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A dvances in 3D rendering techniques have given rise 
to a variety of geometric models and shading models: 
polygonal objects, curved surfaces, and fractal faces, 
reflection, refraction, transparency, texture mapping, 
bump-mapping, fog effect, and various types of light 
sources. To process all these models in a single program 
is usually difficult. That is, the program becomes large 
and complex, it requires tremendous time to develop, 

and as the amount of data becomes large, it becomes 
troublesome to check. Subdividing the processing so that 
it is performed by a collection of separate programs can 
lead to a more flexible and more easily maintained 
system. 

To address this problem, Whitted and Weimer’ pro- 
posed a flexible scan-conversion processor that can 
simultaneously display several different surface types on 
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Figure 1. Density calculation for pixel ABDC, using 
the multiscanning method. 

an image. This is designed to be a “test-bed” that can eas- 
ily incorporate a variety of user-defined techniques. Data 
passed from the scan converter to the shader can be 
routed through a “span buffer.” In the span buffer, all 
segment information (e.g., intersections between poly- 
gons and scanlines, and depths at each intersection) on 
every scanline is stored. Visible-surface processing and 
various shading effects are carried out on the data in the 
span buffer. This method can display high-quality 
images. 

Crow* divided the display process into scene analysis 
and object rendering. A supervisory process determines 
the priority of objects, and the image is produced by over- 
writing objects into a frame buffer. This system can also 
merge different types of objects into an image. 

Porter and Duff 3 proposed a cornpositing method 
adding a mixing factor (called an alpha-channel) to the 
color channels. This method can easily produce compos- 
ite images with pixel-by-pixel antialiasing. However, it 
requires the priority of images to be manually entered. 
To overcome this drawback, Duff’ added z-values to the 
four channels. However, the z-values apply only to the 
corner of each pixel. In addition, these two methods do 
not apply when the edges of multiple polygons project 
onto a single pixel. 

For various types of texture mapping, Perlin developed 
the Pixel Stream Editor.’ In this system the stored image 
contains the surface number, 3D coordinates, and sur- 
face normal at each pixel. In this way many types of tex- 
ture mapping are easily processed by the PSE. 

These developments indicate that the notion of sepa- 
rate modules is an excellent way to create complex 
scenes and handle many types of objects-composite 
images with antialiasing, map textures, fog effect, etc. A 
general-purpose processor should have the following 
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capabilities in addition to those available in previously 
developed systems: 

1. Antialiased images with scaling: Zooming is some- 
times used in animation. In CAD systems, scaling of 
a generated image is useful for displaying details of 
shapes. For shape design, independent stretching in 
the vertical and horizontal directions is useful. 
Therefore, it is desirable not only to composite 
images but to be able to scale the composited images. 
Whitted’s method displays high-quality images by 
using an antialiasing tiler such as Catmull’s,’ but 
the antialiasing process is complicated. Methods 
uiing alpha-channel are simple because of the pixel- 
by-pixel nature of the processing. However, none of 
these methods can composite images with scaling. 
In this article we perform antialiasing based on the 
multiscanning method,’ with visible faces stored 
for each sub-scanline. That is, sufficient data is 
stored to display antialiased images with arbitrary 
scaling factors. 

2. Variety of light sources: For lighting design, it is 
necessary to display many types of light sources in 
an image. The shading effect due to skylight is use- 
ful for realistic images in building design. In anima- 
tion systems, light sources are changed or moved 
frequently. Our method can add these various shad- 
ing effects to composited images. 

3. Local processing: The ray-tracing algorithm is useful 
for treating transparency and refraction, but it is 
computationally very expensive. For composite 
images, our method can perform ray tracing on 
restricted local areas of the image, tremendously 
reducing computation time. 

Cornpositing method with antialiasing 
The method we propose can composite any number 

of images with hidden-surface removal, and display the 
composited images with antialiasing. 

The images can also be scaled up or down with 
antialiasing. In this section we describe an antialiasing 
method and a data structure for processing antialiasing. 

