A Display System for Bezier Surfaces and Metaballs
using Bezier Clipping

Tomoyuki Nishita
Faculty of Engineering, Fukuyama University,
985 Higashimura-cho, Fukuyama, 729-02 Japan
E-mail: nis@eml. hiroshima-u.ac.jp
WWW: http://www.eml hiroshima-u.ac.jp/~nis

Abstract

Displaying objects with high accuracy is important in CAGD (Computer-Aided
Geometric Design) and for the synthesis of photo-realistic images. The
representation of free-form surfaces can be classified into two: parametric
surfaces, such as Bezier patches and implicit surfaces, such as metaballs (or
blobs). This paper discusses display methods for both Bezier patches and
metaballs.  Traditionally, polygonal approximation methods have been
employed to display parametric surfaces. This paper introduces various display
methods for trimmed Bezier patches without polygonal approximation by using
raytracing, scanline algorithm, or hidden line elimination. In most display
systems, parametric patches and Metaballs can not be displayed by a single
program. In commercial software, to display both of them polygonization is
used. This paper introduces a display system for both of them without
polygonization. In our system, for hidden surface removal and shadow
detection for both types of surfaces, the same idea, called Bezier Clipping, is
employed. The Bezier Clipping can be also applied to various lighting
simulations such as radiosity method.

1. Introduction

Accurate and photo-realistic rendering methods for curved surfaces are
discussed here. The representation of free-form surfaces can be classified into
two categories: parametric surfaces and implicit surfaces. For the former,
Bezier patches, B-spline patches, and NURBS are used. For the latter,
algebraic surfaces and a set of density functions such as metaballs (or blobs)
are used. This paper discusses the idea of Bezier clipping and its application to
various rendering techniques.

Bezier clipping can be applied to hidden line/surface removal of Bezier
patches. Bezier clipping can be also applied to raytracing of metaballs. Then
both types of surfaces can be displayed by a single program. The Bezier
clipping technique can be applied not only to hidden line/surface removal but
also to various shading effects as described in section 2.1. Thus, the
characteristics of the system described here are as follow:

1) Both of parametric and implicit surfaces can be displayed with high
accuracy (i.e., without polygonization).
2) For parametric surfaces, Bezier patches, B-spline patches, and NURBS



can be handled even though rendering is performed after converting to Bezier
patches.

3) Parametric surfaces are basically rendered by the scanline algorithm, even
though raytracing is employed for shadow detection, reflection/refraction.

4) Raytracing is used to render metaballs.

5) Using metaballs allows effective display of various types of objects such as
creatures, human bodies, liquid (water droplets), and natural objects such as
clouds (volumetric objects).

6) Various shading effects, such as radiosity, can be simulated for parametric
surfaces (e.g., various light sources such as cylindrical/curved light sources).

7) Optical effects, such as caustics on curved surface and light scattering due
to cloud particles, can be simulated.

This paper discusses the basic idea of Bezier clipping in section 2, hidden
line removal for Bezier patches in section 3, display of Bezier patches in section
4, illumination models in section 5, optical effects on surfaces in section 6,
and finally demonstrates the effectiveness of the display system by depicting
realistic images.

2. Basic Idea of Bezier Clipping

Bezier clipping is an iterative method which takes advantages of the convex
hull property of Bezier curves, and iteratively clips away regions of the curve
which don’t intersect the line. Thus we can refer to this method as an interval
Newton method. Bezier clipping converges more robustly with the
polynomial's solution than does Newton's method. This method was first
developed for raytracing Bezier patches[Nishi90].
The advantages of this technique are as follows:

(1) Applicable to a high order of polynomial (and rational functions)

(2) Robust

(3) No initial guess necessary

(4) All solutions within specified range

(5) Minimum/maximum root available if necessary

(6) Quick test for non-intersection

(7) High-degree Bezier function/curves solved by iterations using only

linear equations (i.e., Bezier clipping uses only linear equations in

each iteration).

The Newton method is often used for numerical analysis, but it requires a
suitable initial guess, and it is difficult to be sure of finding all solutions.
Bezier clipping overcomes these problems.

