
IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. xx JANUARY 20xx
PAPER

Manuscript received January xx, 20xx.
Manuscript revised March xx, 20xx.
† The author is with the Graduate School of Information Science and

Technology, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8656
Japan.

†† The author is with the Nanyang Technological University.
††† The author is with the Graduate School of Frontier Science, the

University of Tokyo, Kashiwa-shi, Tokyo, 277-8510 Japan.
†††† The author is with the Graduate School of Frontier Science, the

University of Tokyo, Kashiwa-shi, Tokyo, 277-8510 Japan.
a) E-mail: pgarciatrigo@is.s.u-tokyo.ac.jp

Interactive Region Matching for 2D Animation Coloring Based
on Feature's Variation

Pablo GARCIA TRIGO,†a) Nonmember, Henry JOHAN††, Nonmember, Takashi IMAGIRE†††, Nonmember,
and Tomoyuki NISHITA††††, Member

SUMMARY
We propose an interactive method for assisting the coloring
process of 2D hand-drawn animated cartoons. It segments input
frames (each hand-drawn drawing of the cartoon) into regions
(areas surrounded by closed lines. E.g. the head, the hands)
extracts their features, and then matches the regions between
frames, allowing the user to fix coloring mistakes interactively.
Its main contribution consists in storing matched regions in
lists called "chains" for tracking how the region features vary
along the animation. Consequently, the matching rate is
improved and the matching mistakes are reduced, thus reducing
the total effort needed until having a correctly colored cartoon.
Key words:
2D animation, coloring, matching

1. Introduction

Traditional 2D animated cartoons are created by drawing
and coloring each frame manually as follows [1] :

1. The main artists draw the concept storyboard.
2. The senior artists draw the key frames (main hand-

drawn drawings of the cartoon, all made of lines only).
3. Secondary artists draw the inbetweenings (the

frames between the key frames, lines only).
4. Other artists color all the drawn frames.
5. Background, music and dialogs are added.

Usually steps 3 and 4 consume 60% of the whole process
[2], even when using commercial software like Retas or
Animo, and previous research has concentrated on
automating them using a matching process:

1. Segment each input frame into its regions (areas

surrounded by closed lines. E.g. the head, the hands).

2. Analyze each region in each frame and extract its
features for using them in the next step.

3. Matching: For all frames, identify what regions in
correspond to what other regions.

4. Correct manually wrongly colored regions.

This paper introduces a classification-based interactive
method for assisting the coloring process. Each time a
region is matched to another, they are classified as
belonging to the same group of regions. We call these
groups “chains” of regions. During the matching, we use
not only the features of the region currently being
matched but also the features of the previous regions in
the chain. Having the chains, we know how regions'
features vary during the animation, and that helps us
reduce the number of wrongly matched regions in the
matching step. Consequently, more regions are
automatically correctly colored, reducing the workload.

2. Related work

Previous methods have concentrated in automating
completely the coloring process with no user
intervention at all. Methods like [3] specialize in the
colorization of old grayscale cartoons. The levels of gray
serve as a hint for the colorization, but nowadays
animation pipeline produces frames with lines only.
There is no grey information. Thus, this solution is not
applicable.

Having only lines and the possible lack of
coherence between frames can make the matching very
difficult. For addressing that, methods like [2; 4; 5]
increase the matching accuracy by using master frames
as a reference, building a hierarchy of regions or
inserting skeletons.

While the above approaches can color successfully
certain kinds of animations, they may achieve bad results
in others. That is especially true in [2; 4; 5; 6] if the
topology of the regions suffers many changes. This
leaves the artist with the task of correcting many
wrongly colored regions manually in the end. This is due
to the fact that coloring mistakes in one frame propagate
to the rest of the frames. Furthermore, those mistakes

GARCIA TRIGO et al.: INTERACTIVE REGION MATCHING FOR 2D ANIMATION COLORING BASED ON
FEATURE'S VARIATION

2

prevent other regions from being correctly colored,
creating more mistakes.

