
ANIMATION METHOD FOR PEN-AND-INK ILLUSTRATIONS

USING STROKE COHERENCY

Toshiyuki Haga Henry Johan Tomoyuki Nishita
Department of Information Science, The University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
e-mail: {haga, henry, nis}@is.s.u-tokyo.ac.jp

CAD/Graphics’2001
August 22-24, Kunming
International Academic Publishers

ABSTRACT

Pen-and-ink illustrations are attractive in that
they have greater ability than photorealistic images to
omit unimportant details, to clarify shapes and so on.
Considering these advantages, we have created pen-
and-ink-style animations. In our method, we treat
3D models as inputs and generate pen-and-ink-style
line drawings in which the strokes of the illustration
express the features of the original 3D geometry. In
the illustrations generated, the density of strokes and
the shapes of strokes represent the tone and the shape
of the 3D models. If the models are moving/changing,
we keep the coherence between the frames in order to
generate smooth animations. For this purpose, the
strokes are stored using a simple data structure that
is able to retain the information in the previous frame.

KEYWORDS: pen-and-ink illustrations, line
drawings, non-photorealistic rendering

1 INTRODUCTION

For many years, the main subjects of study in the
field of computer graphics have dealt with methods of
generating realistic images such as photographs (i.e.
photorealistic rendering) or ways to create those im-
ages efficiently. In recent years, however, the study of
nonphotorealistic rendering has become popular, and
we have recognized the power and the usefulness of
nonphotorealistic rendering. In other words, images
such as pen/pencil line drawings and paintings in an
oil/water color style can now be generated automati-
cally or semi-automatically.

The difference between photorealistic and non-
photorealistic imaging is the same as the difference
between photographs and illustrations (or paintings,
or drawings). They not only have different viewing
characteristics, but also different purposes. A photo-
graph is taken for recording and conveying a scene as
it is, while the purpose of an illustration is to convey
some specific parts of the information in a scene, and
this is the characteristic that a photograph doesn’t

possess. Specifically, a pen-and-ink-style illustration
contains not only interesting visual effects but also
has a number of other advantages. For instance, it
has the capacity to omit unimportant details, to clar-
ify the objects’ shapes by drawing their silhouettes, to
attract interest through a simple expression and it is
easy to reproduce or compress. Therefore, pen-and-
ink illustrations can be found in many contexts, such
as technical illustrations and architectural designs.

The goal of our work is to create a sequence of
illustrations that are suitable for making an anima-
tion sequence that clearly shows the movement of the
objects. The system presented in this paper creates a
pen-and-ink illustration by drawing strokes (or lines)
that reflect the geometry of the objects. If the mod-
els are moving/changing, the system can generate a
smooth animation by using the coherency between
frames.

In Section 2 we survey related works, in Section
3 we describe the algorithm for illustrations, and in
Section 4 we explain the method we used to create
animations. In Section 5 and Section 6, we discuss
our results and conclusions, respectively.

2 RELATED WORK

In recent years, a number of systems have been
developed to produce illustrations in a pen-and-ink-
style. These systems can be classified into two cate-
gories, depending on the input data: geometry-based
systems, which take 3D scene descriptions as input,
and image-based systems, which produce their illus-
trations directly from images.

The main advantage of geometry-based systems
[2, 4, 6, 7, 10, 11, 16, 17] is that they can produce illus-
trations whose strokes not only convey the tone and
the texture of the surfaces in the scene, but they can
also convey the 3D geometry of the surfaces. This
is made possible by the fact that these systems can
use the 3D geometry and the viewing information,
and therefore can place strokes along the silhouettes



of the surfaces. Saito and Takahashi [11] introduced
the concept called “G-buffers”, which contain infor-
mation about depth values, normals of faces and so
on at each pixel, and produce various emphasized
renderings by combining operations between several
“G-buffers”. Winkenbach and Salesin [16] proposed
a method to generate pen-and-ink illustrations by us-
ing “stroke textures”, which is mainly used for cre-
ating illustrations of buildings. Markosian et al. [7]
presented a real-time nonphotorealistic renderer that
deliberately trades accuracy and detail for interactive
speed. Hertzmann and Zorin [2] proposed a set of al-
gorithms for line-art rendering of smooth surfaces. In
order to convey the surface shape, a smooth direction
field is calculated.