Antialiasing using a multiscanning method 
There are useful antialiasing methods, such as increas- 

ing sampling density8 and the area sampling methods 
accounting for the contribution of the visible portion of 
each face.‘j We use here the multiscanning method we 
developed earlier.’ Below we briefly describe this area- 
sampling method. 

For antialiasing, the intensity of each pixel is deter- 
mined by the area occupied and intensity of image poly- 
gons projected onto the pixel. As shown in Figure 1, the 
area of a pixel occupied by a polygon (i.e., S,) is approx- 
imated by trapezoidal integration as follows: We assume 
that a scanline is divided into n virtual scanlines, called 
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sub-scanlines. When the length of the intersection seg- 
ment between sub-scanline G, and face S, is L,,, 
(j=O,1,2 ,..., n), the area of face S,, (the hatched area in 
Figure l), A,, is approximated by 

* = (L,,o+Ln.“) I”-’ 
m  

--++‘Lm~j 
2n 

The intensity of the pixel is determined by the product 
of this area and the intensity of face S,. In many cases 
multiple polygons will be projected onto a pixel. The 
intensity of pixel i, C,, is obtained by 

C, = i dj. C’,,, 
j-0 

(2) 

where 

dj = 
6=&n) 

(O<j<n) 

where d, is a weighting factor (see Figure 1) and Iris the 
intensity of face Sr (f=l,Z,...,m: m=number of faces). 
This equation indicates that the intensity of a pixel is 
achieved by summing the intensities of the sub-scanlines 
with weighting factors. Some sub-scanlines may contrib- 
ute to two adjacent actual scanlines. 

Image data structure 
The visible segments on each scanline are stored so 

you can apply the antialiasing method discussed above. 
The depth of each visible segment is also stored for use 
in compositing images (see the later section on composit- 
ing 3D images). After hidden-surface removal, the follow- 
ing are stored for each sub-scanline: 

1. The intersections between visible faces and sub- 
scanlines. 

2. The face number and intensity at each intersection. 

3. The depth at each intersection and its slope (incre- 
ments per pixel). 

Also, for the entire image 

4. A color table for faces. 

5. The coordinates of vertices of faces. 

The intensity stored (see item 2 above) is due to a par- 
allel light source, because this method produces a uni- 
form intensity on each face and we can avoid storing data 
for each pixel. At the intersections between shadows and 
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Figure 2. Image data structure. 

sub-scanlines the intensities change, so these intersec- 
tions are also stored. For other types of light sources, the 
shading effects are calculated when the images are com- 
posited (see the section on shading effects due to vari- 
ous types of light sources), using the 3D vertices of faces. 
In this article curved surfaces are represented by trian- 
gle patches, and the normal of the surface at each ver- 
tex of each triangle patch is also stored. 

Figure 2 illustrates the method used to store visible seg- 
ments. The memory requirement is proportional to the 
number of intersections between faces and scanlines; i.e., 
it depends on image complexity. This method is equiva- 
lent to compressing data by run-length code, and it is 
much more efficient in use of memory than storing data 
for each pixel. 

Regeneration of images 

In this section we discuss cornpositing of images. We 
assume that the process is done from top to bottom. First, 
the sub-scanline number j is set to 0, C, and C’, 



Figure 3. Intensity calculation using antialiasing. 