This paper proposes a different approach. Instead of
aiming for the complete automation of the coloring
process, it recognizes that matching mistakes are very
difficult to avoid in all cases and introduces user
interactivity for fixing matching mistakes as soon as they
appear. On top of this, it automatically builds chains of
regions along the animation. This helps to know how
regions change and increases the accuracy of the
matching. Also, the fact that it does not need any
additional step like manually registering a skeleton as in
[4; 6] compensates for the work required in the
interactive part. We work directly with raster images
(bitmaps) as in [7] and [8]. Taking the bitmaps and
vectorizing them is done in [9] and [10], but we decided
that it was not necessary for our method.

3. Proposed method

3.1 General overview

Our algorithm consists of the following steps:

1. Scan the hand-drawn frames.
2. Apply filters to reduce noise and holes (Section 3.2).
3. Segment each input frame into regions (Section 3.2).
4. For each region, extract its shape and topological

features (Section 3.3).
5. Interactive matching (Section 3.6).
6. During the interactive matching, group the regions

into chains to improve the matching accuracy
(Sections 3.4 and 3.5).

3.2 Segmentation

The frames are preprocessed by a filter for
increasing the contrast and hue of the drawn lines. The
lines can be of up to three colors: black, red and blue
(See Section 3.3). Due to the scan process there can be
artifacts: noise and holes. These artifacts can influence
negatively the segmentation, making false small regions
(made up of very few pixels). For fixing them, we
remove regions whose size is less than a certain
threshold (we use a size of 5 pixels).

3.3 Region features

For each region we extract the following features:
1. Shape features:

a) Area. b) Frontier. c) Dominant Points.

2. Topological features:
a) Position. b) Neighbor regions.

1.a) The area is the number of pixels that make up

that region. The background is usually the region with
the biggest area, although not necessarily.

1.b) Regions are enclosed by the strokes that the
artist drew. Those strokes are usually black, but can be
also blue or red, indicating the presence of a highlight
or a shadow. The frontier of a region is the boundary of
the region. They are contiguous to the strokes and have
their color: black, blue or red.

1.c) Dominant Points are points in a boundary that
have a high curvature. For finding them, we use the k-
cosine as in [11]. Once we have found the angle at each
pixel of the frontier of a region, we determine that those
pixels with an angle less than 90 degrees or more than
270 degrees are Dominant Points (see Figure 1).

Fig. 1 Example of Dominant Points in the frontier of the hair region.
In the right there is one portion zoomed in. The Dominant Points are
inside the circles. They can be both convex (less than 90 degrees) and
concave (more than 270 degrees).

2.a) The position of a given region r is reported as
its centroid, where the centroid is the arithmetic mean
of all pixels of r (see Figure 2).

Fig. 2 Centroid of the hair region (at the tip of the arrow).

2.b) For each region we register its neighbor regions.
They can be found expanding the borders of the regions
outwards up to a certain distance. This can be tuned
according to the thickness of the lines.

3.4 The matching algorithm

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
3

We can think of the matching process as a process
of making chains of regions. It starts with a given
region r1, let us call it source region, and tries to find its
corresponding region r2 in the next frame (see Figure 3).
If found, r1 and r2 are linked, r2 becomes the new
source region and the process is repeated. When it
cannot find its corresponding region in the next frame
the chain ends. We call the above process “to match a
given region r”, which is the process of finding all the
regions that correspond to r in the following frames.
The result is a chain of regions started by r (Figure 4).
We have implemented a forward matching algorithm.
We start in the first frame and we try to match all its
regions. When done, we look at the next frame, and do
the same with all the regions that are still unmatched.
We continue until we reach the last frame.

Fig. 3 r1 is the hair region in the first frame at the left. We want to find
its corresponding region r2 in the second frame (at the right). For
finding it, we will compare r1 to all regions in the second frame.

Fig. 4 The chain of regions corresponding to the hair. They go from
the first frame (the leftmost picture) to the last frame (the rightmost).

3.5 The comparison function

For finding the correspondence of one region in the
following frame we use a comparison function comp. It
accepts two regions as input and returns a score
indicating how probable is that those two regions
correspond to each other. A score is always a number
between 0 and 1, 0 in the case of total dissimilarity and
1 when the features are identical.

