
Paper

Real-Time Line Drawing of 3D Models

Taking Into Account Curvature-Based Importance

〈Summary〉 In recent years, many line drawing algorithms have been proposed for 3D

shape depiction. One common drawback is that these algorithms draw only part of the

necessary lines for fully depicting the shape. Cole et al.1) have shown that these algorithms

can be complementary to each other. Based on that, in this paper, we combine the previous

algorithms to produce better line drawings of 3D objects. By directly superposing multiple

line drawing algorithms, however, there is a risk of generating too many unnecessary lines,

especially in regions where many lines are located near to each other, making them to appear

over-sketched. To solve this problem, we define an attribute called ”importance” for all

points on each line. The importance describes which lines should be drawn in preference.

In addition, we determine the width of the lines based on the number of lines in their

neighborhood. Our algorithm runs on GPU, achieving real-time speed. From experimental

results, our method avoids drawing excessive lines while conveying the shapes effectively.

Key words: Line Drawing, Importance, Curvature

1. Introduction

Many algorithms for Non-Photorealistic Rendering

(NPR) have been proposed in recent years, partic-

ularly, line-drawing algorithms for 3D shape depic-

tion2). These algorithms are very useful in cartoon

rendering, industrial and medical visualization soft-

ware.

There are two basic ways to draw lines from 3D

shapes, the Silhouette algorithm and the Crease al-

gorithm2). However, in the last few years, more com-

plex algorithms based on curvature or its derivative3)

have been proposed, such as DeCarlo et al.4), Ohtake

et al.5), Judd et al.6) and Kolomekin et al.7).

All these algorithms are biased towards certain

kinds of lines and none can emulate human’s draw-

ings perfectly. They can only generate one subset

of the lines that an artist would draw. Fortunately,

as suggested in1) we can combine them to generate

drawings closer to those made by humans.

The problem is that just overlapping the output

of previous algorithms does not yield good results.

In some areas these algorithms produce similar lines

or over-sketched lines, resulting in unnatural draw-

ings that are far from the line drawings of artists (see

Figure 1). Some of these line drawing algorithms in-

clude a line elimination step. It is usually performed

by computing a strength value for each line and com-

paring it to a threshold. However, these algorithms

use different methods and they are not applicable to

one another.

In this paper, we propose a method for combining

existing algorithms in order to increase the quality of

line drawings while dealing with the problem of over-

sketching. We achieve it by introducing a new at-

tribute, ”importance”, which is defined on all points

on each line. We define importance as a value that

increases around the prominent features of shapes

1

The Journal of the IIEEJ vol. 39 no. 11(2010)

(a) (b) (c) (d)

Fig. 1 Example of previous algorithms. (a) The

original Happy Buddha model. (b) Result of

the “Suggestive Contours4)” algorithm. (c)

Result of the “Ridges and Valleys5)” algo-

rithm. (d) Combination of (b) and (c), em-

phasizing the overlapped lines. The lines

generated by these two different algorithms

almost overlap in some areas, shown as dark

lines in the right image.

and decreseas otherwise. Furthermore, we assign con-

tour lines (lines that separate objects from the back-

ground) the maximum importance so that we always

draw them. We find that this definition of importance

depicts shapes effectively. Our proposed method

computes all lines and their importances, and then

eliminates some of the lines in two ways. Firstly,

the lines that have less importance are simply elim-

inated by a user-defined threshold value. Secondly,

the lines that overlap or are close to each other are

eliminated based on their importances and neighbor-

hood line’s importance. Our method is designed to

run on GPU and our implementation achieves real-

time performance. Because of this real-time perfor-

mance, users can control the amount of lines and de-

tail level interactively by changing the parameters.

2. Related Work

2.1 Line Drawing Algorithms

The simplest and well known algorithms are the

Silhouettes and Creases. Silhouettes are set of points

on a 3D model surface whose normal vectors are per-

pendicular to the view vectors of the camera. Creases

are set of edges of a 3D model, which are marked as

”sharp” edges.