(i=1,2,..., N) are initialized, and the following process is 
done for each scanline (the symbol “[ I” indicates trun- 
cation): 

1. Read intersections xk (k=1,2 ,..., m). 

2. Execute the following process for each span 
(Xk,Xk+I). 

if [xk]=[xk+l] then 
c’i=c’i + (Xk+l - Xk)c& 

else 

(i=lxkl) (3) 

c’i=c’i + ([Xk]+l- X&& (i=lxkl 1 (4) 
c’i=(Ji + (& (I%1 <i+Q+ 11) (5) 

c’i=c’i + (~+l-l~+ll)Q (i=lxk+ll) (6) 
(if [xk]=[xk+l] -1 then equation 5 is unnecessary) 

3. Ci =Ci +diC’i (i=1,2 ,...,N). 

4. If j < n then j = j + 1, return to step 1. 

5. Output Ci tO CRT. 

6. Ci=d,C’i,C’,=O(i=1,2,...,N),j=l andreturntostepl. 

Step 2 can be explained as follows: If xk and xktl lie in 
the same pixel (e.g., x1,x2 in Figure 3), (xktl -xk) is the 
weighting factor for intensity calculation. If not, for the 
pixel including xk (e.g., xg in Figure 3) the weighting fac- 
tor is ([xk]+l-xk), and for the pixel including xk+l (e.g., x4 
in Figure 3) the weighting factor is (xktl -[xk+J). For 
other pixels the weighting factor is 1. 

Even when multiple polygons project onto a pixel, the 
image can easily be reproduced using this algorithm. 

Definition of symbols 

xk: coordinate of the kth intersection on a sub- 
scanline 

(k=1,2,...,m: m  = number of intersections) 

j: sub-scanline number (j=O,l,...,n: n=number of 
virtual scanlines per pixel) 

C,: intensity of theith pixel on ascanline(i=1,2,...,N: 
N=the number of pixels on a scanline) 

C’,: intensity of the ith pixel on a sub-scanline (see 
Equation 2) 

dj: weighting factor for the jth sub-scanline 

ck: intensity Of the face Containing xk 

Regeneration of images with scaling 
Scaling is often used in animation and CAD systems. 

The scaling proposed here allows magnifying or reduc- 
ing with antialiasing. 

Scaling in the x direction is easily done by computing 
the product of T, (the x direction scale) and the coor- 
dinates of intersections. However, for scaling in the y 
direction, the following computation is required: If an 
image is stored using n, sub-scanlines per pixel, it can 
be displayed at vertical scale T, with n,/T, sub- 
scanlines per pixel. However, n, the number of sub- 
scanlines per pixel in the scaled image, must be an 
integer. We set 

(7) 

where I, is the scanline number. For example, for n, = 3 
and T, = 1.2, the numbers of sub-scanlines for each scan- 
line are 2, 3, 2, 3 ,.... For T, =0.8 they are 3,4,4, 3,4,4 ,.... 
For n, = 3, we can enlarge as far as triple size, with good 
quality until double size. We can select any large scaling 
factor when we use large enough n,. 

This method performs zooming and panning easily, 
without repeating hidden-surface removal, which makes 
it very useful for animation. 

Cornpositing 3D images 
When there are multiple stored images, these images 

can be combined with hidden-surface removal by using 
the z-values of each image. Image data (i.e., visible seg- 
ments) are stored sub-scanline by sub-scanline, and 
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hidden-surface removal can be done by a scanline algo- 
rithm such as Watkins’s algorithm, which allows poly- 
gons to intersect (see Figure 4). 

Consider a composite image c formed by two images 
a and b. We prepare span buffers A, B, and C for images 
a, b, and c, respectively. The process is carried out sub- 
scanline by sub-scanline, reading A and B, and writing 
C. An antialiased image is obtained by applying the pro- 
cess described in the section on antialiasing to the buffer 
C. If there is a third image, we can get the composite 
image by setting C to A and the third image to B, and 
repeating the above process. By using these three buffers 
cyclically, multiple images can be easily cornposited. 

Figure 4 shows two images, a and b, and the compos- 
ite image c. In Figure 5 a, b, and c show a representative 
scanline with perspective depth for each face for the 
same images. (In this article, perspective depth decreases 
with distance from the viewpoint). We assume that the 
background (for spans where there is no visible segment] 
consists of a plane whose z is a large negative value. 
Using this assumption, each of the images a and b have 
exactly one segment in each sample span. Thus, combi- 
nations of these segments are limited to three cases as 
shown in Figure 6, allowing easy hidden-surface 
removal. In this example, the bold lines in Figure 6 are 
visible segments. 