For a given region r1 in a frame (see Figure 3), we
run comp against r1 and all the regions in the next frame
that have not been matched yet. Then, we pick up the
region with the highest score as r1's correspondence.
Sometimes we cannot find a correspondence because
all the regions in the next frame have already been
matched.

comp is made of five sub functions that compare
each of the features in Section 3.3 and return a score
(again between zero and one). The score of each sub
function is multiplied by a weight w that increases or

reduces the importance of that feature. Finally, all the
weighted scores are summed to make up the final score
that comp will return.

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+
+
+

+

⎟
⎠
⎞

⎜
⎝
⎛=

,*),(
*),(
*),(
*),(
*),(

5
1),(

21

21

21

21

21

21

NeighsNeighs

PosPos

DomPDomP

FrontiersFrontiers

AreaArea

wrrcomp
wrrcomp
wrrcomp
wrrcomp
wrrcomp

rrcomp
 (1)

Concretely, the functions that compare each feature

are as follows:

compArea compares the area of two regions

calculating their ratio. The areas are the amount of pixels
in the region. Dividing the smaller area by the bigger we
obtain the score between zero and one.

,
))(),((
))(),((),(

21

21
21 rArearAreaMax

rArearAreaMinrrcompArea = (2)

In the above formula, r1 and r2 are the input regions.

Functions Min() and Max() return the region with the
smallest and biggest area among r1 and r2 respectively.

compFrontiers compares the length of the frontiers
distinguishing by color (col in Equations (3) and (4)).
Colors that do not exist in both regions are ignored.

,
),,(

),(},,{
21

21
colors

redblueblackcolor
ngthFrontierLe

Frontiers N

colrrcomp
rrcomp

∑
∈=

(3)

)),(),,((
)),(),,((),,(

2211

2211
21 rcolFrcolFMax

rcolFrcolFMincolrrcomp ngthFrontierLe = (4)

)),(()(11 colrFrontierLengthcolF =
)),,(()(22 colrFrontierLengthcolF =

In Equations F1 and F2, Frontier(r, col) returns the

frontier of color col on region r. compFrontierLength
calculates how similar the two lengths are by dividing
the shortest by the longest. Min and max return the
shortest and longest respectively. In compFrontiers it is
important to note that the sum of colors in the
numerator only takes into account colors that are in
both regions r1 and r2. On the other hand, in the
denominator we have the sum of the number of colors
that are present in any of the two regions. This
penalizes and makes difficult to match a region next to
a blue stroke to a region that only has black strokes, for
example.

GARCIA TRIGO et al.: INTERACTIVE REGION MATCHING FOR 2D ANIMATION COLORING BASED ON
FEATURE'S VARIATION

4

compDomP compares the dominant points of two
regions r1 and r2 taking the angles of the dominant
points, subtracting them, and calculating the mean of
the differences. There is a problem: since the frontiers
are circular, there is no way to determine a robust
starting point that will work for all the regions. Thus,
we decided to consider all the possibilities: Given two
lists of angles, we compare them, store their score and
then shift one position one of the lists, and perform the
comparison again. We repeat shifting and comparing
until we go back to the original position and keep the
highest score. This way, we solve the problem of the
starting point and make this function compare well
even when the regions are rotated. While it is a brute
force approach, the average number of dominant points
in a region, in all our sample animations, was around
ten points at most, making compDomP fast enough.

))),,(((),(2121 rrALCompAllShiftsMaxrrcompDomP = (5)

,
360

1)(1),(2121 ⎟
⎠
⎞

⎜
⎝
⎛−−= DomPDomP rrMeanrrALComp (6)

Equation (6), ALComp, takes the angle lists and

compares them. r1DomP and r2DomP are the lists of angles
of the dominant points. They are made the same length
by downsampling the longest one, then the angles are
all subtracted and the mean is calculated. The angles are
in degrees. For normalizing to [0,1] we multiply by
(1/360) and subtract to 1. In Equation (5) AllShifts is
the function that calculates ALComp shifting r2’s list of
angles until a whole rotation is done. AllShifts returns
all the scores and Max returns up the highest score.

compPos compares the position calculating the
distance between their centroids. The result is
normalized between zero and one dividing by the
distance to the furthest region in the frame.

