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Figure 1: Rendering results of (a) our method, relative error images of (b) our method and (c) Lightcuts [WFA∗05] in Sponza scene. Relative
error threshold ε = 2% and confidence level α = 95% are specified. 92.96% pixels satisfy that the relative error is within 2% in our method,
while only 43.67% pixels satisfy the condition in Lightcuts. In (d) Kitchen scene and (e) San Miguel scene, Cook-Torrance BRDFs and
Ashikhmin-Shirely BRDFs are used, which cannot be used in Lightcuts. (f) and (g) show relative error images of (d) and (e), respectively.

Abstract
The popularity of many-light rendering, which converts complex global illumination computations into a simple sum of the
illumination from virtual point lights (VPLs), for predictive rendering has increased in recent years. A huge number of VPLs
are usually required for predictive rendering at the cost of extensive computational time. While previous methods can achieve
significant speedup by clustering VPLs, none of these previous methods can estimate the total errors due to clustering. This
drawback imposes on users tedious trial and error processes to obtain rendered images with reliable accuracy. In this paper,
we propose an error estimation framework for many-light rendering. Our method transforms VPL clustering into stratified
sampling combined with confidence intervals, which enables the user to estimate the error due to clustering without the costly
computing required to sum the illumination from all the VPLs. Our estimation framework is capable of handling arbitrary
BRDFs and is accelerated by using visibility caching, both of which make our method more practical. The experimental results
demonstrate that our method can estimate the error much more accurately than the previous clustering method.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing
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1. Introduction

Efficient rendering methods to predict visual appearances are nec-
essary for many applications including design software (e.g. Au-
todesk 360 [AUT13]) and in the film industry. For such applica-
tions, designers and manufacturers need to rely on rendered images
to design, create, and manipulate products, and thus the rendered
images are expected to predict the visual appearance faithfully.

In recent years, many-light rendering [DKH∗13] has attracted
attention due to its simplicity, efficiency, and wide applicability.
Many-light rendering simplifies complex global illumination com-
putations by using a large number of virtual point lights (VPLs).
The incident illumination onto points to be shaded (we refer to
these points as shading points) is calculated by using VPLs. The
outgoing radiance from a shading point is the sum of the contri-
butions from all VPLs. For many-light rendering, the accuracy of
the rendering increases as the number of VPLs increase. Therefore,
an exact solution that sums up the contributions from all the VPLs
is computationally expensive. To address this problem, clustering
methods [WFA∗05,WABG06,WKB12,HPB07,OP11,BMB15] for
VPLs have been proposed with which efficient, scalable rendering
with a huge number of VPLs can be provided. These methods clus-
ter similar VPLs and the representative VPL for each cluster is used
to calculate the outgoing radiance at each shading point. Unfortu-
nately, none of these methods proposes an error estimation frame-
work for many-light rendering, which results in tedious trial and
error processes to produce images whose errors from the reference
solution are guaranteed to be less than user-specified thresholds for
predictive rendering.

We propose an error estimation framework for many-light ren-
dering by using confidence intervals. Our method builds upon
scalable clustering approaches (e.g. Lightcuts [WFA∗05]) to es-
timate the error of the outgoing radiance directly, while the pre-
vious methods [WFA∗05, BMB15] can only estimate the maxi-
mum error of each cluster instead of that of the outgoing radiance.
By specifying the relative error threshold and a confidence inter-
val parameter, our method automatically partitions a huge number
of VPLs into clusters so that the outgoing radiance estimated by
sampling two representative VPLs from each cluster is within the
stochastic bound of the true value. Contrary to the previous meth-
ods [WFA∗05, BMB15] that limit BRDFs whose upper bounds
within the VPL cluster can be computed cheaply and tightly, our
method can handle arbitrary BRDFs whose upper bounds are es-
timated by using BRDF importance sampling. Furthermore, our
method introduces a visibility caching method to accelerate VPL
rendering. Unlike previous caching methods [GKPS12, YNI∗15]
that record the visibilities between sparsely sampled points (called
cache points) and all the VPLs, our method records the average vis-
ibilities between the cache points and the clusters of VPLs, whose
number is much smaller than that of the VPLs, which reduces both
the computational time and memory footprint required for the visi-
bilities at the cache points.

The contributions of our method are as follows.

• An error estimation framework for VPLs is proposed. Our
framework can be easily incorporated into Lightcuts [WFA∗05].
• Our method removes the limitation of BRDFs applicable to

Lightcuts, and thus widens the applicability of VPL rendering
further.