Because our hidden-surface removal method has time 
complexity proportional to the square of the number of 
faces, it is more efficient to operate on clusters of object 
data and composite the results. 

Shading effects due to various types of 
light sources 

In our system, many types of light sources-such as 
point sources, linear sources,’ area sources, polyhedral 
sources,“’ and skylight”-are available in the shading 
processor. 

The system allows the light sources (including lighting 
directions, types of light sources, luminous intensity, and 
colors) to be freely changed at the display stage, while the 
viewpoint is fixed. Intensities due to a parallel light 
source are stored and may be immediately displayed. 
When the lighting conditions are changed, intensities 
must be recalculated, but not hidden surfaces. In many 
cases a broad range of shading effects, such as linear or 
area light sources, are required, particularly for lighting 
design. 

In the proposed method, the cornposited image 
obtained as described in the section headed “Composit- 
ing method with antialiasing” contains information 
about visible faces and their depths. Therefore, various 
shading effects can easily be added. Fog effect can be cal- 
culated using only depths. For other shading effects 3D 
coordinates at each pixel and information about all poly- 
hedrons are required, but again these can easily be 

Image a Image h 

Figure 4. Composition of two images. 
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Figure 5. Depths of segments on a virtual scanline. 
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Figure 6. Visibility test in sample span, showing (a) 
not crossing, (b) crossing, and (c) overlap. 

applied using the depth of visible segments and screen 
coordinates. 

Illuminance calculation 
Consider a scene that contains many types of light 

sources. The calculation for each type of light source is 
usually different. If a single program includes all types 
of light sources, it becomes unmanageably large. Inten- 
sity at each pixel can be achieved by summing the inten- 
sity of each light source. Using the same composited 
image data repeatedly, we can get shading effects by 
independently calculating each light source. In this 
method, the visible faces are already known, so the shad- 
ing effects due to multiple light sources are achieved with 
only one execution of hidden-surface removal. 

By subdividing the program into hidden-surface 
remover and shader, various shading effects can easily 
be added. 

Shadow processing 
In the previous cornpositing methods only Whitted 

and Duff calculated shadows.‘14 They used Williams’s 
method,‘* a z-buffer algorithm with the viewpoint at the 
light source. In this method, light sources are limited to 
a parallel source or a point source, and the position of 
the point source must be outside of the field of view. 

For arbitrary light-source position or various types of 
light sources, using shadow volumes is helpful, and 
adding precalculation of shadow boundaries on visible 
faces is more useful. In these processes, however, the 
memory requirement for shadows becomes enormous 
when the number of objects is large. To overcome this 
problem, objects are divided into clusters, and the pro- 
cess is done cluster by cluster. For each cluster, shadows 
can be detected by using only those shadow volumes 
casting shadows on the visible faces of this cluster. For 
example, consider shadow processing after composition 
of images a and b. The visible faces for each image are 
obtained using the method described in the section on 
compositing 3D images. Then shadow detection is 
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executed first for the visible faces of a only, then for those 
of b, resulting in reduced memory requirements and 
increased speed. 

Local processing 
Because the visible faces are available, the following 

refinements can be calculated for selected faces. After 
displaying a rough image on a CRT, the image is 
improved by performing these processes in restricted 
regions. Antialiasing against a background can easily be 
done by blending pixels from an image displayed on the 
CRT and the colors arrived at by the method described 
in the section headed “Regeneration of images.” 

