
Blending Multiple Polygonal Shapes

Henry Johan Tomoyuki Nishita
The University of Tokyo

{henry, nis}@is.s.u-tokyo.ac.jp

Abstract

Shape blending has several applications in computer
graphics. In this paper, we present a new method for
smoothly blending among multiple polygonal shapes. The
blended shape is computed as a weighted average of the
input shapes. The weight of each input shape is allowed
to vary across the shape. This feature increases the flex-
ibility for controlling the local appearance of the blended
shapes. Our method computes the blended shape hierar-
chically, starting from the coarse version of the shape and
adding the details gradually. Several examples are shown
to demonstrate the advantages of the proposed method.

1 Introduction

Nowadays, techniques to blend shapes have gained much
attention. This technique known as shape blending, has a
wide range of applications, such as modeling, animation,
product design, creating visual effects, and for studying
evolution of creatures. In order to blend between polygonal
shapes, the correspondences between their vertices have to
be established. Then, based on the correspondences, the lo-
cations of the vertices of the new shape are computed. The
former task is known as the vertex correspondence problem
and the latter is known as the vertex path problem.

This paper presents a new method for solving the ver-
tex path problem when blending more than two polygonal
shapes. The user specifies the blending weight of each input
shape. In our method, the weight of each shape is allowed to
vary across the shape, increasing the flexibility for control-
ling the local appearance of the blended shape. By defining
the weight as a function of time, the proposed method can
also be used to generate a sequence of shape transforma-
tions that involves multiple shapes. The basic idea of our
approach is to perform the blend hierarchically by first cre-
ating a coarse (rough) shape and then add details gradually.
Therefore, if the input shapes consist of similar fine details
(e.g. bumpy boundaries), then the blended shape will have
the same fine details.

For better understanding of the goal of this research, we
show some examples of blending more than two polygonal
shapes in Figure 1. Figures 1(a)-(e) show the input shapes,
which are butterflies, Figures 1(f)-(g) show blending exam-
ples by varying the weight of each butterfly in the blending
and Figures 1(h)-(j) show the examples of locally controlled
blending. For instance, to generate the butterfly shown in
Figure 1(h), the user sets the weight of butterfly (a) to 100%
across the boundaries of its body and 0% on the rest of
the boundaries, the weight of butterfly (c) to 100% across
the boundaries of its upper wing and 0% on the rest of the
boundaries, and the weight of butterfly (e) to 100% across
the boundaries of its lower wing and 0% elsewhere. It is
obvious that blending multiple shapes allowing the weight
of each shape to vary across the shape increases the ability
and the power of shape blending.

2 Previous Work

The simplest way to solve the vertex path problem is
by linearly interpolating the coordinates of the correspond-
ing vertices. However, this approach can cause a shrinking
problem. This problem occurs frequently especially when
the corresponding parts of the input shapes exhibit rigid
body motion. Since then, many methods have been pro-
posed to overcome the limitation of linear interpolation.

Methods that perform the blending using only the bound-
ary information of the shapes are proposed by Sederberg et
al. [17], Goldstein and Gotsman [9], Cohen-Or and Carmel
[7], Zhang [23], and Ohbuchi et al. [14]. However, Shapira
and Rappoport [18] showed that the blended results can be
improved by taking into account the interior of the shapes
in the blending process. Recent methods proposed by Tal
and Elber [21], Floater and Gotsman [8], Alexa et al. [3],
Surazhsky and Gotsman [19, 20], Gotsman and Surazhsky
[10] blend two polygonal shapes by interpolating their com-
patible triangulations.

All of the papers mentioned above only discussed the
issue of blending between two polygonal shapes. Of course,
some of these methods can be extended to blending multiple
shapes. We particularly interested in the extention of the

1

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1. Blending five butterflies. (a) - (e) Input butterflies (112 vertices), (f) average shape of
the input butterflies, (g) blending butterflies (c), (b), and (a) with percentage of 100%, 50%, and 25%,
respectively, (h) combine butterflies (a), (c), and (e) for body, upper wing, and lower wing, respectively,
(i) 50% of (b) and 50% of (c), 50% of (d) and 50% of (b), 50% of (a) and 50% of (e) for body, upper wing,
and lower wing, respectively, (j) 80% of (b) and 20% of (c), 80% of (d) and 20% of (b), 80% of (a) and
20% of (e) for body, upper wing, and lower wing, respectively.

compatible triangulations approaches (the state-of-the-art in
shape blending) to blending multiple shapes. Unfortunately,
in the case of multiple shapes, the compatible triangulations
will consist of a large number of triangles, resulting in very
high computational cost.