• A visibility caching method is introduced to accelerate rendering
without noticeable decrease in the error estimation accuracy.

2. Previous Work

2.1. Many-light Rendering Methods

Recent work on many-light methods [DKH∗13, KGKC13] has re-
vealed that global illumination effects can be well approximated by
using many virtual light sources. Keller introduced the instant ra-
diosity method, which calculates the indirect illumination by using
virtual point lights (VPLs) [Kel97]. Following this seminal work, a
number of many-light methods that can handle highly glossy ma-
terials [HKWB09, DKH∗10, SHD15] and can achieve interactive
rendering [RGK∗08, Tok15], have been proposed.

Clustering VPLs: Walter et al. proposed a scalable solution to
many-light methods using a hierarchical representation of VPLs,
called Lightcuts [WFA∗05, WABG06, WKB12]. Hasan et al. rep-
resent the many-light method as a large matrix, and explore the
matrix structure by using row-column sampling [HPB07]. Ou and
Pellacini [OP11] cluster the shading points into groups called
slices and perform row-column sampling for each slice. Wang
et al. [WHY∗13] proposed an out-of-core many-light rendering
method. Huo et al. [HWJ∗15] proposed a matrix sampling-and-
recovery approach for many-light rendering. Bus et al. [BMB15]
cluster the product-space of all shading point-VPL pairs and
achieve speedup compared to Lightcuts.

Sampling VPLs: Wang and Akerlund presented a BRDF impor-
tance sampling method for VPLs [WA09]. Georgiev et al. pro-
posed an importance sampling method for VPLs by recording the
contributions of VPLs at each cache point [GKPS12]. Wu and
Chuang [WC13] proposed the VisibilityCluster, which approxi-
mates the visibilities between each cluster of VPLs and those of
the shading points by estimating the average visibility. Yoshida et
al. [YNI∗15] improved the importance caching [GKPS12] by adap-
tively inserting cache points.

Although many methods have been proposed for many-light
rendering, an error estimation framework has not been proposed.
Lightcuts attempts to control the error due to clustering by estimat-
ing the upper bound error of each cluster, but cannot control the
total error from all clusters. This results in tedious trial and error
processes to obtain rendered images whose errors from the refer-
ence solution are bounded.

Visibility Caching: Clarberg et al. proposed a visibility caching
method for direct illumination by storing 2D visibility maps at each
cache point [CAM08]. Popov et al. quantize the visibility func-
tions between two points by those between two clusters [PGSD13].
Ulbrich et al. presented a progressive visibility caching approach
using shadow maps [UNRD13]. Although these methods can ac-
celerate rendering significantly by using visibility caching, they
introduce errors due to quantization [PGSD13] and discretiza-
tion [CAM08, UNRD13], which makes the error estimation more
complex.
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2.2. Rendering with Confidence Interval

Purgathopher [Pur87] introduced the confidence intervals to con-
trol the number of samples for distributed ray tracing. Tamstorf and
Jensen [TJ97] proposed an adaptive sampling method for path trac-
ing using confidence intervals. Rigau et al. [RFS03] presented re-
finement criteria using convex functions. Hachisuka et al. [HJJ10]
proposed an error estimation framework for progressive photon
mapping. Dammertz et al. [DHKL10] introduced a hierarchical
automatic stopping criterion for Monte-Carlo methods. Moon et
al. [MJL∗13] used confidence intervals to detect homogeneous pix-
els for image denoising. These methods, however, do not estimate
the errors of many-light rendering.

2.3. Preliminary of Lightcuts

Since our method builds upon the scalable clustering approaches,
we briefly review Lightcuts. In many-light rendering, the outgoing
radiance L(x,xv) at the shading point x towards the viewpoint xv is
calculated from the following equation.

L(x,xv) =
Nvpl

∑
i=1

I(yi) f (xv,x,yi)G(x,yi)V (x,yi), (1)

where Nvpl is the number of VPLs, I(yi) is the intensity of the i-
th VPL yi, f (xv,x,yi) is the BRDF, G(x,yi) is the geometry term,
and V (x,yi) is the visibility term that returns 1 if x and yi are mu-
tually visible and returns 0 otherwise. To render realistic images, a
large number of VPLs are usually required. In this case, summing
the VPL contribution I(yi) f (xv,x,yi)G(x,yi)V (x,yi) for all VPLs
is computationally expensive. Rather than summing all VPL con-
tributions, Lightcuts partitions similar VPLs into N clusters, and
the outgoing radiance LCi(x,xv) illuminated by VPLs in cluster Ci
is calculated from

LCi(x,xv) = ∑
y∈Ci

I(y) f (xv,x,y)G(x,y)V (x,y). (2)

Instead of summing all the VPLs in cluster Ci, LCi is estimated by
sampling NS VPLs with probability p using the following equation.