Local ray tracing 
Ray tracing is commonly used to represent trans- 

parency and refraction, but this method spends tremen- 
dous time detecting intersections between the ray and 
objects. If only a few objects need to be processed by ray 
tracing, ray tracing the entire screen is inefficient. To 
avoid this problem, a method using a z-buffer algorithm 
as a visible-surface preprocessor has been developed.13 
However, using this method, it is difficult to memorize 
areas of polygons within a pixel. Our method stores all 
visible faces within all pixels, so it can be used as a 
preprocessor for ray tracing. In this article we use a 
hidden-surface removal method combining scanline pro- 
cessing and ray tracing, which we developed earlier.14 A 
reserved face number is used to indicate that a face is to 
be ray traced. When the scan converter encounters such 
a face, it invokes the local ray tracer for each pixel covered 
by the face. For efficient calculation the following are 
considered: 

1. The shadow process is done by precalculation of 
shadow boundaries on faces, not pixel by pixel. 

2. The environment is subdivided hierarchically; 
bounding boxes for each level of objects are used 
and a hierarchical description is also used for 
shadow volumes. 

3. Curved surfaces are subdivided into triangle 
patches to apply the scanline algorithm. 

Texture mapping 
Various types of textures-such as color maps, bump 

maps, reflection maps, and transparency maps-can be 
added to the composited images. Texture mapping 
generally requires the entire texture map to be present 
in memory simultaneously. By appropriately decompos- 
ing into separate images, each of which requires only one 
or a small number of textures, and compositing later, the 
number of texture maps required to be simultaneously 
present in memory can be reduced, thus reducing the 
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total memory requirement. 
Furthermore, the proposed method can add such com- 

plex objects as trees and grass to the composited image 
with hidden-surface removal. In Cook’s shade trees,l’ 
these objects are generated by another program and dis- 
played by creating a texture mapped onto a transparent 
polygon (in this method, cornpositing is performed by 
the alpha-channel method”). However, modeling these 
objects is time consuming. To overcome this problem, we 
use an image of a tree extracted from a photograph and 
map it onto a transparent polygon. For presenting each 
tree, the transparent polygon is placed standing verti- 
cally with its normal facing the viewpoint. When these 
trees overlap on the screen, hidden-surface removal is 
done from the nearest transparent polygon by ray 
tracing. 

Shadows and reflections of trees can also be pro- 
cessed. For shadow calculation, the transparent poly- 
gons are rotated to face the light source, and for reflection 
mapping, they are rotated to face the reflecting surface. 
These calculations are possible because the intermedi- 
ate representation includes 3D information about visi- 
ble faces and depths. 

Background processing 
Because the area where the background is visible is 

known, a background picture can be inserted with 
antialiasing. Similarly, clouds generated by a separate 
program can be inserted in the sky. 

posited. Part of the building was produced by a program 
handling curved surfaces, and other parts were 
produced by a program dealing only with polyhedrons. 

In picture (d), fog effect is added by using stored 
depths. Picture (e) shows the same scene as (d) at night. 
The building is illuminated by five floodlamps at each 
corner where the actual luminous intensity characteris- 
tics of the planned lamps were used in the calculation. 

Picture (f) is an example of fleecy clouds. In this pit:- 
ture the building and cars are composited. After compo- 
sition, we can add texture mapping and shading effects. 
The shading effects under fleecy clouds are due to a com- 
bination of clear skylight (i.e., a hemispherical light 
source with large radius”) and weak direct sunlight (i.e., 
a parallel source). Note that penumbrae due to skylight 
are displayed. 

Pictures (c) and (f) are stills from an animated film enti- 
tled “CG Town” (SIGGRAPH 87 film and video show). 
Frames of the animated film are not antialiased to save 
time in producing animation, so pictures (c) and (f) 
exhibit aliasing. In the film, the intensity of skylight 
varies from overcast sky to clear sky, cars move, and 
colors of leaves change. All these effects were calculated 
using the methods described in this article. 

Picture(g) is an example of lighting design. The room 
is illuminated by two types of light sources, a polyhedral 
light source and the light from the window, an area 
source. 

