: For lighting design, it is
necessary to display many types of light sources in
an image. The shading effect due to skylight is use-
ful for realistic images in building design. In anima-
tion systems, light sources are changed or moved
frequently. Our method can add these various shad-
ing effects to composited images.

3. Local processing: The ray-tracing algorithm is useful
for treating transparency and refraction, but it is
computationally very expensive. For composite
images, our method can perform ray tracing on
restricted local areas of the image, tremendously
reducing computation time.

Cornpositing method with antialiasing
The method we propose can composite any number

of images with hidden-surface removal, and display the
composited images with antialiasing.

The images can also be scaled up or down with
antialiasing. In this section we describe an antialiasing
method and a data structure for processing antialiasing.

Antialiasing using a multiscanning method
There are useful antialiasing methods, such as increas-

ing sampling density8 and the area sampling methods
accounting for the contribution of the visible portion of
each face.‘j We use here the multiscanning method we
developed earlier.’ Below we briefly describe this area-
sampling method.

For antialiasing, the intensity of each pixel is deter-
mined by the area occupied and intensity of image poly-
gons projected onto the pixel. As shown in Figure 1, the
area of a pixel occupied by a polygon (i.e., S,) is approx-
imated by trapezoidal integration as follows: We assume
that a scanline is divided into n virtual scanlines, called

IEEE Computer Graphics & Applications

sub-scanlines. When the length of the intersection seg-
ment between sub-scanline G, and face S, is L,,,
(j=O,1,2 ,..., n), the area of face S,, (the hatched area in
Figure l), A,, is approximated by

* = (L,,o+Ln.“) I”-’
m

--++‘Lm~j
2n

The intensity of the pixel is determined by the product
of this area and the intensity of face S,. In many cases
multiple polygons will be projected onto a pixel. The
intensity of pixel i, C,, is obtained by

C, = i dj. C’,,,
j-0

(2)

where

dj =
6=&n)

(O<j<n)

where d, is a weighting factor (see Figure 1) and Iris the
intensity of face Sr (f=l,Z,...,m: m=number of faces).
This equation indicates that the intensity of a pixel is
achieved by summing the intensities of the sub-scanlines
with weighting factors. Some sub-scanlines may contrib-
ute to two adjacent actual scanlines.

Image data structure
The visible segments on each scanline are stored so

you can apply the antialiasing method discussed above.
The depth of each visible segment is also stored for use
in compositing images (see the later section on composit-
ing 3D images). After hidden-surface removal, the follow-
ing are stored for each sub-scanline:

1. The intersections between visible faces and sub-
scanlines.

2. The face number and intensity at each intersection.

3. The depth at each intersection and its slope (incre-
ments per pixel).

Also, for the entire image

4. A color table for faces.

5. The coordinates of vertices of faces.

The intensity stored (see item 2 above) is due to a par-
allel light source, because this method produces a uni-
form intensity on each face and we can avoid storing data
for each pixel. At the intersections between shadows and

March 1989 23

a visible segments on a virtual scanline

b span buffer

Figure 2. Image data structure.

sub-scanlines the intensities change, so these intersec-
tions are also stored. For other types of light sources, the
shading effects are calculated when the images are com-
posited (see the section on shading effects due to vari-
ous types of light sources), using the 3D vertices of faces.
In this article curved surfaces are represented by trian-
gle patches, and the normal of the surface at each ver-
tex of each triangle patch is also stored.

Figure 2 illustrates the method used to store visible seg-
ments. The memory requirement is proportional to the
number of intersections between faces and scanlines; i.e.,
it depends on image complexity. This method is equiva-
lent to compressing data by run-length code, and it is
much more efficient in use of memory than storing data
for each pixel.

Regeneration of images

In this section we discuss cornpositing of images. We
assume that the process is done from top to bottom. First,
the sub-scanline number j is set to 0, C, and C’,

Figure 3. Intensity calculation using antialiasing.