In recent years, some more advanced algorithms

based on curvature and the derivative of curvature

of surfaces have been developed, such as Suggestive

Contours by DeCarlo et al.4), Ridges and Valleys

(R&V) by Ohtake et al.5), Apparent Ridges by Judd

et al.6), and Demarcating Curvers by Kolomenkin

et al.7). These line drawing algorithms also de-

fine the methods to eliminate unnecessary lines.

These methods have a common point, comparing

the algorithm-defined strength with a user-defined

threshold. However, each algorithm has its own defi-

nition of strength, which is not compatible with each

other. Since each strength is very different, and these

line eliminating algorithms are not designed for com-

positing multiple line drawing algorithms, a problem

occurs. The problem is that many lines overlap with

other lines, and some areas become too dense, con-

taining too many lines. Grabli’s line drawing algo-

rithm8) allows the user to define a priority per line

for eliminating unnecessary lines. However, this pri-

ority is manually specified by the users. Moreover, it

sorts the lines by priority, which is difficult to pro-

cess on GPU. Since some line drawing algorithms are

computed on GPU, this method is unsuitable for real-

time applications.

2.2 Evaluation of Line Drawing Algorithms

To evaluate these line drawing algorithms intro-

duced in Section 2.1, Cole et al.1) compared the lines

drawn by algorithms with the ones drawn by humans.

Cole et al. tested three algorithms: Suggestive Con-

tours, R&V and Apparent Ridges.

Generally, R&V obtain good results on artificial

rigid objects while Apparent Ridges and Suggestive

Contours are good on smooth objects. Suggestive

Contours tends to generate less lines compared to

R&V and Apparent Ridges.

Cole et al. showed that no algorithm can emu-

late human line drawings completely. For example,

for a model named Flange, about 80 to 90 percent

of human’s lines are produced by Apparent Ridges

and R&V, and about 50 to 60 percent by Suggestive

Contours. However, to achieve this accuracy, these

algorithms also generate 30 percent of wrong lines,

not drawn by humans.

They also studied the combination of these three

algorithms. Each algorithm can only generate less

than 20 percent of human drawn non-contour lines,

this is, not all the lines. However when they combined

these algorithms, the percentage of accuracy doubled

compared to a single algorithm.

2

Paper :Real-Time Line Drawing of 3D Models Taking Into Account Curvature-Based Importance

3. Proposed Method

Our basic idea is to generate lines using multiple

algorithms and omit the unnecessary lines. We de-

fine an importance value for all points on each line,

and then compare the importance of the line with its

nearby lines. We omit the line if higher importance

lines exist in the neighborhood or the line importance

is smaller than a user-defined threshold.

The algorithm consists of five steps: line genera-

tion, importance computation, line-width determina-

tion, importance rendering, and line elimination.

3.1 Line Generation

For the line generation, we use a combination of

multiple algorithms, referred in Sections 1 and 2. For

our experiments, we have implemented the Silhouette

algorithm, Crease algorithm, Suggestive Contours4)

and R&V5).

The Crease algorithm and R&V algorithm do not

depend on the camera direction, but the Silhouette

and Suggestive Contours algorithms do. Since these

camera-dependent algorithms can be implemented

using a GPU shader language that outputs the poly-

lines, it is a waste of time to send back the data and

eliminate the lines on the CPU. Thus we implemented

the following steps using the GPU shader language for

gaining performance.

3.2 Importance Computation

For the importance computation, we propose a

modified version of Mesh Saliency9) as importance.

The original Mesh Saliency method computes a value

called saliency over all the vertices of the input model

at multiple scales. The saliency value of a vertex

becomes larger when that vertex is salient in many

scales. That is, that vertex is part of the important

shape feature. If that vertex is only salient in a few

scales, the saliency value becomes smaller, for exam-

ple, a punched-metal pattern on a flat surface. This

property is an advantage over the existing line elimi-

nating methods4)5), since those methods only refer to

the local curvature value.

However, the saliency computed using the original

Mesh Saliency method is not straightforwardly appli-

cable to our purpose since it is based on the mean

curvature of the vertex. The saliency value becomes

high, for example, in a mountain or crater, but not for

a mountain range or valley. Since we want the lines

over the mountain range or valleys to be important,

we use the difference of principal curvatures instead

of the mean curvature in the original method.