Alexa [2] performed a survey of morphing and discussed
morphing among multiple shapes and local morphing. Chen
and Parent [6], Michikawa et al. [13], and Praun et al. [15]
presented methods to blend multiple shapes. However, the
blended shapes are computed by directly interpolating the
coordinates of the vertices of the input shapes. Thus, these
methods suffers the same problem as the linear interpola-
tion method mentioned above. Rossignac and Kaul [16]
employed weighted Minkowski sum and Turk and O’Brien
[22] used variational implicit functions for blending multi-
ple shapes. However, the weight of each input shape cannot
be varied across the shape.

Kanai et al. [11] presented a method to blend the fea-
tures of two shapes by first aligning the two features and
then blending the coordinates of the vertices. This approach
can produce undesirable blended shapes when the features
consist of regions with different orientations. Ohbuchi et
al. [14] controlled the transition rates by using a cubic
Bézier patch. However, it is difficult to extend this method
for blending multiple shapes. Alexa [1] used Laplacian co-
ordinates instead of absolute coordinates to locally control
the morphing. However, this approach can only translate
details, that is, there are problems when the corresponding
regions of the shapes have different orientations or scales.

Although the goal of their research is different from ours,
we would like to mention that Lee et al. [12] presented a

method to morph among multiple images allowing spatially
non-uniform morphing.

In this paper, we represent a polygonal shape by using
a hierarchy of triangles. Blending multiple shapes is per-
formed by first computing compatible hierarchies of trian-
gles for the input shapes, then interpolating the correspond-
ing triangles from the lowest level to the highest level of the
hierarchies. Spatially non-uniform blending is achieved by
using different weights for blending the triangles.

3 Overview of Blending Multiple Shapes

The input to our method are n shapes and their associated
weights. Please note that in this paper, we are not trying to
solve the vertex correspondence problem. Therefore, we as-
sume that all input shapes have the same number of vertices
and there exists one-to-one correspondence among the ver-
tices. Based on the vertex correspondence information, the
compatible hierarchical representations of the input shapes
are computed.

To generate a blended shape, the user first specifies the
weight of each shape as follows. The user divides the ver-
tices of the input polygonal shapes into several groups ac-
cording to how many local controls the user wants. Then,
the user defines the weight of each shape in each group. For
instance, to create the butterfly shown in Figure 1(h), the
boundary vertices are divided into three groups (see Fig-
ure 2) which represent the body (the parts other than the
wings), the upper wing, and the lower wing. Note that since
there exists one-to-one correspondence among the vertices
of the input shapes, this process is done only once. Next,

2

(a) (b)

Figure 2. Dividing the vertices of the input
shapes into several groups. (a) and (b) are
butterflies (a) and (c) in Figure 1, respectively.

the weights of butterfly (a) are set to 100%, 0%, 0% in the
body, the upper wing, and the lower wing, respectively, the
weights of butterfly (b) are set to 0% in all groups, and so
on.

In addition to the weight information, we allow the user
to specify a scaling flag, which is a boolean value, for each
group. This is useful especially when the user wants to com-
bine shapes with significantly different sizes. If the user
set the scaling flag on, then automatic scaling is performed
when blending the input shapes.

At this point, the weights and the scaling flags at the
boundaries of the input shapes are provided. This infor-
mation is then propagated to the rest of the regions. The
blended shape is computed by interpolating compatible hi-
erarchical representations of the input shapes considering
the weights and the scaling flags.

4 Hierarchical Representation

The basic ingredient of our shape blending method is to
represent a shape using a hierarchy of triangles. In this sec-
tion, we are going to describe this hierarchical representa-
tion as well as the compatible representations of multiple
shapes.

4.1 Hierarchical representation of a shape

The basic idea of the hierarchical representation of a
shape is to represent the shape using a set of triangles such
that the shape can be reconstructed starting from a single
triangle and adding triangles to create more complex shapes
recursively until the original shape is obtained. Figure 3 ex-
presses the idea of hierarchical representation. The shape at
level 0 is the original shape. The sequence from level 5 to
level 0 is the reconstruction process of the shape.