(i=1,2,..., N) are initialized, and the following process is
done for each scanline (the symbol “[I” indicates trun-
cation):

1. Read intersections xk (k=1,2 ,..., m).

2. Execute the following process for each span
(Xk,Xk+I).

if [xk]=[xk+l] then
c’i=c’i + (Xk+l - Xk)c&

else

(i=lxkl) (3)

c’i=c’i + ([Xk]+l- X&& (i=lxkl 1 (4)
c’i=(Ji + (& (I%1 <i+Q+ 11) (5)

c’i=c’i + (~+l-l~+ll)Q (i=lxk+ll) (6)
(if [xk]=[xk+l] -1 then equation 5 is unnecessary)

3. Ci =Ci +diC’i (i=1,2 ,...,N).

4. If j < n then j = j + 1, return to step 1.

5. Output Ci tO CRT.

6. Ci=d,C’i,C’,=O(i=1,2,...,N),j=l andreturntostepl.

Step 2 can be explained as follows: If xk and xktl lie in
the same pixel (e.g., x1,x2 in Figure 3), (xktl -xk) is the
weighting factor for intensity calculation. If not, for the
pixel including xk (e.g., xg in Figure 3) the weighting fac-
tor is ([xk]+l-xk), and for the pixel including xk+l (e.g., x4
in Figure 3) the weighting factor is (xktl -[xk+J). For
other pixels the weighting factor is 1.

Even when multiple polygons project onto a pixel, the
image can easily be reproduced using this algorithm.

Definition of symbols

xk: coordinate of the kth intersection on a sub-
scanline

(k=1,2,...,m: m = number of intersections)

j: sub-scanline number (j=O,l,...,n: n=number of
virtual scanlines per pixel)

C,: intensity of theith pixel on ascanline(i=1,2,...,N:
N=the number of pixels on a scanline)

C’,: intensity of the ith pixel on a sub-scanline (see
Equation 2)

dj: weighting factor for the jth sub-scanline

ck: intensity Of the face Containing xk

Regeneration of images with scaling
Scaling is often used in animation and CAD systems.

The scaling proposed here allows magnifying or reduc-
ing with antialiasing.

Scaling in the x direction is easily done by computing
the product of T, (the x direction scale) and the coor-
dinates of intersections. However, for scaling in the y
direction, the following computation is required: If an
image is stored using n, sub-scanlines per pixel, it can
be displayed at vertical scale T, with n,/T, sub-
scanlines per pixel. However, n, the number of sub-
scanlines per pixel in the scaled image, must be an
integer. We set

(7)

where I, is the scanline number. For example, for n, = 3
and T, = 1.2, the numbers of sub-scanlines for each scan-
line are 2, 3, 2, 3 ,.... For T, =0.8 they are 3,4,4, 3,4,4 ,....
For n, = 3, we can enlarge as far as triple size, with good
quality until double size. We can select any large scaling
factor when we use large enough n,.

This method performs zooming and panning easily,
without repeating hidden-surface removal, which makes
it very useful for animation.

Cornpositing 3D images
When there are multiple stored images, these images

can be combined with hidden-surface removal by using
the z-values of each image. Image data (i.e., visible seg-
ments) are stored sub-scanline by sub-scanline, and

24 IEEE Computer Graphics & Applications

hidden-surface removal can be done by a scanline algo-
rithm such as Watkins’s algorithm, which allows poly-
gons to intersect (see Figure 4).

Consider a composite image c formed by two images
a and b. We prepare span buffers A, B, and C for images
a, b, and c, respectively. The process is carried out sub-
scanline by sub-scanline, reading A and B, and writing
C. An antialiased image is obtained by applying the pro-
cess described in the section on antialiasing to the buffer
C. If there is a third image, we can get the composite
image by setting C to A and the third image to B, and
repeating the above process. By using these three buffers
cyclically, multiple images can be easily cornposited.