The first step is the same as in the original method;

we compute the surface curvatures. There are many

good ways to compute the curvature on polygonal

meshes. We use Meyer’s method3)for computing the

curvature. Let κ(v, d) denote the curvature towards

a direction d on the tangent plane of a vertex v. Let

d1, d2 denote the principal curvature directions at the

vertex v: d1 = argmaxdκ(v, d), d2 = argmindκ(v, d).

Next, we compute the Gaussian-weighted average

of the curvature difference G(v, σ). Let N(v, σ) be

the v neighborhood vertices within a σ radius sphere.

For each vertex x ∈ N(v, σ), we project (and nor-

malize) d1, d2 to x’s tangent plane. Let dx
1 , dx

2 be the

projected vectors. The Gaussian-weighted average of

the curvature difference G(v, σ) is computed as:

K(x, dx
1 , dx

2) = κ(x, dx
1) − κ(x, dx

2), (1)

G(x, v, σ) = exp(||v − x||2/2σ2), (2)

G(v, σ) =

∑
x∈N(v,2σ) K(x, dx

1 , dx
2)G(x, v, σ)∑

x∈N(v,2σ) G(x, v, σ)
.(3)

The last step is exactly the same as in the origi-

nal method: we compute G(v, σ) in multiple scales

(i.e. evaluate G(v, σ) with changing σ), normalize

and compose the results for multiple scales.

Based on experimental results, our method gener-

ates better importance values than other importance

computations (e.g. the original Mesh Saliency or the

difference between two principal curvatures, see Fig-

ure 6).

Since the computational cost of this importance

computation is O(n log n) where n is the number of

vertices, it takes too long to compute it in each frame.

Thus, we compute the importance in the precompu-

tation step. The importance is computed on each

vertex of the polyline, and interpolated along the line

segment. Since the line drawing algorithms in Sec-

tion 3.1 generate lines on the surface of the polygo-

nal 3D model, it is easy to compute the saliency of

each vertex of the line by interpolating the saliency

between the vertices of the 3D model. Additionally,

we specially treat contour lines, which are the lines

that separate the object from the background or the

3

The Journal of the IIEEJ vol. 39 no. 11(2010)

Importance: Low High

(a) (b) (c)

Fig. 2 An example of importance computation and

mapping. (a) The original Dragon model.

(b) The importance values on the surface of

(a). (c) The importance values of the drawn

lines. The importance is the same as in (b),

except that the importance of the contour

lines has been emphasized.

other objects (see Figure 2). We can easily extract

the contour lines from the silhouette lines by using

their depth values: pixels in contour lines are ad-

jacent to pixels whose depth is not continuous (the

background or the other objects). To avoid disconti-

nuities in the contour lines, we scale their importance

up to α times, experimentally two times, as follows:

(depending on the depth difference between their two

own borders)

r(p) =
α

|2n(p)|
|D(p + n(p)) − D(p − n(p))|′

s(p) = min(α, max(1, r(p))). (4)

Where s(p) is the importance scaling coefficient on

pixel p on the line, and n(p) is the orientation which

is orthogonal to the line orientation, and D(p) is the

depth at pixel p. α is user-defined constant value.

3.3 Line Width Determination

For calculating the line width, we use the screen

size, the density of lines and the importance of lines.

We determine the line width according to the screen

size, and we shrink the line width in dense areas to

maintain the line visibility (see Figure 3).

To compute the density of the line, first we draw

all lines to a density buffer as one pixel-width lines.

We can use simple Bresenham algorithm10) or the

comparable algorithms since the lines are stored as

polylines. To compute the density of lines, we initial-

ize the density buffer to zero (black) and increment

every time we draw a line on a pixel. Thus, this buffer

stores the line density of any pixels. We scale it down

using the linear mipmap filter of GPU as a fast ap-

proximation of a Gaussian filter so that the buffer

Fig. 3 An example of line width determination.

The lines drawn in the left image are all the

same width, and the right one is the result

after applying the line width determination.

The overlapping lines in dense areas become

thinner (see the robot arms), but isolated

lines still keep their width (see the two long

antennas orienting obliquely upward).

stores the line density of nearby area.