All examples were calculated using supersampling of 
three virtual scanlines per scanline. Computing statis- 
tics for (c), the most complex image among the examples, 
are as follows: 

Example and conclusion 
Figure 7 shows some examples which demonstrate the 

proposed system. Picture (a) shows an example of scal- Computer: Tosbac Data System 600/80 (2.8 MWIF’S) 

ing (upper left is the original). We can manipulate height 
and width for shape design, executing visible surface 
processing only once. 

Pictures (b) and (c) are examples of the use of image 
cornpositing as a tool in urban planning (Osaka, Japan). 
In these images, buildings, trees, and cars were produced 
separately, then cornposited. The reflections in windows 
are processed by local ray tracing. For moving objects, 
such as cars, the cornpositing is done by recalculating 
only moving elements. 

Image Complexity: 870 polygons 
2359 visible faces 

Image calculaIed 
in four clusters: buildings, roads, trees, cars 

Size of Intermediate 
Representation: 353 kb per cluster, average 

Compute 1 cluster: 2.8 mins 
Final Composite: 26.8 mins (including ray tracing) 

In picture (b), the leaves of the artificial trees are As shown in these examples, the ability to add various 
expressed by a set of triangles, while in picture (c), tex- shading effects leads to heightened realism, as well as a 
tures extracted from an actual photograph are used, more convenient framework for development . n 
yielding a more realistic image. Note that the shadows 
and reflections of the textures of the real trees are also 
very realistic. This method can be applied in urban plan- 
ning to simulate views including various types of real 
trees. Acknowledgments 

Pictures (d) and (e) are examples of estimation of We thank Bonnie Sullivan for developing the program 
environmental impact due to a new building. In this for extraction of trees from photographs, and for care- 
example, the building and the city background are com- fully reading and commenting on this article. 

March 1989 27 





References 

I. ‘I: Whitted and D.M. Weimer, “A Software Test-Bed for the Devel- 
opment of3D Raster Graphics Systems.” Computer Graphics (Proc. 
SIGGRAI’II). Vol. 15. No. 3, Aug. 1981. pp. 271.277. 

2. F.C. Cro\v, ‘A More Flexible Image Generation Environment,” 
Computer. Graphics (Proc. SIGGKAI’H). Vol. 16. No. 3, July 1982, 
pp. Y-18. 

3. ‘I: Porter and T. Duff, “Cornpositing Digital Images,” Computer 
Graphics (Proc. SIGGRAPH), Vol. 18. No. 3, July 1984, pp. 253.259. 

4. T. Duff, “Compositing 3D Kendered Images,” Computer Graphics 
(Proc. SIGGRAPH), Vol. 19. No 3. July 1985. pp. 41-44. 

5. K. Perlm. “An Image Synthesizer.” Computer Graphics (Proc. SIG- 
GRAPH], Vol. 19. No. 3. July 1985, pp. 287-296. 

6. E. Catmull, “A Hidden-Surface Algorithm with Antialiasing,” 
(Computer Grclphics (Proc. SIGGRAPH), Vol. 12. No. 3, Aug. 1978, 
pp. 6-11. 

7. T. Nishita and E. Nakamae. “Half-Tone Representation of 3D 
Objects with Smooth Edge by Using a Multi-Scanning Method,” 
J, Information Processing (in Japanese), Vol. 25, No. 5, Sept. 1984, 
pp. 703-711. 

8. F.C. Crow, “A Comparison of Antialiasing Techniques,” X&A, Vol. 
1, No. 1, Jan. 1981, pp. 40-48. 

Eihachim Nakamae is a professor at Hiroshima 
Universitv where he was appointed as research 
associatein 1956 and professor in 1968. He was 
an associate researcher at Clarkson College of 
Technology, Potsdam, N.Y., from 1973.1974. His 
research interests include computer graphics 
and electric machinery. 

Nakamae received the BE, ME, and DE degrees 
in 1954,1956, and 1967 from Waseda University. 
He is a member of IEEE, IEEE Computer Soci- 

ety, IEE of Japan, II’S of Japan. and IECE of Japan 

Nakamae can be contacted at the Fat.ulty of Engineering. Hiroshima 
I:niversity, Saijo-cho. Higashi-Hiroshima, 724 Japan. 