Figure 4 shows two images, a and b, and the compos-
ite image c. In Figure 5 a, b, and c show a representative
scanline with perspective depth for each face for the
same images. (In this article, perspective depth decreases
with distance from the viewpoint). We assume that the
background (for spans where there is no visible segment]
consists of a plane whose z is a large negative value.
Using this assumption, each of the images a and b have
exactly one segment in each sample span. Thus, combi-
nations of these segments are limited to three cases as
shown in Figure 6, allowing easy hidden-surface
removal. In this example, the bold lines in Figure 6 are
visible segments.

Because our hidden-surface removal method has time
complexity proportional to the square of the number of
faces, it is more efficient to operate on clusters of object
data and composite the results.

Shading effects due to various types of
light sources

In our system, many types of light sources-such as
point sources, linear sources,’ area sources, polyhedral
sources,“’ and skylight”-are available in the shading
processor.

The system allows the light sources (including lighting
directions, types of light sources, luminous intensity, and
colors) to be freely changed at the display stage, while the
viewpoint is fixed. Intensities due to a parallel light
source are stored and may be immediately displayed.
When the lighting conditions are changed, intensities
must be recalculated, but not hidden surfaces. In many
cases a broad range of shading effects, such as linear or
area light sources, are required, particularly for lighting
design.

In the proposed method, the cornposited image
obtained as described in the section headed “Composit-
ing method with antialiasing” contains information
about visible faces and their depths. Therefore, various
shading effects can easily be added. Fog effect can be cal-
culated using only depths. For other shading effects 3D
coordinates at each pixel and information about all poly-
hedrons are required, but again these can easily be

Image a Image h

Figure 4. Composition of two images.

‘11 imagea

I+
I j / /
/ I 1
/ I I , / 3 back ground

image b

, I
sample span’ / / / I

I I I

‘1; imagec

I
I I I I
i-4

I
I

Figure 5. Depths of segments on a virtual scanline.

I I

x I I I I
b

I I
I I

I I
I I

c

Figure 6. Visibility test in sample span, showing (a)
not crossing, (b) crossing, and (c) overlap.

applied using the depth of visible segments and screen
coordinates.

Illuminance calculation
Consider a scene that contains many types of light

sources. The calculation for each type of light source is
usually different. If a single program includes all types
of light sources, it becomes unmanageably large. Inten-
sity at each pixel can be achieved by summing the inten-
sity of each light source. Using the same composited
image data repeatedly, we can get shading effects by
independently calculating each light source. In this
method, the visible faces are already known, so the shad-
ing effects due to multiple light sources are achieved with
only one execution of hidden-surface removal.

By subdividing the program into hidden-surface
remover and shader, various shading effects can easily
be added.

Shadow processing
In the previous cornpositing methods only Whitted

and Duff calculated shadows.‘14 They used Williams’s
method,‘* a z-buffer algorithm with the viewpoint at the
light source. In this method, light sources are limited to
a parallel source or a point source, and the position of
the point source must be outside of the field of view.

For arbitrary light-source position or various types of
light sources, using shadow volumes is helpful, and
adding precalculation of shadow boundaries on visible
faces is more useful. In these processes, however, the
memory requirement for shadows becomes enormous
when the number of objects is large. To overcome this
problem, objects are divided into clusters, and the pro-
cess is done cluster by cluster. For each cluster, shadows
can be detected by using only those shadow volumes
casting shadows on the visible faces of this cluster. For
example, consider shadow processing after composition
of images a and b. The visible faces for each image are
obtained using the method described in the section on
compositing 3D images. Then shadow detection is

26

executed first for the visible faces of a only, then for those
of b, resulting in reduced memory requirements and
increased speed.

Local processing
Because the visible faces are available, the following

refinements can be calculated for selected faces. After
displaying a rough image on a CRT, the image is
improved by performing these processes in restricted
regions. Antialiasing against a background can easily be
done by blending pixels from an image displayed on the
CRT and the colors arrived at by the method described
in the section headed “Regeneration of images.”