L̂Ci(x,xv) =
1

NS

NS

∑
s=1

I(ys) f (xv,x,ys)G(x,ys)V (x,ys)

p(ys)
. (3)

Lightcuts samples the VPLs based on the probability proportional
to the intensity (i.e. p(ys) = I(ys)/∑y∈Ci

I(y)) as in the following
equation.

L̂Ci(x,xv) =
1

NS

NS

∑
s=1

I(ys) f (xv,x,ys)G(x,ys)V (x,ys)

I(ys)/∑y∈Ci
I(y)

=
Ii

NS

NS

∑
s=1

f (xv,x,ys)G(x,ys)V (x,ys), (4)

where Ii =∑y∈Ci
I(y) is the sum of intensity, and Lightcuts sampled

one representative VPL (i.e. NS = 1 is used). The standard variation
σi for Ci is calculated using the following equation (arguments are
omitted for brevity and p = I/Ii is substituted).

σi =
√

Var[I f GV/p] = Ii
√

Var[ f GV ]. (5)

Lightcuts clusters VPLs for each shading point and represents
VPLs and clusters with a binary tree, referred to as light tree. In

Algorithm 1 Our Algorithm (Input : ε and α, Output : L̂). Proce-
dures of our error estimation framework are highlighted with un-
derlines, and the rest of procedures are identical to Lightcuts.

1: Priority Queue : Q← C1, Cut : C← C1
2: Estimate L̂, ∆L, and σ1

3: while ∆L > εL̂ ∨
√

2σi > εL̂ (∀Ci ∈ C) do
4: Ck← Q.pop()
5: Replace Ck in C with two children CL and CR
6: Estimate L̂CL , L̂CR , σL, and σR

7: Update L̂ and ∆L
8: Q← CL,CR
9: end while

the light tree, each leaf node corresponds to each VPL and each in-
ner node corresponds to the cluster that contains all the VPLs of the
descendant nodes. A set of clusters is represented by cut, where ev-
ery path from the root node to each leaf node contains one node of
the cut. From the root node, cut C is calculated by subdividing each
cluster until each cluster Ci in C satisfies ECi < εL̂(x,xv), where ε

is a threshold specified by the user, and ECi is the upper bound of
the clustering error calculated from the following equation.

ECi = Ii fub(xv,x,Ci)Gub(x,Ci)Vub, (6)

where fub, Gub, and Vub represent the upper bound of each function
within the cluster Ci, respectively. The upper bound of visibility Vub
is set to 1. The estimated outgoing radiance L̂(x,xv) is calculated by
L̂(x,xv) = ∑

N
i=1 L̂Ci(x,xv).

Although Lightcuts can render realistic images efficiently, it has
some limitations as follows. Firstly, Lightcuts do not directly esti-
mate the total error ||L(x,xv)− L̂(x,xv)|| (i.e. the sum of errors of
each cluster Ci). Although it would be possible to estimate the total
error by improving Lightcuts to sum the upper bound of cluster-
ing errors as ∑

N
i=1 ECi < εL̂, this overestimates the total error and

may lead to a numerous number of clusters and expensive compu-
tational time. Secondly, applicable materials in Lightcuts are lim-
ited to Lambertian, Blinn-Phong, and isotropic Ward BRDFs only,
since the calculation method of the upper bound fub is currently
developed only for these three BRDF models.

3. Error Estimation Framework for VPLs

3.1. Overview

Fig. 2 and Algorithm 1 show an overview and the pseudo code
of our method, respectively. Our goal is to estimate the er-
ror ‖L̂(x,xv)− L(x,xv)‖ by clustering and sampling VPLs with-
out evaluating L. Our method represents VPLs with a light
tree [WFA∗05] and the cluster in the light tree is referred to as a
VPL cluster. From the root node of the light tree, our method es-
timates L̂ by sampling a small number of VPLs from each VPL
cluster Ci in cut C, and determines whether the following criterion
is satisfied.