{ },
)()(

)()(
1),(

1

21
21

ii

Pos rcentroidrcentroidMax
rcentroidrcentroid

rrcomp
−

−
−= (7)

In Equation (7), centroid(r) returns the position

vector of region r. In the denominator we calculate the
distance from r1 to the furthest region in the frame of
r2.We do it calculating the distance from r1 to all the
regions ri in the frame of r2 and choosing the maximum.

compNeigh Given two regions r1 and r2 for
comparing their neighbors we can use the above
functions: We compare the neighbors’ features and
return a score that indicates their similarity. The only
feature that we do not compare is, precisely, the
neighbor’s neighbors to avoid entering an infinite loop.

Also, given the set of neighbors of r1 and the set of
neighbors of r2, there are many possibilities for matching
neighbors among them. Again, we calculate all the
possibilities and return the best score. It is important to
note that many times it is not necessary to actually
perform the comparison: if two neighbors have been
matched previously, we already know that they
correspond. We can know it by looking at the chains.
Similarly, we can know that two neighbors do not
correspond when one of the neighbors (or both) have
been matched to other regions.

))),,(((),(
)(

),(21

2
1

ji
rNeighborsj
rNeighborsiNeighs rrCompNAllCompNMaxrrcomp

∈
∈

=

(8)

⎪
⎩

⎪
⎨

⎧
=

,),(
),(

),(

),('
0
0.1

),(

21

21

21

21

21

nnYetnotMatched
nnondnotCorresp

nncorrespond

nncomp
nncompN

 (9)

compN (Equation 9) checks how similar are a given

neighbor n1 of the region r1 and a given neighbor n2 of
the region r2. Looking at the chains, correspond(n1,n2)
returns true if and only if both regions n1 and n2 have
been matched to each other. In this case we return
directly the highest score. notCorrespond(n1,n2) returns
true when regions n1 and n2 have been matched not to
each other, but to other regions (n1 and n2 are not in the
same chain). In this case we return directly the lowest
score. Finally, notMatchedYet(n1,n2) returns true if we
have not matched yet neither n1 nor n2. In this case, we
do not have any information about any of them and need
to use comp’ to find a score. comp’(n1,n2) is like comp
(Equation (1)) but without the neighbors feature (the last
addend). In Equation (8), AllCompN uses compN for
doing all combinations of comparisons of the neighbors
of r1 against all the neighbors of r2 and returns the mean
of the scores in each combination. Max returns the
highest score. This makes this function robust even in
the case where neighbors change positions. In the case
that the number of neighbors of r1 and r2 are different,
the extra regions receive a score of zero. This
comparison function, as the rest, is symmetric, returns
the same value for inputs (r1, r2) and (r2, r1).

Regarding the weights used in Equation (1), each

chain has its own set of weights and they are
recalculated as the chain grows. Each weight wx is
calculated according to the regions in the chain to
reflect the variance of the features along it. Specifically,
the variance of a feature feat in a chain ch is:

),,(),(),(featchScorefeatchScorefeatchVariance MinMax −=

 (10)

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
5

where, ScoreMax(ch, feat) and ScoreMin(ch, feat)
return, respectively, the maximum and the minimum
score of feature feat in chain ch. The variance is a
value between 0 and 1, where 0 means no variation and
1 means that varies completely. The weights are
calculated as the opposite of the variance:

),,(1),(featchVariancefeatchWeight −= (11)

The weight is also a value between 0 and 1. When

the variance is high, it means that that feature changes a
lot and is not reliable, thus the weight becomes small.
Conversely, if there is almost no variance, the feature is
reliable and the weight becomes high. Weight(ch, feat)
is used in Equation (1) to compute each of the weights
wArea, wFrontiers, wDomP, wPos and wNeighs. In each case the
feature feat is Area, Frontiers, DominantPoints,
Position and Neighbors. The chain ch is the chain of
region r1.