Some image-based systems [3, 12, 13, 14] describe
their advantages as the ability to greatly reduce the
number of tasks required for geometric modeling and
of specifying surface reflectance properties, the ability
to allow much more complicated models to be illus-
trated (such as furry creatures and human faces), the
flexibility to use any type of photograph or computer-
generated image as an input and the ability to offer
more direct user control. Salisbury et al. [14] gen-
erated elaborate images of complex surfaces interac-
tively by introducing the idea of orientable textures,
in which the strokes convey not only orientation, but
texture and tone.

Since our main purpose is to generate smooth an-
imations of moving/rotating/changing objects, it is
necessary to make use of the objects’ 3D geometry
information. Thus, the system presented here is a
geometry-based system. Using 3D geometry models,
the system produces three types of intermediate im-
ages, (i) a (grayscale) tone image, (ii) a direction im-
age that conveys the directions of the strokes on each
face of the objects and (iii) a silhouette image. These
three images are used to determine the locations and
the shapes of the strokes on the illustrations. From
this point of view, our system is similar to the system
reported in [11], but our system can create an illus-
tration at an interactive rate, and can make a smooth
animation by using the coherence between frames.

Some animation methods [1, 5, 8, 19] for non-
photorealistic rendering, have already been proposed.
Meier [8] presented a technique for rendering anima-
tions in a painterly style, that provides for frame-to-
frame coherence in animations by modeling surfaces as
3D particle sets. Kaplan et al. [5] proposed a particle-
based method, which is similar to Meier’s method.
The strokes are represented using geograftals, which
are geometry-based procedural objects. The details of
the differences between our method and these meth-
ods are described in Section 4.

3 RENDERING METHOD

In this section, we explain the rendering process
of a pen-and-ink illustration. Before we explain the
process, we first describe several assumptions and def-
initions used by our system (see Fig. 1).

• We assume that the geometric model to be ren-
dered is represented by a non-self-intersecting
polygon mesh, and all of the edges belong to two
adjacent faces.

• A “stroke” is represented by using a Bézier curve,
and we express the objects’ tone by using a col-
lection of strokes.

• Each point on an object has a “direction” value
for the strokes, and the system bends the strokes
according to these values. See Section 3(2) for
details of “direction”.

• A “silhouette” line means the outline of an ob-
ject, and a “ridge” line represents a feature line
that is drawn inside of an object. These lines are
parts of the edges that are used to construct the
object (see Section 3(2)).

• Our system presumes the use of an infinite light
source.

"silhouette" lines

"ridge" lines

strokes

Fig. 1: Examples of each element of the illustration.

(1) Overview

The proposed system mainly aims to express the
tones and shapes of an object by strokes. The density
of the strokes represents the tone, and the strokes are
drawn along the surfaces to represent the shapes. For
example, straight strokes are drawn on a flat surface,
and bent strokes are drawn on a curved surface.

The rendering process is described below.

i. The user specifies the positions of the 3D geo-
metric models in the world coordinate system,
the viewpoint, the view reference point and the
light direction.

ii. For each face of the models, we calculate the tones
and the directions of the strokes drawn on the
face. We check whether each edge is a silhouette
edge or a ridge edge.



iii. Three types of intermediate images are obtained
by using the Z-buffer method (see Section 3(2)).

iv. Each stroke used to shade the illustration is gen-
erated by referring to these three images, and is
added to the strokes’ list (see Section 3(3) for
further information on “strokes”).

v. The silhouette and the ridge lines created in step
iii and the strokes generated in step iv are ren-
dered on the screen.

We describe these steps in the following subsections.