Takao Ishizaki is a system engineer in the 
Engineering and Development Department of 
the Electronics Division, Daikin Industries, I.td. 
His research interests include computer graphics 
and its applications. 

Ishizaki received the BS in electronics 
engineering and the MS in system engineering 
from Hiroshima University. 

Ishizaki can be contacted at the Engineering 
and Development Department. Electronics Division, Daikin Indus- 
tries, Ltd., Box 37, Shinjuku-Sumitomo-Bldg., ~-6-l. Nishi-Shinjuku. 
Shinjuku-ku, Tokyo, 163 Japan. 

9. T. Nishita, T. Okamura. and E. Nakamao, “Shading blndels for 
Point and Linear Sources,” AC&l Trans. Grtrphics, \‘ol. 4. No. 2. Apr. 
1985. pp. 124-146. 

10. T. Nishitn and E. Nakamae. “ll;~llX~nt: K~~I~r~:~(~~~t;llir)~~ c~f 31) 
Objects Illuminated by Area Sources or I’olyht:clrc)n Sourcrx“ 
IEf+;E Proc. COMPSX 83, (microfiche only). (:S Press. 1,11s 
Alamitos, CalIf.. 1983. pp. 237.242. 

11. ‘I’. Nishita and E. Nakamae, “Continuous Tone Kepresentation IIf 
Three-Dimensional Objects Illuminated by Skylight.” ~;OnlJ.‘Llhxr 

Grnphics (Proc. SIGGRAPH). Vol. 20, No. 4. Aug. 1986. pp. 125-132. 

12. 1,. Williams, “Casting Curved Shadows on (Zurvt:d Surfaces,” Coral- 
puter Graphics (Proc. SIGGRAPH), Vol. 12. No. 3. Aug. 1978. pp. 
270-274. 

14. E. Nakamae, K. Tadamura. and T. Nishita, “HalfX>n~~ Represer~- 
tation Using Local Ray Tracing,” J, Informutron J’rocossing (in Jai)- 
anese), Vol. 27, No. 11, Nov. 1986. pp 1077-1085. 

15. R. Cook, “ShadeTrees,” ComputerGrc~phic:s(I’roc:. SIGCKAPH). 
Vol. 18, No. 3, July 1984, pp. 223-231. 

Tomoyuki Nishita is an associate professor In 
the Department of Electronic and Electrical 
Engineering at Fukuyama University, Japan. He 
was on the research staff at Mazda from 1973 to 
1979 and worked on design and development of 
computer-controlled vehicle systems. He joined 
Fukuyama University in 1979. Since April 1988 
he has been a visiting professor and research 
associate in the Engineering Computer Graphics 
Laboratory at Brigham Young University. His 

research interests involve computer graphics, including lighting 
models, hidden-surface removal, and antialiasing. 

Nishita received his BE, ME, and PhD in engineering in 1971,1973, 
and 1985, respectively, from Hiroshima University. He is a membl:r 
of ACM, IPS of Japan, and IEE of Japan. 

Nishita can be contacted at the ECGL. Brigham Young Llniversity. 
368 CB, Provo, Utah 84602, through the end of March 1989. and at the 
Faculty of Engineering, Fukuyama University, Sanzo Higashimur+ 
cho, Fukuyama, 729-02 Japan from April on. 

Shinichi Takita is a professor in the Department 
of Education at Kagawa University, Japan. His 
research interests include computer graphic:s 
and CAI. 

Takita received his BE and ME degrees in elec- 
trical engineering from Hiroshima finiversity in 
1964 and 1966, respectively. He is a member of 
the IEE of Japan and the Japan Society of Indus- 
trial and Technical Education. 

Takita can be contacted at the Faculty of Education. Kagawa Uni- 
versity, l-l, Saiwai-cho Takamatsu. 760 Japan. 

March 1989 29 