Given a polygonal shape P with N vertices, a hierarchi-
cal representation H of P is defined as a pair (T , E), where
T is a set of pairs (Ti, Li), Ti is a triangle and Li is the level
number of Ti, 1 ≤ i ≤ M , M ≥ N − 2, and E contains the
topological information which indicates the parent-child re-
lationships between the triangles of H. In detail, E is a set

level 0 level 1 level 2

level 3 level 4 level 5

Figure 3. An example of hierarchical repre-
sentation of a shape.

(a) (b)

Figure 4. Removing the vertices in the order
of (a) 2, 1, 3 and (b) 2, then 1 and 3 at once.

of pairs (j, k), where 1 ≤ j, k ≤ M . Without lost of gener-
ality, if (j, k) ∈ E , we assume that Tj is the parent of Tk and
Lj > Lk. Please note that the triangle at the lowest level of
the representation has the largest level number. In Figure 3,
the triangles are drawn in colors such that the black and the
white triangles are the triangles at the highest and the low-
est level of the representation, respectively. The bold lines
show the parent-child relationships between the triangles.

4.1.1 Construction of hierarchical representation

The hierarchical representation of a shape is constructed
step-by-step by removing the vertices of the shape recur-
sively until the resulting shape is a single triangle. Each of
the removed vertices is represented by using a triangle (for
instance, vertex 2 is represented by triangle 123 in Figure
4). The vertex of a triangle which represents a detail at a
particular level is called the detail vertex (vertex 2 of trian-
gle 123), and the rest of the vertices are called base vertices
(vertices 1 and 3 of triangle 123). The edge which connects
the base vertices is called the base edge. The detail vertex
does not have a corresponding vertex, while the base ver-
tices have corresponding vertices in the shape at one level
lower. Thus, there is an edge at the shape at one level lower
that corresponds to the base edge of the triangle.

The sequence from level 0 to level 5 in Figure 3 shows
the construction process of the hierarchical representation.
Note that since the orders of removing the vertices are not

3

1

2

3

(a) (b)

1

2
3

(c) (d)

Figure 5. Deforming the shape shown in Fig-
ure 4(a). (a) Adding the original triangle 123
to the shape at level 1 creating (b) the original
shape. (c) Adding the deformed triangle 123
to the shape at level 1 creating (d) a deformed
shape.

unique, the hierarchical representation of a shape is not
unique. As shown in Figure 4(b), two triangles are allowed
to overlap each other in hierarchical representation. This
means that hierarchical representation may not be a trian-
gulation.

The parent-child relationships between the triangles are
determined as follows. Let vi, vj , vk be the vertices of tri-
angle T . Suppose that vi and vk are the base vertices. There
are two triangles, a triangle with vi as its detail vertex and
a triangle with vk as its detail vertex, which are suitable
candidates for the parent triangle of T . From these two tri-
angles, the triangle which has its level number closest to
the level number of T is chosen as the parent triangle. For
example, triangle Tj is the parent of triangle Tk in Figure 4.

4.1.2 Reconstruction from hierarchical representation

Given a hierarchical representation, the shape is recon-
structed starting from the triangle at the lowest level of the
representation and adding the upper level triangles recur-
sively, creating more complex shapes (sequence from level
5 to level 0 in Figure 3). An important characteristic of hi-
erarchical representation is that the original shape can be
deformed by deforming its triangles (see Figure 5). In this
case, the coordinates of the vertices which correspond to the
vertices of the base edges of the triangles are determined by
arithmetic averaging the current coordinates with the coor-
dinates at the deformed triangles.

4.2 Compatible hierarchical representations of
multiple shapes

If multiple hierarchical representations have a one-to-
one correspondence between their triangles, i.e. have the
same number of triangles and have the same parent-child
topology, then we said that they are compatible to each

input level 0 level 1 level 2

level 3 level 4 level 5 level 6

Figure 6. An example of compatible hier-
archical representations between two given
shapes. The vertices with same numbering
and the triangles with same gray level corre-
spond to each other.

other, and we call them compatible hierarchical represen-
tations. Figure 6 shows an example of compatible hierar-
chical representations.