‖L̂−L‖< εL̂, (7)

where ε is the relative error threshold specified by the user, where
the arguments are omitted for the simplicity. The criterion, how-
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light source
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light source
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light source
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Figure 2: Overview of our method. (a) Root node of VPL cluster that encompasses all VPLs. (b) Light tree. Each leaf node corresponds to
VPL yi and each inner node corresponds to VPL cluster Ci. From the root node C1, two VPLs are sampled and L̂ and ∆L are calculated. (c)
If L̂ does not satisfy ∆L < εL̂, C1 is replaced with two child nodes C2 and C3. Since y3 and y5 are evaluated in the parent node C1, they are
reused and only y2 and y8 are sampled for C2 and C3, respectively. Then L̂ is estimated by summing L̂C2 and L̂C3 . (d) If L̂ does not satisfy
the criterion, standard variations σ2 and σ3 are calculated and VPL cluster with the largest standard variation, C2 in this case, is replaced
with C4 and C5. These processes are repeated until L̂ satisfies the criteria.

ever, contains the unknown (or computationally expensive to eval-
uate) value of L. To address this problem, our method employs a
confidence interval [L̂−∆L, L̂+∆L] that contains the true value L
with probability α which is specified by the user. That is, the prob-
ability Pr that the error is less than a tolerance ∆L is α as specified
by the following equation.

Pr(‖L̂−L‖ ≤ ∆L) = α, (8)

where the tolerance ∆L is calculated by using the t-
distribution [Tho12]. By using the confidence interval, the
criterion is calculated by ∆L < εL̂ with probability α. To use the
confidence interval, our method imposes an additional criterion
described in Sec. 3.2. Until the criteria are satisfied, the VPL
cluster with the maximum standard variation is selected from the
cut nodes and is replaced with its two child nodes.

3.2. Clustering VPLs

To achieve both scalable rendering and efficient sampling for a
large number of VPLs, our method employs a stratified sampling,
which partitions VPLs into clusters (or strata) of similar VPLs and
samples representative VPLs from each cluster. In stratified sam-
pling, if the samples in each cluster follow a normal distribution
and the number of samples for each cluster is allocated by using
the Neyman allocation [Tho12], statistics T calculated by the fol-
lowing equation follows a t-distribution with (n−N) degrees of
freedom.

T =

√
n−N

n
L̂−L√

∑
N
i=1 s2

i /ni

, (9)

where N is the number of clusters, ni is the number of samples for
cluster Ci, n is the total number of samples (i.e. n = ∑

N
i=1 ni), and

s2
i is the sample variance of Ci. Based on Eq. (9), the tolerance ∆L

is calculated using the following equation.

∆L = tα

√√√√ n
n−N

N

∑
i=1

s2
i

ni
, (10)

where tα is the α quantile of the t-distribution t(x) with (n−N)
degrees of freedom that satisfies

∫ tα
−tα t(x)dx = α.

The rendering efficiency depends on how the VPL clusters are
partitioned and how the samples ni for each VPL cluster are al-
located when the total number of samples n is fixed. To this end,
we propose an efficient solution for clustering VPLs and allocating
samples for each VPL cluster. In stratified sampling, it is known
that partitioning into many strata and estimating with a small num-
ber of samples is more efficient than a few strata with many sam-
ples [PH10]. The variance of estimator in stratified sampling is the
sum of variances of each stratum. Therefore, selecting the stratum
with maximum standard variation and subdividing the stratum is
efficient to reduce the variance. As shown in Eq. (10), the sample
variance s2

i of each VPL cluster is required to compute the confi-
dence intervals. Since the minimum number of samples to compute
the sample variance is two, ni should be larger than two. As men-
tioned before, the tolerance ∆L is calculated by using the Neyman
allocation, which is the optimal method for allocating samples to
each cluster under a fixed number of samples n, as shown in the
following equation.

ni =
σi

∑
N
k=1 σk

n, (11)

where σi is the standard variation of VPL cluster Ci. By subdivid-
ing the VPL cluster with the maximum standard variation repeat-
edly, the standard variations of VPL clusters approach uniform and
the numbers of samples for each VPL cluster also approach uni-
form as shown in Eq. (11). Then two samples (ni = 2) are allocated
for each VPL cluster and n is calculated as 2N. By substituting
ni = 2 and n = 2N, the tolerance ∆L simplifies to the following
equation.