(2) Producing Three Intermediate Images
In order to generate the strokes that convey the

properties of the objects, we produce three types of
intermediate images (see Fig. 2). These are;
• a grayscale image that conveys the tone of the
objects (the tone-image)

• an image that expresses the direction of the
strokes at each point on the objects (the
direction-image)1)

• an image that captures the silhouette and the
ridge lines (the silhouette-image)

(c)

90
45

0

- 45

y

x

(a) (b)

(d)

Fig. 2: The three intermediate images ((a) the tone-
image, (b) the direction-image, (c) the silhouette-
image) of a teapot, and (d) shows the “direction” in
the direction-image.

When the positions of the input 3D geometric
models, the viewpoint and the view reference point are
specified by the user, the system calculates those three
intermediate images by using the Z-buffer method.

Firstly, the tone-image is computed by rendering
the models and converting the resulting image into a
grayscale image, with values from ‘0’ (black) to ‘255’
(white). The rendering process also considers shadows
that cast on the objects. To calculate shadow areas
precisely, we adopt the improved ShadowMap method
described in [18].
———————————————

1) If we treat directions as colors, we can represent the direc-
tion field as an image.

Secondly, we calculate the directions of strokes
on the direction-image. We represent the directions as
values between ‘90’ to ‘-90’. The values ‘90’ and ‘-90’
represent the direction parallel to the y-axis of a 2D
screen, and the values decrease in a clockwise direc-
tion (see Fig. 2(d)) according to the projection onto
a 2D screen of the vector defined by a cross product
between the normal vector and the viewing vector.

Thirdly, the system checks each edge to deter-
mine whether it becomes a silhouette edge or a ridge
edge or not. Before we describe the algorithm, we
need to define the following terms.

If the dot product of the face’s normal vector
and the vector from a point on the face to the
viewpoint is positive, the face is defined as
front-face. Otherwise, defined as back-face.

The algorithm for finding the silhouette and the ridge
edges is as follows.

• If an edge belongs to a front-face and a back-face,
then the edge is a silhouette edge.

• If an edge belongs to two front-faces, and the ab-
solute value of the dot product between the two
normal vectors of these faces is less than a cer-
tain value (user specified) then the edge is a ridge
edge.

silhouette
edges

visible
parts

add
"wiggles"

(a) (b) (c)

Fig. 3: Rendering the silhouette and the ridge edges
into the silhouette-image.

We then project the silhouette and the ridge
edges and produce the silhouette-image. At this stage
we add small “wiggles” to the lines to simulate a hand-
drawn appearance and we compute the visible parts of
the silhouette and the ridge by using the depth infor-
mation in the Z-buffer. Fig. 3(a) shows the projected
silhouette and ridge edges. Fig. 3(b) shows the edges
with the added hand-drawn “wiggles”. And Fig. 3(c)
shows the lines rendered in the silhouette-image with
the invisible parts discarded. Therefore, the silhou-
ette generated by this process becomes the silhouette
on the final illustration. The reasons why we carry
out this operation are,

• It is expensive to check and to calculate any point
that divides the visible part and the invisible
part, and to redraw each visible part with “wig-
gles”.

• If we do not use “wiggly” lines in this stage, some
of the strokes generated could intersect the sil-



houette or the ridge lines, resulting in an unnat-
ural illustration.

By referring to these three images, the system
generates the strokes that are required for the illus-
tration (see Section 3(3)).

(3) Generating Strokes

Using the three intermediate images (see Section
3(2)), the system generates strokes one by one. Each
stroke is generated as follows.

i. determine the position where the stroke is drawn
ii. calculate the end points of the stroke
iii. blur (or gradate) the stroke for comparison
iv. check for overdraw (in other words, check if there

are too many strokes being drawn or not) on the
illustration

v. if there is no overdraw, then update each image
(or each buffer)

vi. if the tone of the illustration differs greatly from
the tone-image, then generate new stroke

The basic rule for placing a stroke is as follows. We
place strokes in the illustration so that the tone of
the illustration matches that of the tone-image. The
matching is only an approximation, because the il-
lustration is made of black strokes on a white back-
ground, whereas the tone-image is grayscale. There-
fore, we compare the blurred version of the illustra-
tion to the tone-image. In our implementation, we
consider an image (called the difference-image) whose
value at each pixel is the difference between the tone-
image and the blurred version of the illustration. Our
aim is to decrease these differences, that is, to make
the value of each pixel in the difference-image near to
‘0’ when the strokes are placed. The initial value of
each pixel of the difference-image is set by subtracting
the value of the tone-image from ‘255’. Specifically,
we allocate the value ‘0’ to a pixel whose tone in the
tone-image is white (so the tone-image value is ‘255’)
and proportionately larger values as the tone become
darker.