4.2.1 Construction of compatible hierarchical repre-
sentations

Given multiple shapes, we assume that all shapes have the
same number of vertices and there exists a one-to-one corre-
spondence among the vertices. The compatible hierarchical
representations of these shapes are constructed step-by-step
by removing the corresponding vertices of the shapes si-
multaneously over and over again until the resulting shapes
are triangles or lines (lines are treated as degenerate trian-
gles). Since, in each step, the corresponding vertices in all
shapes are removed simultaneously, the resulting triangles
in the hierarchical representations of the shapes will have
a one-to-one correspondence relationships. Note that the
corresponding triangles in compatible representations may
have different orientations, for instance, the corresponding
triangles resulting from removing vertex 7 (triangles 678)
in level 1 (see Figure 6). The parent-child relationships be-
tween the triangles are computed using the method describe
in Section 4.1.1.

When vertices are removed from the shapes during the
construction process, we make sure that the resulting shapes
do not have self-intersections and foldover (the ordering of
the vertices are reversed) problems. Unfortunately, there

4

1

1

1

(a) (b) (c)

1

1

1

(d) (e) (f)

Figure 7. Inserting new vertices guarantees
that a vertex can be removed. (a) Assume
that we want to remove vertex 4. (b) Foldover.
(c) Refine at edges 34 and 41. (d) Self-
intersections. (e) Refine nearer to vertex 4.
(f) Vertex 4 is removed.

is a possibility that we cannot remove any of the ver-
tices without having those problems. To overcome these
problems, new vertices are inserted into the edges in all
the input shapes (refine the input shapes), as a result, the
self-intersections and foldover problems can be avoided
(see Figure 7). Therefore, it is guarantee that we can al-
ways compute compatible hierarchical representations of
the given input shapes.

5 Compatible Hierarchical Representations
for Shapes Blending

The main goal here is to construct compatible hierarchi-
cal representations that are suited for shape blending. Intu-
itively, natural blending can be achieved if we first compute
the coarse version of the blended shape and then add the
details gradually. Since it is easy to blend smooth, nearly
convex shapes, i.e without sharp features, it is preferable
that the coarse shapes of the hierarchical representations
are smooth shapes. In this way, natural coarse shapes can
be generated which leads to natural final blended shape.
Therefore, our strategy for constructing the compatible hier-
archical representations for shape blending is to recursively
removing the vertices with small internal angles in all the
shapes until the resulting shapes become triangles.

5.1 Selection of vertices to be removed

Assume that there are n shapes. For each vertex v, we
define an angle vector A(v) as follows. Let θi, 1 ≤ i ≤
n be the internal angles of v in the shapes. The values θi

are classified into two lists, A1 = {θj |θj < π} and A2 =
{θk|θk ≥ π}, and the angle vector is defined as

A(v) = SortAscending(A1) + SortDescending(A2). (1)

The ′+′ operator in the equation means concatenate the two
lists. Two angle vectors are compared using the lexico-
graphic order. In this way, a vertex whose internal angles in
the shapes are small will have a small angle vector. In each
step of the construction process, the vertices of the shapes
at current level with the smallest angle vectors are removed.

5.2 Restriction on the size of triangles for increas-
ing the quality of blending

From experimental results, if the shapes are represented
by small numbers of triangles (the size of triangles are rel-
atively large compared to the size of the input shapes), and
the shapes differ significantly, natural blending is difficult
to achieve since the trajectories of the vertices during the
blending are restricted. Thus, it is important that the number
of triangles are sufficient to express the differences among
the shapes. In each step of the construction process, by in-
serting new vertices (refining) at the edges where at least
one of the end points is the vertex that is going to be re-
moved, the size of the generated triangles can be restricted,
as a result, the number of triangles in the representations are
increased.

The refining is performed as follows. We use the method
proposed by Arkin et al. [4] to compute the difference val-
ues between all pairs of the input shapes. This method
returns zero when two shapes are the same, and returns a
value larger than zero if two shapes are different. Let dmax

be the largest difference value. Suppose that the shapes
have N vertices, the number of triangles NT needed for
expressing the differences between the shapes is predicted
as NT = N (1.0 + dmax). Then, a threshold value li is
determined for each shape as follows.