∆L = tα

√√√√ N

∑
i=1

s2
i . (12)

Standard Variation Estimation: To select the cluster to subdi-
vide, the standard variation σi for Ci is required. Although σi can
be estimated by using the sampled variance s2

i , the estimated stan-
dard variation seems poor since only two samples are used. Instead,
our method estimates σi using Eq. (5). We estimate the variance
Var[ f GV ] by using the estimated upper bound of BRDF within
cluster Ci, f̂ub(xv,x,Ci), and the upper bound of the geometry term
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(a) (b) (c)

normal

Figure 3: Estimate the upper bound of BRDF f̂ub by using (a)
f (xv,x,y1) and f (xv,x,y2) which are evaluated at two VPL sam-
ples y1 and y2, (b) maximum value f max based on BRDF impor-
tance sampling, and (c) BRDF fωCi

at direction ωCi that bounds
minimum angle between the normal and the VPL cluster.

Gub as in the following equation.

σi ≈ Ii f̂ub(xv,x,Ci)Gub(x,Ci)
√

Var[V ]. (13)

The variance Var[V ] for Ci is represented by the average of the
visibilities V̄i within Ci as given by the following equation.

V̄i = ∑
y∈Ci

V (x,y)p(y),

Var[V ] = V̄i− V̄i
2
=−(V̄i−1/2)2 +1/4, (14)

where p is the probability to sample VPL as p(y) = I(y)/Ii. Our
method conservatively bounds

√
Var[V ] with the maximum value

0.5, while it can tightly estimate Var[V ] by using the visibility
caching described in Sec. 4.

Estimation of the Upper Bound of BRDF: To calculate the stan-
dard variation σi for each VPL cluster Ci, the upper bound of
BRDF within cluster is required. Some BRDF models such as Lam-
bertian, Blinn-Phong, and isotropic Ward BRDF models have a
simple and tight way to compute upper bounds as used in Light-
cuts [WFA∗05]. This limitation is lifted in our method by using
BRDF importance sampling and exploiting VPL samples as shown
in Fig. 3. BRDF importance sampling [WA09] is performed to es-
timate f̂ub for glossy BRDFs. Based on BRDF f at shading point x,
N f rays are sampled. Then intersection tests between these rays and
the bounding box of the VPL cluster are performed. The maximum
value of BRDF f max is calculated from among the intersected rays.
As mentioned before, since our method samples two VPLs y1,y2,
BRDF values f (xv,x,y1) and f (xv,x,y2) are evaluated and reused
for f̂ub. In addition, we calculate the minimum angle between the
normal at the shading point x and the direction ωCi that intersects
the bounding box of the cluster, which is also required in the cal-
culation of Gub. Our method evaluates f by using ωCi as fωCi

. The
maximum value of f max, f (xv,x,y1), f (xv,x,y2), and fωCi

is used
for f̂ub.

Additional Clustering Criterion: As mentioned before, ∆L is de-
rived from the assumption that samples in each cluster follow a nor-
mal distribution and the Neyman allocation with uniform standard
variations is used. However, it is quite difficult to check whether
this assumption is valid or not from samples. Instead, t-distribution
is robust to violations of this assumption and Eq. (10) is valid when
the number of samples n is sufficiently large and the standard vari-
ations σi are uniform. We consider that the number of samples is
sufficient and the standard variations σi are uniform when the cri-
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Figure 4: Histograms of T for n = 256 and 512. Horizontal axis
represents statistics T and vertical axis represents the probabil-
ity density. The line shows the t-distribution. Histograms of T are
measured in the center pixel of the inset image. By increasing n, T
approaches the t-distribution.

terion ECi < εL̂ used in Lightcuts is satisfied. Since σi has the same
factors fub and Gub as in ECi as shown in Eqs. (6) and (13), our
method utilizes σi instead of ECi with the criterion

√
2σi < εL̂ (∀Ci ∈ C), (15)

where
√

2 is the scaling factor to equate σi and ECi , which stems
from the difference of maximum values of

√
Var[V ] and Vub, and

the different number of samples. Fig. 4 shows the histograms of T
in Eq. (9) with different n. As shown in Fig. 4, T approaches the
t-distribution by increasing n.

In summary, our method partitions VPL clusters until ∆L < εL̂
and Eq. (15) are satisfied. If these two criteria are not satisfied,
the VPL cluster Ck with the maximum standard variation σk is se-
lected, and Ck from cut C is replaced with the left child CL and the
right child CR. L̂CL , L̂CR , σL, and σR are estimated by sampling two
VPLs and reusing from Ck. Then L̂ and ∆L are updated by using
L̂CL and L̂CR .