At the same time, we prepare the image on which
the strokes are to be rendered, and we call this image
the render-image. This image does not represent the
appearance of the actual illustration, but is used to
determine the distribution of the generated strokes.
To achieve optimum distribution of the strokes and
to reduce calculation costs, the strokes drawn on the
render-image have no “wiggles”. We initialize the
render-image by starting with white, so there are no
strokes rendered in the initial stage.

The next stroke that is about to be rendered on
the screen is added to the strokes-list. When we cre-
ate the illustration on the screen, the strokes in the
strokes-list are rendered with “wiggles” (for details,

see Section 3(4)).

Determining the stroke position
The point selected in this step becomes the cen-

ter of the stroke, and the stroke extends to two di-
rections from this point. Accordingly, we call it the
center-point of the stroke (see Fig. 4). The system se-
lects a pixel whose value in the difference-image is the
largest, that is, the pixel most suitable for rendering a
stroke on, and this is the pixel where the next stroke
will be drawn. In other words, we regard the value of
the difference-image as the priority, so the darker the
place is, the sooner a stroke is rendered on it. There-
fore, a dark place will be a place where the density
of strokes is high, and indeed, we draw strokes in this
order when we create an illustration by hand.

When there are several regions of the same tone,
it is desirable to place strokes uniformly inside these
regions. To achieve this effect, if a point is located
near to existing strokes, then we set its priority to a
small value. Of course, any point where the object
does not exist is allocated the lowest priority, and is
never selected by the system.

center-point

search-points

ridge line end-points

Bezier-curve

(a) (b) (c)

Fig. 4: Calculating the end-points (parallel lines on
the background of each figure represent the direction
on each region).

Calculating the end points of the stroke
Based on the direction-image (see Section 3(2)),

the system calculates the end-points of the stroke (see
Fig. 4). We begin the search from a pixel that we
have defined as the center-point. Next, we move the
search point by a unit distance (i.e. pixel size) in
accordance with the direction allocated to it on the
direction-image (Fig. 4(a)). Then we repeat this step
several times (user defined) (Fig. 4(b)), and we set
the final position that the search point reaches as the
end-point of the stroke (Fig. 4(c)). If the search point
reaches a silhouette or a ridge line, we automatically
set that search point as the end-point (Fig. 4(b)) be-
cause the regions divided by a silhouette or a ridge line
are considered to belong to different groups. There-
fore, in this way we should avoid generating a stroke
that intersects a silhouette or a ridge line. The system
performs the above operation in two directions start-
ing from the center-point, and thus obtains both of
the end-points (Fig. 4). These end-points are the end



points of the Bézier curve that is used to represent the
stroke when it is drawn on the screen.

Blurring the stroke for comparison
The tone-image is a grayscale image, while the

color of a stroke is black. Therefore, we blur the stroke
before we compare the tones in the illustration and the
tone-image. Most of the strokes are bent, and there-
fore the tangential lines at each point on the stroke
are different from each other. If the stroke is blurred
at each point in the direction that is perpendicular to
this tangential line, then the computational cost be-
comes very high. Instead, we define a virtual stroke
for each of these bent strokes. The virtual stroke is a
straight line that connects the end points of the bent
stroke (see Fig. 5(a)). Each point on the stroke is
then blurred in a direction perpendicular to the virtual
stroke. From our experiments it is adequate to blur
the stroke in this manner. The tone of any point on
the actual stroke is dark, and the farther away a point
is from the stroke, the brighter the tone becomes. The
blurring function changes depending upon the tone
value at a position at the center-point of the stroke.
If the stroke is placed in a dark area, the blurred area
is dark and narrow, while if it is in a bright area, the
blurred area is bright and wide (see Fig. 5(b),(c),(d)).
We also allow the user to specify a parameter for con-
trolling the density of the strokes. If the value of this
parameter is small, the strokes are spread sparsely in
the illustration. Otherwise, the strokes are densely
packed.

virtual
 stroke

(a)

(b) (c) (d)

Fig. 5: (a) the original stroke, and (b,c,d) its blurred
versions which are created by using different types of
the blurring function.