2.1 Applications of Bezier Clipping
The following are applications of Bezier clipping.



(1) Root finder for polynomials

(2) Basic geometric problems: curve/curve intersection[Seder90], curve
/surface or surface/surface intersection[Seder91]

(3) Hidden surface removal for parametric surfaces: raytracing[Nishi90],
scanline algorithm[Nishi91a], hidden line algorithm[Nishi92b]

(4) Hidden surface removal for metaballs[Nishi94a]

(5) Shading models: cylindrical light sources[Nishi92a], curved light sources
and radiosity[Nishi94b], optical effects on curved surfaces such as
caustics[Nishi194b] or water drops[Kaneda96], natural phenomena such

as clouds[Nishi196]

(6) 2-D computer graphics: scan conversion of curved regions, outline fonts
[Nishi91b], brush strokes, watercolor painting[Nishi93a], morphing

[Nishi93b]

As described above, Bezier clipping can be applied to many fields. This
paper will focus on 3-D rendering, the details of (6) are omitted.
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Fig. 1: Solving to polynomial by Bezier clipping Fig. 2: Curve/line intersection.

2.2 Solving to Polynomials

Polynomials can be converted to a Bezier curve. For example, a degree three
polynomial can be converted to the cubic Bezier function. Fig. 1(a) shows the
polynomial (f{x) = 24x3-42x%+2x+2) converted to the following a cubic Bezier

function;



f(t) = Z f B() (1)

where (k/3,£ (k=0,..,3) are control points of the Bezier function, and B} is the

Bernstein function. The shaded region is the convex hull of the curve. The root
of the curve always exists within the intersection between the axis and the
convex hull; that is, the interval fmin and #max. By clipping the curve at fmin and
tmax, We can get a new curve with thinner convex hull as shown in Fig. 1(b). As
the remaining part of the curve approaches a straight line, the intersection
interval between the convex hull and the ¢ axis rapidly narrows at the next
step. By repeating this process we can find the root.

Iteration terminates when the intersection interval between the convex hull
and the t axis is smaller than the given tolerance. In the first step, in the
example of Fig. 1, the interval is 0.55, but in the third iteration, the interval is
only 0.0003. After three iterations we can find the intersection point.

If the intersection between the convex hull and the axis is relatively large,
there is a possibility of multiple roots. In that case, the curve is subdivided at
the mid point into two curves. And Bezier clipping can then be applied to
each curve.

2.3 Curve-Line Intersection
Fig. 2 shows a line and a cubic Bezier curve. The Bezier curve with control
points Pk(xk,yx) is expressed by the following equation.
3

X(t) = Z xB3(t)
y(t) = Z Y Bi(t) 2

And the distance from any point (x,y) to the line is expressed by

d(x,y) =ax+by +c 3)

By substituting x and y of the curve equation to the line equation, we can
get the following Bezier function.

SUEDY f Be(t)

f, =ax, +by, +c

4

where fiis equivalent to the distance between the control point Px and the line.
Equation (4) is called distance function. (a,b) is the unit normal of line
(a%+b2=1). Fig. 1(a) shows the distance function expressed by the Bezier
function. Parameter ¢ at the intersection with the taxis gives us the
intersection between the line and the curve. Bezier clipping solves this
intersection.
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Fig. 3: Curvel/curve intersection test by using Fatline.

2.4 Curve-Curve Intersection
For curve/curve intersection test, we can introduce the idea of FatLine, which
is a bounding box of the curve[Seder90]. Let’s consider curve P and curve Q
shown in Fig. 3. Curve Q is clipped with the FatLine of curve P. This gives us
the small curve of P. Curve P can be clipped with the FatLine of curve P. By
repeating this process, we can find the intersection point. See reference
[Nishi92] for details.

3 Hidden Line Removal for Trimmed Bezier Patches

The following problems must be solved for hidden line removal: (1) curve/curve
intersection, (2) curve/surface intersection, (3) surface/surface intersection, (4)
silhouette extraction.

Bezier Clipping can be used for all of the above problems[Nishi92b]. The
curve/curve intersection is a major test. Our system can display trimming
curves, curves on surfaces, and silhouette curves. Let’s consider drawing iso-
parametric curves of a cubic Bezier patch. The projected curve is expressed by
a cubic rational Bezier curve, and the projected trimming curve (or a curve on a
surface) is expressed by a degree 18 rational curve. Thus, a high degree of
polynominal should be solved for hidden surface removal. For such high
degree curves, Fatline method based on Bezier clipping is useful (see 2.4). See
reference[Nishi92b] for details of problems (2), (3), and (4).

4. Display of Trimmed Bezier Patches

In this section, we discuss two hidden surface removal methods for trimmed
Bezier patches.