4. Visibility Caching

4.1. Overview

Our method exploits the spatial and directional coherence of vis-
ibilities between nearby shading points and VPLs using visibility
caching. Shading points are partitioned into clusters referred to as
shading clusters. Shading clusters are initially partitioned based on
the proximities of the normals and positions of the shading points
(Fig. 5(a)) in a similar way [WC13]. Several cache points are ran-
domly sampled from the shading points in each shading cluster,
and the average of the visibilities between each cache point and
each VPL cluster is estimated and recorded as visibility caches
(Fig. 5(b)). The visibility caches are averaged over all the cache
points in each shading cluster (Fig. 5(c)). If the average visibil-
ity caches differ from those stored at the cache points, the shading
cluster is refined (Fig. 5(d)).

4.2. Calculating the average visibilities and refining the
shading clusters

At each cache point c j, the outgoing radiance L̂ is estimated by par-
titioning the VPL clusters as described in Sec. 3. The average visi-

bility V̂i between Ci and c j is estimated by V (c j ,y1
i )+V (c j ,y2

i )
2 , where
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shading cluster

(a) (b) (c) (d)

Figure 5: Visibility caching. (a) The average visibilities between Ci and cache point c1 are estimated and recorded at each VPL cluster
Ci. (b) The average visibilities between Ci and c2. (c) The averaged visibilities at ancestor VPL clusters are estimated, then V1 and V2 are
constructed. In V2, average visibilities at descendant nodes C6 and C7 are borrowed from that at C3. V̄ is calculated by averaging V1 and
V2. δ1 and δ2 are calculated. (d) If δ1 or δ2 is larger than the threshold δVC, the shading cluster is subdivided into two clusters.

y1
i and y2

i are the sampled VPLs in Ci, respectively. The average
visibility V̂a for the ancestor node Ca of cut C is estimated by

V̂a =

(
∑

y∈CL

p(y)

)
V̂L +

(
∑

y∈CR

p(y)

)
V̂R, (16)

where CL and CR are the left and right child nodes of Ca, V̂L and
V̂R are the estimated average visibilities at CL and CR, and p is
the probability of sampling the VPLs. By recursively estimating
the average visibilities based on the bottom-up approach, the av-
erage visibilities at ancestor nodes of VPL clusters are estimated.
The visibility cache stores the set of estimated average visibili-
ties for cache point c j as V j = {· · · ,V̂i, · · ·}. Please note that our
method estimates and records the average visibilities for the ances-
tor nodes of the VPL clusters only, while previous caching meth-
ods [GKPS12, YNI∗15] evaluate and store contributions from all
the VPLs at each cache point, resulting in expensive computational
time and requiring an extensive memory footprint.

Then our method calculates the average V̄ of all the visibility
caches V in the shading cluster. We measure the similarity between
V j and V̄ by using the following error δ j.

δ j =
1

N j

N j

∑
i=1

(
Ṽi−

(
V (c j,y1

i )+V (c j,y2
i )

2

))2

, (17)

where N j is the number of VPL clusters in the cut C for c j , Ṽi is
the average value stored in V̄. If δ j is greater than a threshold δVC,
the caching data V̄ is not considered to be adequate for the shading
cluster and thus the shading cluster is subdivided into two clusters.

All the shading points in the shading cluster use Ṽi for V̄i to esti-
mate

√
Var[V ] in Eq. (13). If Ṽi = 0 or Ṽi = 1, Var[V ] and σi become

zero, although VPL cluster Ci has variance in f and G. This leads to
Ci being unpartitioned and introduces errors. To address this prob-
lem, our method clamps Ṽi between 0.01 and 0.9 in order that σi
cannot to be zero.

5. Results

Figs. 1, 6 to 8 show the rendering results and visualize the relative
errors estimated by using our method. The computation times were
measured on a PC with an Intel Xeon E5-2697 v2 2.70 GHz CPU.
All computations were performed in parallel using multithreading.
The image resolution of Figs. 1, 7, and 8 is 1280× 720, and that
of Fig. 6 is 10242. In our experiments, the relative error thresh-
old ε = 2% based on Weber’s law [WFA∗05], α = 95%, number
of rays N f = 256, δVC = 0.1 are used otherwise stated. In visi-
bility caching, ten cache points are used in each shading cluster.
We have experimented with various δVC and the numbers of cache
points, but these parameters do not affect the rendering perfor-
mance and the estimation accuracy so much. Our method measures
the rate Rε of pixels, which satisfy ‖L̂− L‖ < εL, in the image.
Each VPL cluster stores multiple representative VPLs in a similar
way [WABG06]. Our method generates VPLs in the similar way
to the traditional many-light rendering method [DKH∗13], and the
computational times to generate VPLs and light trees are omitted
in the following reported computational times since those are com-
mon to Lightcuts and our method.