Checking overdraw on the illustration
The system checks whether the illustration is

overdrawn or not by comparing the blurred image of
the stroke with the difference-image. This assesses
whether the part of the illustration is darker than the
tone-image when the stroke is drawn on the illustra-
tion.

In Section 3(3), we describe how we try to de-
crease the value of each pixel on the difference-image
to be nearer to ‘0’. However, we do not try to ac-
tually make the value of the difference-image become
exactly ‘0’, since the filtered version of the strokes

cannot match the values in the tone-image precisely.
Instead, we try to reduce the value of the difference-
image to below a specified tolerance value.

Therefore, we perform the checking process as
follows (see Fig. 6). Consider the image (which we
call the subtract-image) that is created by subtracting
the blurred version of the image from the difference-
image. We initialize the search point from the center-
point of the stroke. If the value at point Si(i = 1, 2) on
the subtract-image, which is obtained by moving the
search point perpendicular to the virtual stroke gen-
erated on the original bent stroke, is smaller than the
threshold value (Fig. 6(b)), the current search point
becomes the “real” end point of the stroke(Fig. 6(c)).
Otherwise, we move the search point towards each of
the end-points of the stroke and perform the checking
process again. If there is no over-darkened point on
the subtract-image, the end-points of the stroke be-
come the “real” end points.

The length of the stroke is then defined as the
total distance moved by the search point.

end-points

center-point

(a) (b) (c)

Fig. 6: (a) the skeleton of the stroke, (b) the checking
process, and (c) the stroke drawn on the screen.

Updating each image and checking the termi-
nation condition

After we have generated each stroke, we check its
length. Our system allows the user to specify a pa-
rameter to control the minimum length of the strokes.
The system updates each image as follows.

• If the length of a stroke is smaller than the mini-
mum length specified, then it is not drawn on the
screen. As a result, the system does not update
the difference-image and the render-image.

• If the stroke is long enough, then the system adds
it to the strokes-list, and updates the difference-
image by subtracting its values with the values
of the subtract-image. The system also draws the
stroke on the render-image, with no “wiggle”.

If the maximum value in the difference-image is be-
low the specified tolerance value, the system termi-
nates the stroke generation process. Otherwise, the
system generates a new stroke (repeating the process
presented in Section 3(3)).



(4) Rendering the Illustration on the Screen
We render the final illustration on the screen

by using the silhouette-image and the strokes-list.
Firstly, we draw the silhouette and the ridge lines on
the screen. This operation is almost the same as copy-
ing the silhouette-image onto the screen. Next, we
draw the strokes contained in the strokes-list. To con-
trol the “wiggles” of each stroke, we determine a seed
value 2) . This seed value is used for “wiggling” the
stroke through out the animation (see Section 4). The
“wiggles” help to express the impression of a hand-
drawn appearance. For every stroke in the strokes-
list, we draw a Bézier curve on the screen, which then
represents the stroke. Here, we displace the control
points of the Bézier curve before we draw it on the
screen. The amount of displacement is calculated us-
ing two parameters, the seed value and a user-defined
parameter.

In our system, for efficiency, the degrees of the
Bézier curves are changed depending on the partic-
ular stage of the rendering process. When creating
the render-image (see Section 3(3)), we approximate a
stroke by using a quadratic Bézier curve, while, when
creating the final illustration, we use a cubic Bézier
curve. As a result, we can reduce the cost of gen-
erating strokes on the render-image and can realize
various types of strokes on the final illustration.