We define the width of a line as:

αs · (β + d)−1. (5)

Where s is the longer one of the screen width or height

in pixels, and d is the average value of the density

buffer in nearby pixels (empirically, 8 × 8 or 16 × 16

nearby pixels give a good result). α and β are user-

defined constants, which indicate the ratio of the line

width to the screen size and the degree of effect from

the line density to the line width. We define these

constants as α = 0.002 and β = 0.8.

Additionally, when we eliminate the lines in Sec-

tion 3.5, we do it smoothly: we linearly change the

width from 100% (explicitly not eliminated) to 0%

(explicitly eliminated).

3.4 Importance Rendering

For eliminating lines, we compare the importance

of each pixel on the line with the nearby lines. Since

we do not draw a pixel when a higher importance lines

exist close to the pixel, we only need to compare the

pixel importance with the maximum importance line

around the pixel.

However, it is difficult to directly implement this

comparison effectively using the GPU shader lan-

guage. For this reason, we use a workaround that

is adapted to GPU shader language, described in this

and next sections.

In this importance rendering step, we compute the

maximum importance around each pixel. First we

4

Paper :Real-Time Line Drawing of 3D Models Taking Into Account Curvature-Based Importance

(a) (b) (c)

Fig. 4 Example of the left arm of the armadillo. (a)

The original model. (b) Line drawings us-

ing directional importance buffers. (c) Line

drawings without using directional impor-

tance buffers. Without using the directional

importance buffers, the crossing lines are un-

naturally eliminated.

draw all lines to an importance buffer, which has the

same size as the screen. When drawing the line to

the buffer, we draw the importance instead of the

color of line, and we draw them wider (empirically,

three to seven times wider than the width calculated

in Section 3.3) to spread the importance into a large

area, with higher importance lines overpainting lower

importance lines. When drawing the importance to

the importance buffer pixel, we compare the current

pixel value and the line importance value and store

the larger one to the pixel.

However, the above method does not consider the

orientation of the lines, which means for example al-

most orthogonally crossed lines are treated as similar

lines. This mis-treating leads to unnatural line elim-

ination in the next step (see Figure 4). We want to

treat nearby lines with similar orientations as simi-

lar lines. To realize this, we use ”directional impor-

tance buffers”, multiple buffers that are associated

with several line orientations. We use four buffers,

each associated to the orientations 0◦, 45◦, 90◦, and

135◦ (see Figure 5).

When writing to each importance buffer, we mul-

tiply the importance by cosine of the angle between

the line orientation and the buffer’s associated orien-

tation:

Il cos(θl − θbuf). (6)

Il is the importance of the line (precisely, the impor-

tance of the pixel on the line). θbuf is the orientation

(in degree or radian) which is associated to the im-

portance buffer, and θl is the orientation of the line.

Importance: Low High

Fig. 5 An example of importance rendering to each

directional importance buffer. The intensity

shows the value of importance (obtained by

Equation (6)).

3.5 Line Elimination

Finally, when we render a line to the screen, we

eliminate the lines in two ways. The first way is to

eliminate the lines by importance thresholding. By

changing this threshold value, we can control the de-

tail level of the line drawing.

The second way is to eliminate the lines by compar-

ing the importance of the line against the value in the

importance buffer, considering the orientation of the

line. If the importance of the line is less than the im-

portance read from the importance buffer, it means

that there are more important lines in the neighbor-

hood, thus we do not draw the line to the screen.

As described in Section 3.4, we consider the line

orientation when writing to the importance buffer.

We also consider the line orientation when reading

from the buffer. When reading from the importance

buffers, we choose two importance buffers which are

associated to the two nearest orientations to the line

orientation, and linearly interpolate the pixel values

from these two buffers as:∣∣θbuf2 − θl

∣∣ Ibuf1 +
∣∣θbuf1 − θl

∣∣ Ibuf2∣∣θbuf2 − θbuf1

∣∣ . (7)

Ibuf1, Ibuf2 are the pixel values of the directional im-

portance buffers to be interpolated. θbuf1, θbuf2 are

the orientations which are associated to the impor-

tance buffers. Note that all the theta values should

be in the range [0◦, 180◦).