Fig. 1 shows the comparisons of relative error images between
(b) our method (282s) and (c) Lightcuts (60s) when ε = 2% is spec-
ified. Our method achieves Rε = 92.96% while Lightcuts achieves
43.67% in (c). In order to exceed R2% = 92.96% , ε for the condi-
tion ECi < εL̂ of Lightcuts is set to 0.3% with trial and error pro-
cesses. The rendering time for ε = 0.3% is 206s in Lightcuts that
estimates f̂ub by using analytical solution, while our method esti-
mates f̂ub by using BRDF importance sampling. To make the com-
parison fair, our method employs the analytical solution to calcu-
late f̂ub, and the computational time Tc is 209s. That is, our method
can compete with Lightcuts in rendering performance, while our
method can directly render images with reliable accuracy without
tedious trial and error processes. We have tried to estimate the sum
of the upper bounds of the clustering errors ∑

N
i=1 ECi < 0.02L̂ for

Lightcuts, but it took more than 16 hours (58,078s) and the relative
mean error is 5.69214e-06. This indicates that Lightcuts with the
estimation of total clustering errors overestimates the error.
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Figure 6: Buddha scene rendered with Cook-Torrance BRDF il-
luminated by an area light source and an environment map. (a)
rendering result, (b) relative error image, graphs of (c) Rε and (d)
Tu with different N f . Error bar is shown in the bottom. According
to (c) and (d), N f = 256 is used in our experiments.

Fig. 6 shows the Buddha scene rendered with Cook-Torrance
BRDF. By using our method, Rε = 91.15% pixels satisfy the con-
dition ‖L̂− L‖ < εL when α = 95% is specified. Please note that
our method bounds the error ‖L̂−L‖ stochastically, not determin-
istically. Therefore, some pixels could have higher relative errors
than the specified threshold ε. Figs. 6(c) and (d) show the graphs
of Rε and computational times without visibility caching Tu with
different N f , respectively. As shown in these graphs, Rε grows by
increasing N f , but it grows slowly when N f exceeds 256, while the
computational times increase considerably. Therefore, our method
uses N f = 256 in all experiments.

Table 1: Scene information of our method. N f = 256, ε = 2%,
α = 95% are used. Nvpl is the number of VPLs, and Ntri is that of
triangles. Tc and Tu are rendering times in seconds with and with-
out visibility caching, and Tu/Tc indicates the acceleration ratio
using the visibility caching. Rε represents the rate of pixels satis-
fying ‖L̂− L‖ < εL in the image. MRE represents mean relative
error.

Scene Sponza Buddha Kitchen San Miguel
Fig Fig. 1 Fig. 6 Fig. 7 Fig. 8
Nvpl 2,061k 2,075k 2,082k 1,936k
Ntri 262k 1,086k 528k 10,464k
Tc 282 80 70 2,230
Rε 92.96% 91.15% 91.86% 92.66%

MRE 0.0088 0.0094 0.0091 0.0089
Tu 401 94 86 2,860
Rε 92.90% 91.19% 92.50% 92.84%

MRE 0.0088 0.0094 0.0089 0.0088
Tu/Tc 1.42 1.18 1.23 1.29

Table 2: Computational times Tc, Tu, Rε, and MRE for α = 99%.

Scene Sponza Buddha Kitchen San Miguel
Tc 388 103 89 3,151
Rε 97.67% 95.93% 96.67% 97.94%

MRE 0.0068 0.0075 0.0072 0.0068
Tu 549 126 114 3,872
Rε 97.68% 95.92% 96.69% 98.06%

MRE 0.0068 0.0075 0.0072 0.0068
Tu/Tc 1.41 1.22 1.28 1.23

Figs. 7 and 8 show the relative error images with different rel-
ative error thresholds for scenes with complex geometries and
BRDFs. As shown in these images, our method can render images
whose errors from the exact solution are stochastically bounded for
various relative error thresholds. Our method achieves that Rε ex-
ceeds 91% for all experiments when α = 95% is specified.