First, we compute the average area of triangles in the
case when we assume that the shape is decomposed into
NT triangles. Next, assuming that the ideal triangles are
isosceles triangle with their detail vertices coincide to the
vertices of the shape, we compute the average angle at their
detail vertices approximately by computing the average an-
gle at the vertices of the shape. Let θ be the internal angle,
the angle at a vertex is defined as follows. If θ ≤ π, then
we use θ, whereas if θ > π, then we use 2π − θ. Finally,
we compute the length of the congruent sides of the triangle
by using the computed triangle area and angle. We use this
value as threshold li.

We compare this li to the value at the previous step of
the construction process, and use their maximum value as
the threshold value. Edges longer than the threshold value
are refined simultaneously in all the shapes. By considering
the threshold value at the previous step, we avoid inserting
new vertices over and over again and thus guarantee that
the algorithm will terminate. The vertices with the smallest
details vectors are removed after trying to refine the shapes.

5

6 Computation of the Blended Shape

The blended shape is computed by blending the compat-
ible representations of the input shapes, yielding the hierar-
chical representation of the blended shape and then recon-
structing the shape. Thus, the hierarchical representation
of the blended shape is compatible to those of the input
shapes. Each triangle in the hierarchical representation of
the blended shape is computed by a weighted average of its
corresponding triangles in the compatible representations of
the input shapes.

6.1 Weights and scaling flags propagation

As we mentioned earlier in Section 3, a user divides
the boundary vertices into several groups and specifies the
weights and the scaling flags in these groups. This means
that the triangles in the hierarchical representation of the
blended shape which represent the boundary vertices have
the weights and the scaling flags information needed for
blending their corresponding triangles in the compatible
representations of the input shapes. In order to propagate
the information to the rest of the triangles, we make use of
the geometrical property of hierarchical representation by
building a link graph. Each triangle in the representation
has one node in the link graph. An edge is put between
nodes whose triangles are in the parent-child relationships
or if the two triangles share an edge.

We propagate the information starting from the nodes
which represent the boundary vertices, to the rest of the
nodes by traversing the link graph with the breadth-first
traversal approach. The weight of each information in a
node is computed by using exp(−d2/σ), where d is the
depth of traversal when the information reached the node,
and σ (blending coefficient) controls the amount of blend-
ing. If σ is small, then the overlapping of information
is restricted, while if σ is large, then the overlapping re-
gions become wider. The traversing is stopped when the
weight is below a certain small value. By using the ap-
proach described above, triangles near the boundaries of re-
gions with different weights and scaling flags information
will share these information. As a result, the boundaries can
be smoothly blended while preserving the local appearance
of each region.

The weight of each shape in a triangle is the sum of the
weight of this shape multiply by the weight of the informa-
tion, of all the information possessed by this triangle. Using
the scaling flag information, we compute the weight ws for
scaling a triangle. ws is defined as the sum of the weights
of the information possessed by the triangle whose scaling
flags are on. ws is normalized by dividing its value with
the sum of the weights of all information possessed by the
triangle.

midpoint of the base edge

paths of the vertices

Figure 8. The paths of the vertices.

6.2 Triangles in the hierarchical representation of
the blended shape

A triangle in the representation of the blended shape is
determined by blending its corresponding triangles in the
compatible representations of the input shapes. First, the
corresponding triangles with clockwise and counterclock-
wise vertex ordering are blended separately by using a
transformation which blends their edge lengths using the
weighted average approach. At this point, we get two tri-
angles with different vertex ordering and their weights are
defined as the sum of the weights of the triangles used in
those blendings. Then, the two triangles are placed such
that their base edges and the midpoints of the base edges
coincide and blended using the weighted average approach.
During the blending, the vertices of the triangles are moved
along the paths as shown in Figure 8.

If the blend involves rotations, then the rotations can be
well expressed by rotating the blended triangles. The angle
of rotation can be determined by computing the orientation
of the base edge of a triangle relative to the orientation of
a reference axis. As mentioned in Section 4, except the tri-
angle at the lowest level of the representation, all triangles
have one parent triangle. For each triangle, the base edge
of its parent triangle is used as the reference axis. For the
triangle at the lowest level, we use the x-axis of the global
coordinate system (the coordinate system where the input
shapes are defined) as the reference axis. The angle be-
tween the base edge of the triangle and its reference axis
is then computed. By taking the weighted average for this
angle among the input hierarchies and adding the orienta-
tion of the reference axis (x-axis or the base edge of the
blended parent triangle), the orientation of the base edge is
determined.