Taking into account the previous regions in the
chain enhances the accuracy, although it may still make
wrong matchings. For those cases, the user can correct
interactively the matchings while they are being done.

3.6 Interactive matching

In our system, we have opted to make the matching

process interactive and ask the user to supervise the
matchings as they are done. Although this means more
work for the user, it means that matching mistakes are
corrected as early as they appear and, in the end, it is
less work than fixing all the mistakes of all the frames
after an automatic matching with mistakes. Usually, we
will open some panels, e.g. showing the first five
frames, and do the matching in these five frames only.
Once all regions in the working set have been matched,
it proceeds to the next five ones, and so on until the last
frame. As long as matches are found, chains grow along.

Fig. 5 The user interface consists of a set of panels that display the
frames to be matched. Here with five panels opened, showing five

frames. We can open as many panels as we want.

The smallest working set would be two frames: A
frame and its following frame. Our example animation
has five frames, so we can see them all at once while
performing the matching (see Figure 5).

Initially, the user only has to click the “Interactive
matching” button on top of the panels (see Figure 6. It

is the button with three colors to the right of the number
of the frame) or, more conveniently, just press the space
bar in the keyboard. At each press, the system executes
one step of the algorithm described in Section 3.4: it
picks up the first non-matched region of the working
set, matches it and shows the result on screen. The
matched regions appear colored with the same color. A
random color is used for distinguishing each chain.
Figures 7, 8 and 9 show the first two steps of the
matching process.

For fixing matching mistakes the toolbox (the left
dialog in the user interface, Figure 6) determines the
action to take when the user clicks on a region in a
frame. The actions are: fix a chain, indicate that a chain
ends and indicate that a chain starts.

Fig. 6 Close-up of the user interface

The action “Fix the chain” takes two regions clicked
by the user and links them. Note that it is possible to
link regions that are in non-contiguous frames. This is
especially useful for cases where a region becomes
non-visible during some frames but later reappears.
When this function is used in regions r1 and r2, the part
of the chain that starts at r1 (let us call it “tail”) is
deleted (all those regions become non-matched), r1 and
r2 are linked and r2 is matched. Thus, the tail starting at
r1 is effectively recalculated. Because this function is
often used, there is a shortcut with only one click:
When doing “Right Click” on a region, the system will
infer that the region to link is the in the previous frame
and will take it from the last built chain. The action
“Chain ends” removes the tail from the clicked region.
Useful when a region becomes hidden completely in
the rest of the animation (only one click). The action
“Chain starts” launches the matching process at the
clicked region as a new chain. Any tail starting at r or
any link from another chain to r is deleted first (one
click).

4. Results and Discussion

We implemented our system in Java. We ran the
tests on an Intel Core2 Quad CPU Q6700 @ 2.66 GHz,
with 2 GB of RAM. The current implementation is

GARCIA TRIGO et al.: INTERACTIVE REGION MATCHING FOR 2D ANIMATION COLORING BASED ON
FEATURE'S VARIATION

6

single-threaded and does all its calculations on CPU.
Segmenting and extracting the region features of one
frame takes around 300 milliseconds. After the
segmentation and the extraction of features, all the
interaction is in real-time. We used four animations to
test the efficiency of each of the five features separately
and compared the results when using all of them
together.

Table 1 Comparison of each feature separately. The four animations in
the left column are shown in Figures 7, 8, 9 and 10. Each column shows

the number of clicks needed to correctly color the whole animation
when the algorithm used only that feature for comparing regions. From
left to right, the features are Area, Frontiers, Dominant Points, Position

and Neighbor Regions. The last column shows the number of clicks
needed when our algorithm used all the features (normal usage).

Anim Area Fr Dom
Point Pos Nei All

Flag 26 20 33 15 20 12

Bear 51 45 81 44 38 29

Jump 55 52 69 48 50 43
Face 46 42 51 39 40 29

In Table 1, we can see how different features

perform better or worse depending on the animation.
Using all the features makes the algorithm more
efficient.