Local ray tracing
Ray tracing is commonly used to represent trans-

parency and refraction, but this method spends tremen-
dous time detecting intersections between the ray and
objects. If only a few objects need to be processed by ray
tracing, ray tracing the entire screen is inefficient. To
avoid this problem, a method using a z-buffer algorithm
as a visible-surface preprocessor has been developed.13
However, using this method, it is difficult to memorize
areas of polygons within a pixel. Our method stores all
visible faces within all pixels, so it can be used as a
preprocessor for ray tracing. In this article we use a
hidden-surface removal method combining scanline pro-
cessing and ray tracing, which we developed earlier.14 A
reserved face number is used to indicate that a face is to
be ray traced. When the scan converter encounters such
a face, it invokes the local ray tracer for each pixel covered
by the face. For efficient calculation the following are
considered:

1. The shadow process is done by precalculation of
shadow boundaries on faces, not pixel by pixel.

2. The environment is subdivided hierarchically;
bounding boxes for each level of objects are used
and a hierarchical description is also used for
shadow volumes.

3. Curved surfaces are subdivided into triangle
patches to apply the scanline algorithm.

Texture mapping
Various types of textures-such as color maps, bump

maps, reflection maps, and transparency maps-can be
added to the composited images. Texture mapping
generally requires the entire texture map to be present
in memory simultaneously. By appropriately decompos-
ing into separate images, each of which requires only one
or a small number of textures, and compositing later, the
number of texture maps required to be simultaneously
present in memory can be reduced, thus reducing the

IEEE Computer Graphics & Applications

total memory requirement.
Furthermore, the proposed method can add such com-

plex objects as trees and grass to the composited image
with hidden-surface removal. In Cook’s shade trees,l’
these objects are generated by another program and dis-
played by creating a texture mapped onto a transparent
polygon (in this method, cornpositing is performed by
the alpha-channel method”). However, modeling these
objects is time consuming. To overcome this problem, we
use an image of a tree extracted from a photograph and
map it onto a transparent polygon. For presenting each
tree, the transparent polygon is placed standing verti-
cally with its normal facing the viewpoint. When these
trees overlap on the screen, hidden-surface removal is
done from the nearest transparent polygon by ray
tracing.

Shadows and reflections of trees can also be pro-
cessed. For shadow calculation, the transparent poly-
gons are rotated to face the light source, and for reflection
mapping, they are rotated to face the reflecting surface.
These calculations are possible because the intermedi-
ate representation includes 3D information about visi-
ble faces and depths.

Background processing
Because the area where the background is visible is

known, a background picture can be inserted with
antialiasing. Similarly, clouds generated by a separate
program can be inserted in the sky.

posited. Part of the building was produced by a program
handling curved surfaces, and other parts were
produced by a program dealing only with polyhedrons.

In picture (d), fog effect is added by using stored
depths. Picture (e) shows the same scene as (d) at night.
The building is illuminated by five floodlamps at each
corner where the actual luminous intensity characteris-
tics of the planned lamps were used in the calculation.

Picture (f) is an example of fleecy clouds. In this pit:-
ture the building and cars are composited. After compo-
sition, we can add texture mapping and shading effects.
The shading effects under fleecy clouds are due to a com-
bination of clear skylight (i.e., a hemispherical light
source with large radius”) and weak direct sunlight (i.e.,
a parallel source). Note that penumbrae due to skylight
are displayed.

Pictures (c) and (f) are stills from an animated film enti-
tled “CG Town” (SIGGRAPH 87 film and video show).
Frames of the animated film are not antialiased to save
time in producing animation, so pictures (c) and (f)
exhibit aliasing. In the film, the intensity of skylight
varies from overcast sky to clear sky, cars move, and
colors of leaves change. All these effects were calculated
using the methods described in this article.