4.1 Raytracing for Trimmed Patches
Let’s consider previous work on hidden surface removal of parametric surfaces.



Solutions to the ray/patch intersection problem can be categorized as being
based on subdivision or numerical techniques. Whitted[Whitt80] first
developed the subdivision method. Kajiya’'s algorithm[Kajiya82] reduces the
problem of intersecting a bicubic patch with a ray into one of finding the real
root of a degree 18 polynomial. Our method[Nishi90] belongs to the subdivision
method. After our paper was published, Fournier[Fourn94] used Chevyshev
basis functions to speed up the ray/patch intersection test. The properties of
Chevyshev polynomials result in the computation of better and tighter
enclosing boxes. Kim[Kim95] has expanded our method. He reduced the
amount of computation as much as possible by trying to find only the nearest
point instead of computing them all. He built a BSP tree for each original patch
in the preprocessing stage by doing adaptive subdivision over the surface. This
binary tree allows us to find which part of the subdivided patch is likely to
contain the nearest intersection from the viewpoint.
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Fig.4: Ray/surface intersection.

Raytracing means to find (u,v) parameters from (x,y) coordinates on the
screen. The viewing ray is the line intersecting two planes. After transforming
the Bezier patch to be ray passing through the origin, the two planes become
the lines, Lu and Ly (see Fig. 4(a)), passing through the ray (i.e., origin); the line
equation passing through the origin is expressed by

L.(x,y)=ax+h,y. (5)

The projected cubic Bezier patch is expressed by



w; X; B (U) B’ (v)

ij 7Nij
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3

x(u,v) = 3
z W B’ (u) ng V)
z z W; Y B*(u) Bjs(V)
y(uv) =55 ©6)
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where X; =X; /1 Z;, y; =Y, 1 Z; , w; =W,/ Z;, and (xi.y3) is the projected control point
of Pi(Xyj, Y3, Zii); Wi is weight for the control point.
By substituting x and y equations in the line equation, we get the following

equation.

d,(uv) = Z Z d; B’(u) B?(V) (7)
d; =a,X; +t;uyj :

Fig. 4(a) shows the control point distances dj (di for each control point is
displayed in the figure). The function d can be represented as an explicit
surface patch whose control points (i, v, dij); ui=i/3, vij=j)/3. Even though d
is function of (u, v), Figure 4(b) is a side view of the d(u, v) patch, the convex hull
of the projected control points bounds the projection of the d patch. We can
find the range having intersections (see [tmin, Umax] in Fig. 4(b)) by this figure.
This process of identifying values timin and umax which bound the solution set,
and then subdividing off the regions u<timin and © > timax. In a similar manner,
we define the process of Bezier clipping in parameter v. Our ray-patch
intersection algorithm consists of alternately performing Bezier clipping in u
and v. By repeating this process, we can get the small patch which is the
intersection point.

4.2 A Scan Line Algorithm for Trimmed Bezier Patches
Our hidden surface removal[Nishi91a] is an extension of Lane and Carpenter's
algorithm[Lane80]: In their method curved surfaces are subdivided into
polygons on each scanline, but small gaps arise between the approximated
polygons. We solved this problem by subdividing curved surfaces on each
scanline into nearly flat subpatches with curved edges, which are rendered by
scanning (see Fig. 5).

These sub-patches are extracted by Bezier clipping method, and the
intersection between the curved edge and the scan line can also be solved by
Bezier Clipping (see section 2.3).

In our experiments, the scanline algorithm discussed here is 5 times faster
than the raytracing algorithm described in 4.1.
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Fig. 5: Scanline algorithm for Bezier patches.
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5. Displaying Metaballs

The features of metaballs are as follows: (1) the required data for metaballs is
typically at least two to three orders of magnitude smaller than that modeled
with polygons, (2) metaballs are suitable for use in the CSG model, (3) they
are suitable for the representation of deformable objects, making them useful
for animation. (4) they are well suited for modeling of human bodies, animals,
organic models, and liquids. Because of such a usefulness, many commercial
software packages implement metaball modeling techniques. The metaball
technique has become an indispensable technique in 3-D graphics software.
This modeling technique was first developed by Blinn[Blinn80] who called it
blobs. In Japan, Nishimura et al.[Nishim85] developed it independently, and
called it metaballs.

5.1 Field function
In the metaball technique, a free-form surface is defined as an isosurface
(equi-potential surface) of a field function. The field value at any point is
defined by distances from the specified points in space. We used the degree
six field function proposed by Wyvill[Wyvill86]. If two balls are placed at the
same location, it has twice the volume of the isosurface for a single ball. Thus,

for geometric modeling, degree six polynomial function is useful expressed by
()=o) + (L) -2y ®
9 R 9 R 9R
where Ri is the radius of metaball 7 and r is the distance from a point to the
center Pi(xi, yi, zi).
For n metaballs, the shape of the curved surface is defined by the points
satisfying the following equation.



f(4%,9=3 ¢t -T =0 ©)

where 7' is a threshold, q; the density values at the center of metaball 1.
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Fig. 6: Density distribution on the ray.