6.3 Shape at a particular level

Remember that for each triangle at a particular level,
there exists an edge e that belongs to the shape at one level
lower which corresponds to the base edge of the triangle.
As mentioned in Section 6.1, each triangle has a weight ws

for scaling. The scaling factor α is computed using ws as
follows.

α = (1.0 − ws) 1.0 + ws
length(e)

length(base edge)
(2)

6

where function length() returns the length of an edge and
base edge is the base edge of the blended triangle. We ex-
plicitly write the term 1.0 to show that the weight for no
scaling (scaling factor 1.0) is (1.0 − ws). After scaling the
blended triangle, the triangle is placed such that the mid-
point of its base edge coincides to the midpoint of edge e.
Using the same approach as the one described in Section
4.1.2, the shape at the current level is then computed.

7 Examples

Figures 1 and 9-13 show the results of our method. In or-
der to make the blended results look natural and aesthetic,
we let the user to specify the correspondences between the
vertices. Figure 9 shows the intermediate shapes at differ-
ent levels of the hierarchical representations when blending
between a shark and a Persian teapot. The effects of chang-
ing the blending coefficient σ are illustrated in Figure 10. It
is clear that setting the blending coefficient to a large value
yields a result that close to the result of spatially uniform
blending.

In the examples shown in Figures 11-13, shape morph-
ing sequences which are influenced locally by additional
shapes are presented. To perform shape morphing, the user
specifies the weight of each shape in each group as a func-
tion of time. Figure 14 shows the weight function used for
creating the animation shown in Figure 12(f). As you can
see here, the weight function of the tail of the chicken has
two peaks resulting in the tails of the animals performing a
”leap” at the second and fifth figures. Figure 13(f) shows
the blending results by weighted average of the coordinates
of the vertices (linear blending of the coordinates) of the in-
put shapes. It is clear that linear blending cannot produce a
smooth morphing sequence. Compared to the conventional
shape morphing, more interesting morphing sequences can
be created by using more than two shapes. Therefore, our
method can be used as a tool for the creation of special ef-
fects in motion pictures. Please see the submitted MPEG
files for the shape morphing examples presented in this pa-
per. The MPEG files can also be found at the following
URL (http://nis-lab.is.s.u-tokyo.ac.jp/˜henry/PG2003/).

The proposed method is fast. The compatible hierarchi-
cal representations in all the examples can be computed in
less than one second. The blended shapes can be computed
in real time (more than 30fps). The computation is per-
formed on a machine with a 1.13 GHz Pentium III. This
allows the user to interactively specify the weights of the
input shapes and see the blending results in real time.

7.1 Discussion

The simplest way to blend n shapes is to blend two
shapes at a time and then blend the resulting shape with

level 0 level 40 level 80 level 120 level 160
Input shape, a shark.

level 0 level 40 level 80 level 120 level 160
Blended shape (50% shark and 50% teapot).

level 0 level 40 level 80 level 120 level 160
Input shape, a Persian teapot.

Figure 9. Shapes at several levels of the hier-
archical representations.

Table 1. Comparison of numbers of levels and
triangles of compatible hierarchical represen-
tations.

CHR of #levels #triangles
(a), (b), and (c) 302 388

(a) and (b) 185 249
(a) and (c) 210 308
(b) and (c) 250 373

other shape over and over again. Obviously this method
is not efficient since we have to compute the compatible
hierarchical representations and the blended shapes n − 1
times in order to produce one final blended shape. More-
over, there is a continuity issue when we want to create
shape morphing involving more than two shapes because
the computed compatible hierarchical representations may
differ from frame-to-frame. Considering the above limita-
tions, it is favorable to blend all the shapes at once using
compatible hierarchies of triangles of all the input shapes.

We have also investigated the computational cost of hi-
erarchical blending. We found out that the computational
cost of our multiple shape blending method is roughly the
same as the computational cost when we blend the two most
different shapes of the input shapes. For instance, the num-
ber of triangles and the levels of the compatible hierarchical
representations (CHR) for the example shown in Figure 11
(input shapes have 150 vertices) are shown in Table 1.