Picture(g) is an example of lighting design. The room
is illuminated by two types of light sources, a polyhedral
light source and the light from the window, an area
source.

All examples were calculated using supersampling of
three virtual scanlines per scanline. Computing statis-
tics for (c), the most complex image among the examples,
are as follows:

Example and conclusion
Figure 7 shows some examples which demonstrate the

proposed system. Picture (a) shows an example of scal- Computer: Tosbac Data System 600/80 (2.8 MWIF’S)

ing (upper left is the original). We can manipulate height
and width for shape design, executing visible surface
processing only once.

Pictures (b) and (c) are examples of the use of image
cornpositing as a tool in urban planning (Osaka, Japan).
In these images, buildings, trees, and cars were produced
separately, then cornposited. The reflections in windows
are processed by local ray tracing. For moving objects,
such as cars, the cornpositing is done by recalculating
only moving elements.

Image Complexity: 870 polygons
2359 visible faces

Image calculaIed
in four clusters: buildings, roads, trees, cars

Size of Intermediate
Representation: 353 kb per cluster, average

Compute 1 cluster: 2.8 mins
Final Composite: 26.8 mins (including ray tracing)

In picture (b), the leaves of the artificial trees are As shown in these examples, the ability to add various
expressed by a set of triangles, while in picture (c), tex- shading effects leads to heightened realism, as well as a
tures extracted from an actual photograph are used, more convenient framework for development . n
yielding a more realistic image. Note that the shadows
and reflections of the textures of the real trees are also
very realistic. This method can be applied in urban plan-
ning to simulate views including various types of real
trees. Acknowledgments

Pictures (d) and (e) are examples of estimation of We thank Bonnie Sullivan for developing the program
environmental impact due to a new building. In this for extraction of trees from photographs, and for care-
example, the building and the city background are com- fully reading and commenting on this article.

March 1989 27

References

I. ‘I: Whitted and D.M. Weimer, “A Software Test-Bed for the Devel-
opment of3D Raster Graphics Systems.” Computer Graphics (Proc.
SIGGRAI’II). Vol. 15. No. 3, Aug. 1981. pp. 271.277.

2. F.C. Cro\v, ‘A More Flexible Image Generation Environment,”
Computer. Graphics (Proc. SIGGKAI’H). Vol. 16. No. 3, July 1982,
pp. Y-18.

3. ‘I: Porter and T. Duff, “Cornpositing Digital Images,” Computer
Graphics (Proc. SIGGRAPH), Vol. 18. No. 3, July 1984, pp. 253.259.

4. T. Duff, “Compositing 3D Kendered Images,” Computer Graphics
(Proc. SIGGRAPH), Vol. 19. No 3. July 1985. pp. 41-44.

5. K. Perlm. “An Image Synthesizer.” Computer Graphics (Proc. SIG-
GRAPH], Vol. 19. No. 3. July 1985, pp. 287-296.

6. E. Catmull, “A Hidden-Surface Algorithm with Antialiasing,”
(Computer Grclphics (Proc. SIGGRAPH), Vol. 12. No. 3, Aug. 1978,
pp. 6-11.

7. T. Nishita and E. Nakamae. “Half-Tone Representation of 3D
Objects with Smooth Edge by Using a Multi-Scanning Method,”
J, Information Processing (in Japanese), Vol. 25, No. 5, Sept. 1984,
pp. 703-711.

8. F.C. Crow, “A Comparison of Antialiasing Techniques,” X&A, Vol.
1, No. 1, Jan. 1981, pp. 40-48.

Eihachim Nakamae is a professor at Hiroshima
Universitv where he was appointed as research
associatein 1956 and professor in 1968. He was
an associate researcher at Clarkson College of
Technology, Potsdam, N.Y., from 1973.1974. His
research interests include computer graphics
and electric machinery.