5.2 Intersection Test between Ray and Metaballs
The main task for rendering metaballs is intersection tests between rays and
isosurfaces. In our algorithm[Nishi94a], the field function on the ray is
expressed by Bezier functions, so the root of this function is effectively and
precisely solved by Bezier clipping.

Let’s discuss the intersection test between a ray and multiple metaballs.
Fig. 6 shows a ray and an isosurface defined by two balls and shows the
density distribution on the ray. By using parameter s (0<s<l) on the
intersected interval with ball 7 (see Fig.6), the density is expressed by

6

M$=Z%$®) (10)

16 . +5)a’
where d, =d, =d, =dy =0, d, =d, =§af, d, =8%, and @ 1is (intersected

length/Ri)? (0<@g <1).

As shown in Fig. 6, Bezier curves, f1 and f2, are clipped by the interval to be
tested (i.e., section B in the figure), then both of the clipped curves are
composited. This composting of the curves is very simple. It is performed by
simply adding each control point di belonging to f1 and f2; After composting the
curves, the new curve fizis also expressed by a degree six Bezier curve, then the
root (e.g., Pvin Fig. 6) is found by using Bezier Clipping.



For opaque objects, only one intersection point closest to the viewpoint is
required. Once the first root (i.e., a minimum real root) is found, the process
is stopped. In the examples in section 8, the average number of iterations for a
single intersection is only 2.0.

6. Illumination Models for Curved Surfaces

In the most recently proposed methods, the shapes of light sources and objects
are restricted to polygons or simple curved surfaces. Bezier clipping can be
applied to many types of light sources such as cylindrical, curved light sources,
and skylight. It is also applied to radiosities.

6.1 Shading Model for Cylindrical Light Sources

Many offices, classrooms, and factories are lit with multiple fluorescent lamps
arrayed in parallel rows on the ceiling. For a cylindrical light source, the
disks at the ends of the cylinder are generally quite small compared to the
length of the cylinder. The light sources can then be treated as rectangles
mapped onto the large rectangle. The illuminance due to each rectangle
source can be calculated by contour integration. In general, a number of light
sources will be colinear.

When there are obstacles between calculation P and the light sources,
shadows must be calculated, for which the hidden surface removal scanline
algorithm 1s employed[Nishi92a] (see Fig.7).

projected patch

Fig. 7: Shadow detection for cylindrical light sources.

6.2 Shading Models for Curved Surface Light Sources
The method described here is developed for radiosity solutions of parametric
patches[Nishi93d]. The illumination due to area source is determined by the
fraction of the circle covered by projecting the elements onto the base of the
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hemisphere. If a light source with constant intensity consists of a polygon, the
intensity can be obtained using the contour integration method (see Fig. 8).
After the calculation of the approximated radiance, the source is subdivided
into sub-elements in order to apply the contour integration for boundaries of
the subelements.

Fig. 8(b) shows the bounded area of a projected light source on the base circle.
The radiance is calculated by employing this area. The band is determined by
two planes, which contain the x-axis and bound every control point of the
element: the interval of the band is obtained by the minimum and maximum
angles Omin and Omax of control points from the x-axis.

The form-factor is approximated by the following equation (see Fig.8(b)).

F :(9mao< _9min)(E(amin) _E(amax))> (11)

E(a)=(a-cosasna)l2n.

Until the value of this equation becomes smaller than a given tolerance, the
subdivision is performed recursively. After that, curved surfaces are
polygonized (subelements) to apply contour integration. Then form-factor is
calculated by multiplying the radiance of the subelements by the shadow
ratio, which is the ratio of visible parts to the whole subelement area. The
shadow ratio is obtained by the intersection test between the pyramid
composed of the calculation point and the 4 corners of the subelement and each
light source. This test is performed on a 2-D plane using Bezier clipping
method.

Even though Bezier clipping was developed for ray/surface (or point/surface
on 2-D plane) tests, we can employ this for the extraction of the overlapped
area between the surface patch and a specified region; the interval of
parameters, u and v, which overlap the region are extracted, then the patch is
clipped by these intervals.

Y, projected dement

COSOl

(@) projection onto hemisphere (b) projection onto circle

Fig.8: Radiance calculation for the curved light source.
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7. Optical Effects on Curved Surfaces

For realistic rendering, various optical effects should be taken into account.
In this section, caustics on curved surfaces, liquid, such as water drops, on
curved surfaces, and clouds are described.