In another experiment, we performed a user test
counting the number of mouse clicks and time.
Different subjects took a different number of clicks
because of using different strategies when coloring or
fixing mistakes they made themselves. Underscores
show the lowest number of clicks and best times.

Table 2 User test. Our users were amateurs (users A, B, C and D) and
after doing some training with the Flag animation (not in the table),

they colored the Bear, Jump and Face animation. For each animation,
we show the clicks (Clk. Column) and the time (in mm:ss format).

Bear Jump Face

User
Clk. Time Clk. Time Clk. Time

A 29 2:28 93 9:40 27 2:43

B 37 3:33 43 7:59 33 4:44

C 76 5:01 57 8:44 50 4:23

D 29 2:03 43 4:59 29 3:17

Table 3 shows another experiment on the Face

animation with user D.

Table 3 Clicks comparison with user D in the Face animation. The
manual method had the user specify the matchings between all regions,
except the regions in the last frame, which do not have a next frame to
be matched to (two clicks for each matching). In Our method the user

clicked on the wrong regions for fixing them: 16 regions were fixed by
the user and 10 regions were fixed automatically by the algorithm. The
Non-interactive method required zero effort from the user initially, but
had wrong regions. In order to fix them, 86 clicks were needed with the
“fix” action of the Toolbox (two clicks each). The Right-Click option

cannot be used in the Manual and Non-Interactive method as it uses the
last built chain.

Method Clicks Wrong regions

Manually 144 0
Our method 29 0 (16:user, 10: alg)

Non-interactive 0 (fixes:86) 43

As Table 3 reflects, the user-guided matching

method allowed us to do the coloring with less clicks
than doing the work manually or with a non-interactive
approach. The coloring process of our method is shown
in Figure 10, with the first two steps and the final
correct result with corresponding regions being colored
with the same color. It can be contrasted with Figure 11,
which shows a wrong result (corresponding regions
have actually different colors). The three methods
above work with random colors in the regions. In order
to set the final colors, we only need to choose one color
and apply it to one region. The color will expand
automatically to the whole chain. Our method shows
how, for difficult cases, an approach that takes into
account the previously matched frames and involves the
user can be more efficient that a manual or a non-
interactive approach.

5. Conclusions and Future Work

As seen in the results, fixing the coloring mistakes
as soon as they appear has allowed us to stop their
propagation and the generation of other mistakes, while
keeping the user intervention low. Also, classifying the
regions into chains and seeing how regions change
along them has allowed us to increase the matching
accuracy, thus reducing the total number of mistakes
and reducing the total effort needed to create a correctly
colored cartoon. Our method can be applied to any
animated cartoon, since it does not impose any
restriction on the kind of character or scene to be
colored. As for future work, we want to consider the
case where there are regions occluding other regions or
when regions break up into several ones or merge into a
single one.

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
7

References

[1] E. Catmull, "The problems of computer-assisted animation".

Proc. of the 5th annual conference on Computer graphics
and interactive techniques, pp.348-353, 1978.

[2] J. Qiu, H.S. Seah, F. Tian, Q. Chen, and Z. Wu, "Enhanced
auto coloring with hierarchical region matching". Computer
Animation and Virtual Worlds, 16, pp.463-473, 2005.

[3] D. Sykora, J. Burianek, and J. Zara, "Unsupervised
colorization of black-and-white cartoons". Proc. of the 3rd
international symposium on Non-photorealistic animation
and rendering, pp.121-127, 2004.

[4] J. Qiu, H.S. Seah, and F. Tian, "Auto coloring with
character registration". Proc. of the 2006 international
conference on Game research and development, pp.25-32,
2006.

[5] J. Qiu, H.S. Seah, F. Tian, Z. Wu, and Q. Chen, "Feature-
and region-based auto painting for 2D animation". The
Visual Computer, 21, pp.928-944, 2005.