4 ANIMATION METHOD

In this section, we explain our method for creat-
ing pen-and-ink-style animations. When we generate
an animation, we need to consider the coherency be-
tween frames. If each frame is rendered in a photoreal-
istic style, the generated animation exhibits coherency
between frames. However, if each frame is rendered in-
dependently in a non-photorealistic style, some of the
coherency is lost, since the system generates differ-
ent strokes when rendering each frame. To avoid this
problem, we try to redraw strokes that were drawn on
the previous frame again on the current frame.

To achieve this, we borrow the ideas from the
particle system [9], in the sense that strokes can also
be treated as particles. There are some animation
methods for non-photorealistic rendering which use
the particle based brush strokes for rendering. Here,
we describe the characteristics of our method by com-
paring it to other methods.

In Meier’s [8] and Kaplan et al.’s [5] methods, the
strokes are precomputed before generating the images.
In other words, the number of strokes is fixed through
out the animation generation process. However, when
———————————————

2) We calculate the seed value of the stroke by using the co-
ordinates of its center-point. The reason why we use the coor-
dinates of the center-point is to assign different seed values to
strokes that are located near to each other on the illustration.

the objects are changing their shapes over time (for
instance, waves in Fig. 8(c)) or when the objects are
moving toward the viewer, it is necessary to add the
number of strokes drawn in order to approximate the
desired tones. As a result, their methods may not
be able to approximate the desired tones since the
number of strokes is fixed. Our method, on the other
hand, allows the generation of new strokes in order to
produce the correct tones.

Strokes which are computed in Meier’s [8] and
Kaplan et al.’s [5] methods are sticked to the sur-
faces of the objects and thus behave like ordinary tex-
tures. However, to produce a more artistic style ani-
mation, it is necessary to draw the same strokes dif-
ferently through out the animation. In our approach,
to achieve this effect, we recompute the direction field
when generating new frame.

Our algorithm is as follows. Firstly, we need
to consider the information about the strokes that is
stored in the strokes-list. The information about the
individual strokes drawn in the previous frame con-
tains,

• center-point, which defines the position where the
stroke was placed.

• end-points of the stroke (the end points of the
Bézier curve which expresses the stroke).

• length of the stroke.
• seed value for computing the “wiggle” of the
stroke.

• lifetime, which specifies the time when the stroke
should disappear.

• tone value, which represents the tone of the stroke
when it is rendered on the screen.

We store the seed value and the length of a stroke
without modification when it is drawn on the screen,
because the same stroke should have almost the same
appearance throughout all of the frames. The center-
point is transformed according to the movement of the
object from the previous frame to the current frame,
but the end-points are ignored and recalculated for
each frame. This is due to the fact that the values
of the direction-image, which effects the way that the
strokes bend, are changing from frame to frame, and
thus the end-points must be recomputed. The pur-
pose of setting a lifetime for each stroke is to control
the tone on each frame (we initialize the lifetime ran-
domly by a value larger than the minimum lifetime
depending on the stroke’s position). When a stroke is
just starting to be generated or is about to disappear,
its tone value is set to a small number. By controlling
the tone value of a stroke, we can reduce the flickering
effects of the animation.

The algorithm for generating each frame of the
animation is as follows.



i. Before generating strokes, we update the follow-
ing information about the strokes in the strokes-
list.

• center-point : transform according to the
movement of the object

• lifetime: decrease by a unit value
• tone value: update according to any change
of the lifetime value

ii. When we start generating strokes, we choose a
stroke in the strokes-list and check whether it can
be placed or not.

iii. We treat the center-point of the chosen stroke as
the center-point where the next stroke is to be
drawn. For the same reason described in Section
3(3), we avoid drawing strokes near to locations
where other strokes have already been drawn.

iv. In a similar way to draw a stroke on a single il-
lustration, we calculate the end-points from the
center-point, check for overdraw, and then obtain
the length of the new stroke. Then we compare
the length of the new stroke with the length of
the original stroke. It is possible that the length
of the stroke has changed, even when the stroke
is positioned in exactly the same place on the
object because the object is moving. Since a sud-
den change of length is undesirable, we discard
any stroke whose length has changed at a large
rate.

v. If a stroke can be drawn, we store the information
of the stroke to the strokes-list for the current
frame.

vi. When we have finished checking all the strokes in
the strokes-list, we generate the new strokes for
the current frame until the tone of the current
frame satisfies the termination condition.
To express strokes which are just starting to be

generated or are about to disappear, we draw them
on the illustrations using thinner lines (in fact, using
brighter colors, because a stroke has a width of one
pixel). Although some artists use broken or dashed
lines to express them, we represent these strokes by
changing their thickness in the current implementa-
tion.