7.1 Caustics on Curved Surfaces
Some natural phenomena stand out in reflected/refracted light from surfaces of
waves in water. Refracted light from water surface converges and diverges,
and creates caustic. For these effects, the intensity and direction of incident
light on particles plays an important role, and it is difficult to calculate them
in conventional ray-tracing because light refracts when passing through waves.
Therefore, pre-process tracing from light sources is necessary. Watt[Watt90]
developed backward beam tracing. The method 1s a 2 pass solution and
requires storage memory for an illumination map or caustic polygons. The
method can only handle polygons. Our method[Nishi94], by using a scanline
Z-buffer and accumulation buffer, can effectively calculate optical effects on
curved surfaces such as caustics without such pre-processing. The visible
space within the water at each pixel can be obtained as the front part of the
depth of objects stored in Z-buffer.

Free-form surfaces are indispensable for displaying creatures in the water,,
and the display of caustics on such curved surfaces is desirable. In our method,
metaballs are employed for displaying curved surfaces. The intersection test
between the viewing ray and iso-potential surface can be done through ray-
tracing as described in section 2.2. And the depth at each pixel is stored in
Z-buffer.

7.2 Liquids on Curved Surfaces

In many cases, liquids adhere to curved surfaces, e.g., milk in a cup, jelly on a
spoon, water droplet on glasses or pots. Metaballs can be applied to express
liquids, and parametric patches can be applied to model cups. That is, a display
method using both parametric patches and metaballs is required.

In general, liquid adheres along the surfaces. We developed two systems which
can models liquid on curved surfaces. One is an interactive system. In our
system, the curved surfaces are defined by Bezier patches. The center of
metaball is set at the surface of objects. The position of balls are set on the
screen by using the mouse, and these position are converted to 3-D positions.
Another one simulates flow of water droplets on curved surfaces[Kaneda96]

7.3 Clouds
The display of clouds is indispensable for the background images of buildings
and flight simulators. Clouds are often displayed by mapping fractal textures
onto ellipsoids. However, we developed a display method taking account of
light scattering due to cloud particles illuminated by sky light[Nishi96]. The
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metaball technique is also useful for displaying translucent objects such as
clouds/smoke. The intensity of clouds dependents on absorption/scattering
effects due to cloud particles. Clouds are defined by density fields, which are
modeled by the metaball technique. That is, the surface of a cloud is defined by
the isosurfaces of potential fields defined by the metaballs. Shapes of clouds
are modeled by applying the fractal technique to metaballs. Then, small
metaballs on the surface of the cloud are generated recursively by using the
fractal method to form the subtle fringe of the cloud.

In the rendering process for clouds and other forms of a non-uniform
density, the numerical integration of the intensities along the ray are required.
To detect the section to be integrated, the intersections between clouds surfaces
and the viewing ray are required. The intersections of the isosurface G.e.,
cloud surface) with a viewing ray are calculated by raytracing based on Bezier
clipping as described in section 5.2.

8. Examples

Fig. 9(a) is an example of hidden curve elimination for trimmed parametric
surfaces. In this drawing, the trimming curves, curves on surfaces are defined
cubic Bezier curves in parametric spaces. That is, they are degree 18 Bezier
curves in 3-D space. Fig. 9(b) illustrates raytracing for Bezier patches: The
mapped maples are created as watercolor painting using Bezier clipping (see
[Nishi93a] for brush strokes).

Fig. 9(c) is a car illuminated by many cylindrical light sources[Nishi92a].
The reflected images of light sources give us surface quality. The penumbrae
on the floor are realistic. Fig. 9(d) shows a room which is illuminated by the
two curved sources and several rectangle sources. In this figure interreflection
of light (i.e., radiosity) is taken into account. Fig. 9(e) shows the killer wheels
modeled by metaballs. This is one frame from the animation of HDTV size.
This figure shows the optical effects in water such as caustics on the killer
wheel and shaft of light[Nishi94b].

Fig. 9(f)-(g) show examples of two types of free-form surfaces in the scene.
In Fig. (f), the teapot is modeled by 32 Bezier patches and the cup by 4
metaballs (balls with negative densities are used). Fig. 9(g) shows Bezier
surfaces (car and tree) and metaballs (clouds and flog). Multiple scattering is
taken into account for clouds[Nishi96a].

13






9. Conclusion

We have introduced a display system for Bezier surfaces and metaballs using
Bezier Clipping. The Bezier Clipping is a very powerful solver for geometric
modeling and shading models. As shown in the examples, the system
described here gives us photo-realistic images.

The advantages of the methods described here are as follows:

(1) Both of parametric and implicit surface can be displayed with high
accuracy (i.e., without polygonization).

(2) Various shading effects for parametric surfaces can be simulated:
cylindrical/curved light sources, radiosity.

(3) In the systems, parametric patches and metaballs can be displayed by a
single program.
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