Table 1 shows the number of VPLs Nvpl , the computational times
Tc with visibility caching and Tu without visibility caching, accel-
eration ratio Tu/Tc, Rε, and the mean relative error (MRE) of each
image. As shown in Table 1, the visibility caching can speed up
the rendering in 18% to 42%, but the decreases in Rε and the mean
relative error are almost negligible. Table 2 shows the computa-
tional times Tu, Tc, the rate Rε, and the mean relative error (MRE)
of each scene when α = 99% is specified. Our method achieves
that Rε exceeds about 96% for all experiments when α = 99% is
specified. The computational times Tc for α = 99% are up to 1.41
times longer than those for α = 95% in these examples.

Fig. 9 shows the histogram of relative errors in Buddha scene
shown in the inset. Our method achieves Rε = 93.13% when α =
95% and ε = 2% are used. The maximum relative error in Fig. 9
is 20.5%. As shown in Fig. 9, the number of pixels whose relative
errors are larger than 2% decreases exponentially. Histograms of
the relative errors in other scenes are shown in the supplemental
material.

5.1. Discussions

The stochastic evaluation of VPL contributions can introduce noise
in the rendered images. Fig. 10 shows the comparison between our
method (Figs. 10(a), (b)), Lightcuts (Fig. 10(c)), and the reference
(Fig. 10(d)). Relative error threshold ε is set to 2% in our method
and Lightcuts. As shown in the zoomed-in images, Fig. 10(c) has
perceptible noises since Lightcuts cannot control the relative error
of outgoing radiance, while the noises in Fig. 10(b) are impercepti-
ble since our method can directly control the relative error, and due
to Weber’s law, humans cannot detect the change in less than 2% in
practice.

We have applied our visibility caching method to Lightcuts by
substituting Vub in Eq. (6) with 2

√
Var[V ]. When ε = 2% is spec-

ified, the computational time and Rε are 44s and 37.84%, while
those without visibility caching are 60s and 43.67%, respectively.
Our visibility caching method can accelerate Lightcuts at the cost
of decreasing Rε, while, as we mentioned before, the decrease in Rε
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Figure 7: Kitchen scene rendered with Cook-Torrance, Ashikhmin-Shirely BRDFs. Different relative error thresholds are used. (a) ε = 2%,
Rε = 91.86%, and Tc = 70s, (b) ε = 5%, Rε = 93.65%, and Tc = 40s, (c) ε = 10%, Rε = 95.30%, and Tc = 31s. Our method can estimate
errors well for various relative error thresholds.

Figure 8: San Miguel scene rendered with Cook-Torrance, Ashikhmin-Shirely BRDFs. Different relative error thresholds are used. (a)
ε = 2%, Rε = 92.66%, and Tc = 2,230s, (b) ε = 5%, Rε = 92.79%, and Tc = 757s, (c) ε = 10%, Rε = 92.07%, and Tc = 327s. Our method
can estimate errors well for various relative error thresholds.
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Figure 9: Histogram of relative errors in Buddha scene. Horizontal
axis represents the relative errors, and vertical axis represents the
probability of occurrence. ε = 2%, Rε = 93.13%, and Tc = 86s.

of our method is almost negligible. This indicates that our visibility
caching method is well suited to our error estimation framework.

Since our method is based on many-light rendering, our method
also inherits the drawbacks of many-light rendering, such as the
singularities due to the geometry term and highly glossy BRDFs.
These singularities lead to splotches in the rendered images, but
the splotches are alleviated by increasing the number of VPLs or
clamping. Due to the scalability of our method, a large number of
VPLs as shown in Table 1 can be handled very efficiently.

6. Conclusions and Future Work

We have proposed an error estimation framework for many-light
rendering by using confidence intervals. By specifying the relative

error threshold ε and confidence parameter α, our method can au-
tomatically partition VPLs so that the error of the outgoing radi-
ance is stochastically bounded. We demonstrated that our method
can render images with reliable accuracy for complex scenes and
various materials. In addition, we introduced an efficient visibility
caching method that can accelerate rendering 18% to 42% without
a noticeable decrease in the estimation accuracy.

In future work, we would like to extend our method to Multi-
dimensional Lightcuts [WABG06]. Our method can be combined
with Multidimensional Lightcuts by estimating the errors using
clusters of the light tree and the gather tree, but an efficient method
to compute the upper bounds of phase functions and BRDFs for
gather points and VPLs is required. Furthermore, we would like to
estimate errors for more complex lighting effects (e.g. caustics).
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