5 RESULTS AND EXAMPLES

The system proposed in this paper is imple-
mented by using Java. The user can specify several
parameters interactively, such as the stroke density,
the magnitude of the “wiggles” on the strokes, the
minimum length of the strokes and so on.

(1) Illustration

Firstly, we show the results of generating a single
illustration. Fig. 7 shows examples of creating the il-
lustrations, such as an animal and furniture. The size
of each illustration is 640× 480 pixels. Table 1 shows
the computational time and the number of strokes ap-
plied in each illustration. The rendering is performed
on a PC with a Pentium III 1GHz CPU. As shown in
Table 1, the computational time is nearly proportional
to the number of strokes in the illustration.

On each illustration in Fig. 7, the strokes are
placed and bent along the shapes of the surfaces of
the objects, and the distribution of the strokes ex-
presses the tone of the objects and shadows.

Figure Content Time(sec) Strokes
Fig. 7(a) Triceratops 11.3 2176
Fig. 7(b) Boat 8.7 1790
Fig. 7(c) Face 13.9 2052
Fig. 7(d) Furniture 20.3 4784

Table 1: The computational time and the number of
strokes for each illustration.

(2) Animation

Fig. 8 shows some examples of pen-and-ink-style
animations. For each example, the animation pro-
ceeds from left to right, and from top to bottom.

Fig. 8(a) is an example of changing the light di-
rection. Our method changes the tone gradually, and
this is significant, because it is very difficult to change
the tone gradually when using other methods such as
the texture-based strokes method.

Fig. 8(b) shows an example of zooming an ob-
ject. The system draws a suitable density of strokes
on each frame. It is also difficult to generate the de-
sired zooming effect in animations by using previous
methods.

Fig. 8(c) shows a more complicated example. It
is a very time-consuming task for an animator to draw
each frame of the animation by hand. Indeed, it is al-
most impossible. On the other hand, we can generate
this animation easily by using the proposed method.
This example also shows that the proposed algorithm
can be applied even when the shapes of the objects,
such as waves, change dynamically. We modelled the
waves by using the Tessendorf’s wave model [15].

In the animations, most of the strokes move in ac-
cordance with the movement of the object, and thus it
makes it easy for the viewer to understand the move-
ment of the object. The computational time for the
first frame of the animation is the same as the time
for computing a single illustration, whereas, the com-
putational times for the other frames are about 20%
shorter than the time for the first frame since the sys-
tem reuses the information from the strokes in the
previous frame.



6 CONCLUSIONS

In this paper, we have proposed algorithms for
creating an illustration and an animation in a pen-
and-ink-style. The proposed algorithms have the fol-
lowing properties.
• The illustration created has almost the same tone
compared to the shaded models illuminated by an
infinite light source.

• The strokes on the illustration express the shapes
of the models well, especially when the models
have curved surfaces.

• In the animation, the strokes move in accordance
with the movement of the object. As a result, it
is easy to understand the movement of the object.

• The coherence between the frames of the anima-
tion is mostly preserved, and the system can gen-
erate a smooth animation.
Our current system still has room for several im-

provements. The first of these will be to enable real-
time animation. To achieve this goal, we can adopt
a more efficient silhouette extraction algorithm, such
as the improved Appel’s algorithm [7]. The next chal-
lenges are to express the texture of the surfaces and
to express various material properties of the objects
(such as glass, metal, etc.) by using strokes. Also, we
plan to create a more natural direction field for the
strokes, and to extend the system to generate a brush-
style or a pencil-style illustration by using strokes.

REFERENCES

[1] W. T. Corrêa, R. J. Jensen, C. E. Thayer, and
A. Finkelstein. “Texture Mapping for Cel Anima-
tion.” Proc. SIGGRAPH ’98, 1998, pp.435-446.