[6] J. Qiu, H.S. Seah, F. Tian, Q. Chen, Z. Wu, and K.
Melikhov, "Auto coloring with enhanced character
registration". International Journal of Computer Games
Technology, 2008, 1, 2008.

[7] C.W. Chang, and S.Y. Lee, "Automatic Cel Painting in
Computer-assisted Cartoon Production using Similarity
Recognition". The Journal of Visualization and Computer
Animation, 8, pp.165-185, 1997.

[8] H.S. Seah, and T. Feng, "Computer-assisted coloring by
matching line drawings". The Visual Computer, 16, pp.289-
304, 2000.

[9] J.D. Fekete, E. Bizouarn, E. Cournarie, T. Galas, and F.
Taillefer, "TicTacToon: a paperless system for professional
2D animation". Proc. of the 22nd annual conference on
Computer graphics and interactive techniques, pp.79-90,
1995.

[10] J.S. Madeira, A. Stork, and M.H. Gross, "An approach to
computer-supported cartooning". The Visual Computer, 12,
pp.1-17, 1996.

[11] C.H. Teh, and R.T. Chin, "A scale-independent dominant
point detection algorithm". Proc. of Computer Vision and
Pattern Recognition (CVPR'88), pp.229-234, 1988.

Pablo Garcia Trigo received the B.S.,
degree in Informatics Engineering from
the Technical University of Catalonia,
Spain, in 2004. He is currently a Ph.D.
student at the Graduate School of
Information Science and Technology, the
University of Tokyo. His research
interests include animation and non-
photorealistic rendering.

Henry Johan is an assistant professor
in the School of Computer Engineering at
Nanyang Technological University
(Singapore) since 2006. He received his
BSc, MSc and Ph.D degrees in computer
science from the University of Tokyo
(Japan) in 1999, 2001 and 2004,
respectively. From 2004 to 2006, he was

a post-doctoral fellow in the Department of Complexity
Science and Engineering at the University of Tokyo. His
research interests include computer graphics and image
processing.

Takashi Imagire received the B.S.,
M.S. degrees in Physics from the
Tsukuba University, Japan, in 1995, and
1997, respectively. He is currently a
doctoral student in the Department of
Complexity Science and Engineering at
the University of Tokyo and works at
Namco Bandai Games Inc.. His research
interests center in computer graphics
related to video games.

Tomoyuki Nishita received the B.E.,
M.E., and Ph.D. degrees from Electrical
Engineering from the Hiroshima
University, Japan, in 1971, 1973, and
1985, respectively. He worked for Mazda
Motor Corp. from 1973 to 1979. He has
been a lecturer at the Fukuyama
University since 1979, then became an
associate professor in 1984, and later

became a professor in 1990. He moved to the Department of
Information Science of the University of Tokyo as a professor
in 1998 and now is a professor at the Department of
Complexity Science and Engineering of the University of
Tokyo since 1999. In 2005 he received the Steven A. Coons
Award from ACM SIGGRAPH. His research interests center in
computer graphics including lighting models, hidden-surface
removal, antialiasing and natural phenomena.

Animation samples

Fig. 7 The Flag animation: 13 frames of 207×163 pixels with

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6 and 7 regions respectively.

Fig. 8 The Bear animation: 6 frames of 178×309 pixels.

Each frame has 20, 20, 16, 20, 20 and 20 regions
respectively. (Total: 116 regions)

GARCIA TRIGO et al.: INTERACTIVE REGION MATCHING FOR 2D ANIMATION COLORING BASED ON
FEATURE'S VARIATION

8

Fig. 9 The Jump animation:13 frames of 284×532 pixels.

Each frame has 18, 16, 17, 16, 17, 17, 18, 20, 20, 21, 21, 21
and 18 regions respectively. (Total: 240 regions)

Fig. 10 The Face animation: 5 frames, each of 507x446 pixels. Each frame has respectively: 15, 16, 17, 18 and 18 regions, 84 in total. We show the
frames before being matched (lines only), the first two steps (hair and face) and the final correct matching.

Fig. 11 The frames after being wrongly matched automatically without user guidance (Matching mistakes propagated).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