4. Results

We implemented and executed our program on a

desktop PC (Intel Core i7 920 2.67 GHz, 6 GB RAM,

5

The Journal of the IIEEJ vol. 39 no. 11(2010)

GeForce 9800 GT 512 MB VRAM). Our implemen-

tation includes the following line drawing algorithms:

Silhouettes, Creases, Suggestive Contours and R&V.

We implemented Creases and R&V using C++,

and Silhouettes and Suggestive Contours using the

Direct3D10 shader language. Since Silhouettes and

Suggestive Contours depend not only on the shape

of the model but also the camera direction, we had

optimized the implementation of these algorithms to

achieve real-time performance. We implemented all

the steps in GPU except the precomputation (com-

puting the curvature and the importance).

Figure 7 shows the results before and after apply-

ing our proposed method. We can see that our result

images have less line density than the original images.

The lines in (d) are too dense especially in area 2 and

they appear like fractures on a flat surface, resulting

in losing the shape feature (i.e. the flatness). On the

contrary, the lines in our generated images are simpli-

fied in those areas. We drew lines in pronounced val-

leys and mountains (high importance) and we deleted

them in shallow valleys and low mountains (low im-

portance).

Figure 8 shows the line elimination step by step.

Our method eliminates lines in relatively flat sur-

faces in the importance thresholding step (c), and in

the next step (d) it eliminates the overlapping lines.

The screwdriver image in Figure 9 shows that our

method eliminates lines properly in any scale. Figure

10 shows the result of changing the line elimination

threshold value for controlling the detail level.

Our method is fast enough to be used in real-

time applications as shown in Table 1. Our proposed

method achieved 30 fps even for a dragon model with

99 k vertices. Since the rendering are performed in

real-time, we can control the results interactively by

changing some of the rendering parameters (i.e. the

line elimination threshold, the line width etc. See

Equations (4),(5)).

Table 1 The timings of our method for some mod-

els, in millisecond per frame.

Model Screwdriver Dragon

Number of vertices 27 k 99 k

Without our method (ms) 8.3 28.6

With our method (ms) 10.7 33.3

Difference (ms) 2.4 4.7

The followings are the limitations of our method.

Our importance computation algorithm gives high

importance to shape features (e.g. the claws at the

arm and the leg of the dragon) and tends to lower

the importance of repeating patterns (e.g. the stripe

pattern at the chest of the dragon). We cannot

change this line elimination priority unless using an-

other importance definition. Moreover, our method

for line elimination decides to erase a line or not on

each point on the line, resulting in some lines being

splitted into several small segments.

5. Conclusions and Future Work

In this paper, we have proposed a method to gener-

ate line drawings of 3D models by combining the pre-

vious methods while avoiding over-sketching based on

the importance of lines.

Compared to the previous work, our method is bet-

ter at generating more lines to depict the 3D models

while eliminating unnecessary lines, especially in ar-

eas where many of them would overlap. The results

are clearer and crisper line drawings. We also focused

in making our algorithm work in real-time so that it

can be used in games and interactive applications, like

medical imaging and CAD programs. Users can con-

trol the amount of lines and detail level interactively

by changing the parameters.

Our method and existing algorithms generally re-

quire the curvature on the surface. A real-time

method for computing the curvature in the screen

space is proposed by Kim et al.11). However, since

we need the curvature in the 3D model space, we do

not use this algorithm and compute the curvature in

the precomputation step. As future work, we would

like to develop a real-time algorithm for rendering de-

formable objects, that is the curvature is changing in

each frame.

References

1) F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Bar-

ros, A. Finkelstein, T. Funkhouser, and S. Rusinkiewicz,

“Where do people draw lines?,” in SIGGRAPH ’08: ACM

SIGGRAPH 2008, (New York, NY, USA), pp. 1–11,

ACM, 2008.

2) T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg,

and T. Strothotte, “A developer’s guide to silhouette al-

gorithms for polygonal models,” IEEE Comput. Graph.

Appl., vol. 23, no. 4, pp. 28–37, 2003.