[2] A. Hertzmann and D. Zorin. “Illustrating smooth
surfaces.” Proc. SIGGRAPH 2000, 2000, pp.517-
526.

[3] S. C. Hsu and Irene H. H. Lee. “Drawing and
Animation Using Skeleton Strokes.” Proc. SIG-
GRAPH ’94, 1994, pp.109-118.

[4] T. Igarashi, S. Matsuoka, and H. Tanaka.
“Teddy: A Sketching Interface for 3D Freeform
Design.” Proc. SIGGRAPH ’99, 1999, pp.409-
416.

[5] M. Kaplan, B. Gooch and E. Cohen. “Interactive
Artistic Rendering.” NPAR 2000 : First Interna-
tional Symposium on Non Photorealistic Anima-
tion and Rendering, 2000, pp.67-74.

[6] M. A. Kowalski, L. Markosian, J. D. Northrup,
L. Bourdev, R. Barzel, L. S. Holden, and J. F.
Hughes. “Art-Based Rendering of Fur, Grass,

and Trees.” Proc. SIGGRAPH ’99, 1999, pp.433-
438.

[7] L. Markosian, M. A. Kowalski, S. J Trychin, L.
D. Bourdev, D. Goldstein, and J. F. Hughes.
“Real-time nonphotorealistic rendering.” Proc.
SIGGRAPH ’97, 1997, pp.415-420.

[8] B. J. Meier. “Painterly Rendering for Ani-
mation.” Proceedings SIGGRAPH ’96, 1996,
pp.477-484.

[9] T. Möller and E. Haines. “Real-Time Render-
ing.” A K Peters, Ltd., 1999, pp.179-183.

[10] R. Raskar and M. Cohen. “Image Precision Sil-
houette Edges.” Proc. ACM Symposium on In-
teractive 3D Graphics, 1999, pp.26-29.

[11] T. Saito and T. Takahashi. “Comprehensible
Rendering of 3-D Shapes.” Proc. SIGGRAPH
’90, 1990, pp.197-206.

[12] M. P. Salisbury, S. E. Anderson, R. Barzel, and
D. H. Salesin. “Interactive Pen-and-Ink Illustra-
tion.” Proc. SIGGRAPH ’94, 1994, pp.101-108.

[13] M. Salisbury, C. Anderson, D. Lischinski, and
D. H. Salesin. “Scale-Dependent Reproduction
of Pen-and-Ink Illustrations.” Proc. SIGGRAPH
’96, 1996, pp.461-468.

[14] M. P. Salisbury, M. T. Wong, J. F. Hughes,
and D. H. Salesin. “Orientable Textures for
Image-Based Pen-and-Ink Illustration.” Proc.
SIGGRAPH ’97, 1997, pp.401-406.

[15] J. Tessendorf. “Simulating Ocean Water.” SIG-
GRAPH 2000 Course Note 25, Simulating Na-
ture: From Theory to Practice, 2000.

[16] G. Winkenbach and D. H. Salesin. “Computer-
Generated Pen-and-Ink Illustration.” Proc. SIG-
GRAPH ’94, 1994, pp.91-100.

[17] G. Winkenbach and D. H. Salesin. “Rendering
Parametric Surface in Pen and Ink.” Proc. SIG-
GRAPH ’96, 1996, pp.469-476.

[18] Andrew Woo. “THE SHADOW DEPTH MAP
REVISITED.” Graphics Gems III, Academic
Press, 1992, pp.338-342.

[19] D. N. Wood, A. Finkelstein, J. F. Hughes, C.
E. Thayer, and D. H. Salesin. “Multiperspec-
tive Panoramas for Cel Animation.” Proc. SIG-
GRAPH ’97, 1997, pp.243-250.



(a) Triceratops (b) Boat

(c) Face (d) Furniture

Fig. 7: Examples of the generated illustrations.



(a) An example of changing the direction of the light source.

(b) “A wandering skull.”

(c) “A perfect(?) storm.”

Fig. 8: Some frames of the generated animations.