Nakamae received the BE, ME, and DE degrees
in 1954,1956, and 1967 from Waseda University.
He is a member of IEEE, IEEE Computer Soci-

ety, IEE of Japan, II’S of Japan. and IECE of Japan

Nakamae can be contacted at the Fat.ulty of Engineering. Hiroshima
I:niversity, Saijo-cho. Higashi-Hiroshima, 724 Japan.

Takao Ishizaki is a system engineer in the
Engineering and Development Department of
the Electronics Division, Daikin Industries, I.td.
His research interests include computer graphics
and its applications.

Ishizaki received the BS in electronics
engineering and the MS in system engineering
from Hiroshima University.

Ishizaki can be contacted at the Engineering
and Development Department. Electronics Division, Daikin Indus-
tries, Ltd., Box 37, Shinjuku-Sumitomo-Bldg., ~-6-l. Nishi-Shinjuku.
Shinjuku-ku, Tokyo, 163 Japan.

9. T. Nishita, T. Okamura. and E. Nakamao, “Shading blndels for
Point and Linear Sources,” AC&l Trans. Grtrphics, \‘ol. 4. No. 2. Apr.
1985. pp. 124-146.

10. T. Nishitn and E. Nakamae. “ll;~llX~nt: K~~I~r~:~(~~~t;llir)~~ c~f 31)
Objects Illuminated by Area Sources or I’olyht:clrc)n Sourcrx“
IEf+;E Proc. COMPSX 83, (microfiche only). (:S Press. 1,11s
Alamitos, CalIf.. 1983. pp. 237.242.

11. ‘I’. Nishita and E. Nakamae, “Continuous Tone Kepresentation IIf
Three-Dimensional Objects Illuminated by Skylight.” ~;OnlJ.‘Llhxr

Grnphics (Proc. SIGGRAPH). Vol. 20, No. 4. Aug. 1986. pp. 125-132.

12. 1,. Williams, “Casting Curved Shadows on (Zurvt:d Surfaces,” Coral-
puter Graphics (Proc. SIGGRAPH), Vol. 12. No. 3. Aug. 1978. pp.
270-274.

14. E. Nakamae, K. Tadamura. and T. Nishita, “HalfX>n~~ Represer~-
tation Using Local Ray Tracing,” J, Informutron J’rocossing (in Jai)-
anese), Vol. 27, No. 11, Nov. 1986. pp 1077-1085.

15. R. Cook, “ShadeTrees,” ComputerGrc~phic:s(I’roc:. SIGCKAPH).
Vol. 18, No. 3, July 1984, pp. 223-231.

Tomoyuki Nishita is an associate professor In
the Department of Electronic and Electrical
Engineering at Fukuyama University, Japan. He
was on the research staff at Mazda from 1973 to
1979 and worked on design and development of
computer-controlled vehicle systems. He joined
Fukuyama University in 1979. Since April 1988
he has been a visiting professor and research
associate in the Engineering Computer Graphics
Laboratory at Brigham Young University. His

research interests involve computer graphics, including lighting
models, hidden-surface removal, and antialiasing.

Nishita received his BE, ME, and PhD in engineering in 1971,1973,
and 1985, respectively, from Hiroshima University. He is a membl:r
of ACM, IPS of Japan, and IEE of Japan.

Nishita can be contacted at the ECGL. Brigham Young Llniversity.
368 CB, Provo, Utah 84602, through the end of March 1989. and at the
Faculty of Engineering, Fukuyama University, Sanzo Higashimur+
cho, Fukuyama, 729-02 Japan from April on.

Shinichi Takita is a professor in the Department
of Education at Kagawa University, Japan. His
research interests include computer graphic:s
and CAI.

Takita received his BE and ME degrees in elec-
trical engineering from Hiroshima finiversity in
1964 and 1966, respectively. He is a member of
the IEE of Japan and the Japan Society of Indus-
trial and Technical Education.

Takita can be contacted at the Faculty of Education. Kagawa Uni-
versity, l-l, Saiwai-cho Takamatsu. 760 Japan.

March 1989 29