3) M. Meyer, M. Desbrun, P. Schroder, and A. H. Barr,

6

Paper :Real-Time Line Drawing of 3D Models Taking Into Account Curvature-Based Importance

“Discrete differential-geometry operators for triangu-

lated 2-manifolds,” Visualization and Mathematics III,

pp. 35–57, 2003.

4) D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. San-

tella, “Suggestive contours for conveying shape,” in SIG-

GRAPH ’03: ACM SIGGRAPH 2003, (New York, NY,

USA), pp. 848–855, ACM, 2003.

5) Y. Ohtake, A. Belyaev, and H.-P. Seidel, “Ridge-valley

lines on meshes via implicit surface fitting,” in SIG-

GRAPH ’04: ACM SIGGRAPH 2004, (New York, NY,

USA), pp. 609–612, ACM, 2004.

6) T. Judd, F. Durand, and E. Adelson, “Apparent ridges

for line drawing,” in SIGGRAPH ’07: ACM SIGGRAPH

2007, (New York, NY, USA), p. 19, ACM, 2007.

7) M. Kolomenkin, I. Shimshoni, and A. Tal, “Demarcat-

ing curves for shape illustration,” in SIGGRAPH Asia

’08: ACM SIGGRAPH Asia 2008, (New York, NY, USA),

pp. 1–9, ACM, 2008.

8) S. Grabli, E. Turquin, F. Durand, and F. Sillion, “Pro-

grammable style for npr line drawing,” in Rendering

Techniques 2004 (Eurographics Symposium on Rendering),

ACM Press, june 2004.

9) C. H. Lee, A. Varshney, and D. W. Jacobs, “Mesh

saliency,” in SIGGRAPH ’05: ACM SIGGRAPH 2005,

(New York, NY, USA), pp. 659–666, ACM, 2005.

10) J. Bresenham, “Algorithm for computer control of a digi-

tal plotter,” IBM Systems journal, vol. 4, no. 1, pp. 25–30,

1965.

11) Y. Kim, J. Yu, X. Yu, and S. Lee, “Line-art illustration

of dynamic and specular surfaces,” in SIGGRAPH Asia

’08: ACM SIGGRAPH Asia 2008 papers, (New York, NY,

USA), pp. 1–10, ACM, 2008.

7

The Journal of the IIEEJ vol. 39 no. 11(2010)

Importance

Low High

(a) (b) (c) (d)

Fig. 6 Examples of importance computations. (a) The original 3D model. (b) The difference between two principal

curvatures. (c) Mesh saliency. (d) Our proposed method. Our proposed method produces high importance

at large valley or large mountain areas (the base of the feet or arms, the breast muscle) but not at small

features (the rough pattern of the legs).

(a) (b) (c)

(d) (e)

Fig. 7 A comparison between the existing methods and our method. (a) The original 3D model. The two boxes

(area 1 and area 2) are for later references. (b) Suggestive Contours. (c) Ridges and Valleys. (d) Overlapping

(b) and (c). (e) Our proposed method. Compared to (b), (c) and (d), our proposed method eliminates

unnecessary lines in relatively flat surfaces (see area 2). Also, our method eliminates some overlapping lines

compared to (d).

8

Paper :Real-Time Line Drawing of 3D Models Taking Into Account Curvature-Based Importance

Fig. 8 An example of importance-based line elimination. (a) The original 3D model. (b) A drawing with overlap-

ping lines. No line elimination applied. (c) Line elimination by importance thresholding applied on (b). (d)

Overlapping line elimination applied on (c). We can see that lines on smooth surface (see sail and hull) are

eliminated in (c), and the parallel overlapped lines (see pole and rope) are eliminated in (d).

(a) (b) (c)

Fig. 9 An example of changing the scale of the object. (a) The original 3D model. (b) Results of Suggestive

Contours and R&V overlapped. (c) The output of our method. Our method can automatically adjust the

number of lines when the scale is changed.

(a) (b) (c)

Fig. 10 An example of changing the importance threshold value. (a) The original 3D model. (b) The output of our

method with a low importance threshold value. (c) Another output of our method with a high importance

threshold value. User can control the detail level of the lines interactively by controlling the threshold

value.

9