Generally, the number of triangles in the compatible hi-
erarchical representations of two shapes depends on the
number of the vertices in the two shapes and the degree of
similarity between the two shapes. This property of hierar-
chical representations is different from that of triangulation
in the way that computing the compatible triangulations of

7

(a) (b) (c)

(d)

Figure 11. Input shapes (150 vertices), (a) a shark, (b) a Persian teapot, and (c) an airplane. (d)
Morphing a shark to an airplane influences by using the body and the handle of the Persian teapot.

(a) (b) (c)

(d) (e) (f)

Figure 10. Replacing the head of (a) a bird with
the head of (b) a donkey (149 vertices) by set-
ting the blending coefficient σ to (c) 0.1, (d)
4.0, and (e) 40.0, respectively. For compari-
son (f) is the result of spatially uniform blend-
ing (50% bird and 50% donkey).

multiple shapes is likely to increase the number of triangles
not only depends on the degree of similarity of the input
shapes but also proportional to the number of shapes.

7.2 Limitations of the proposed method

One of the limitations is that our method cannot be used
directly for image morphing. In this case, image morph-
ing algorithms (e.g. Lee et al. [12]) can be used to tex-
ture the blended shapes. Sometimes it is desireable to gen-
erate self-intersections-free blended shapes. The blending
method presented in the previous section do not guarantee
that the blended shape will be free from self-intersections.

We devised the following method for trying to remove
self-intersections in the blended shapes. In the reconstruc-
tion process, when adding a triangle to a shape at a previous

dog duck chicken

Figure 14. The vertices are divided into three
groups, top of the head, body, and tail, and
their corresponding weight functions in the
input shapes for creating the animation in Fig-
ure 12(f). The horizontal and vertical axes de-
fine the time and the weight, respectively.

lower level, the locations of the vertices that correspond to
the vertices of the base edge of the triangle are first com-
puted. If self-intersections exist, we recompute this shape
by moving the vertices of the base edge of the triangle to-
ward the corresponding vertices in the shape at the previous
level until the self-intersections disappear. Next, the detail
vertices of the triangles are added to the shape, generating
the blended shape at this level. If self-intersections occur,
these vertices are moved toward the midpoint of their base
edges. This approach for resolving self-intersections is not a
perfect solution since it sometimes shrinks some portions of
the blended shapes. However, it performs quite well when
the self-intersections which occur are not severe. Figure 15

8

(a) (b) (c) (d) (e)

(f)

(g)

Figure 12. Input shapes (168 vertices), (a) a dog, (b) a duck, and (c) a chicken. Replacing the tail
of the dog with the tail of the chicken by setting the scaling flag of the tail region to (d) on (with
automatic scaling) and (e) off (without scaling). Morphing a dog to a duck (f) influences by a chicken
around the top of the head and the tail, and (g) without influence shape (for comparison with (f)).

(a) (b) (c)

Figure 15. Morphing (a) a scorpion into a jet
fighter (278 vertices), intermediate shape at
time 0.75 (b) without and (c) by fixing self-
intersections.

shows the result when applying this method for resolving
self-intersections.

8 Conclusion and Future Work

In this paper, we have proposed a method to smoothly
blend more than two polygonal shapes, which gives the user
the ability to control the local appearance of the blended
shape. Our method computes the blended shape hierarchi-
cally by first computing a coarse version of the shape and
then gradually adding the details. The proposed method is
fast and produces natural blended shapes.

We would like to apply our method to animate general-

ized cylinders. The contours of generalized cylinders can be
defined as the result of blending several shapes. By defining
the weights of these shapes as functions of time, animation
of generalized cylinder can be created. The hierarchical ap-
proach seems to be an efficient and fast method for blending
shapes. Therefore, an interesting challenge is to apply the
idea of hierarchical blending to solve the vertex path prob-
lem in the 3D case. The ability to blend multiple 3D shapes
which permits the user to locally control the blending can
provide a powerful tool for shape modeling application.

Acknowledgments

We would like to thank Prof. Nelson Max (Lawrence
Livermore National Laboratory) for checking this paper,
and Yuichi Koiso, Kei Iwasaki for creating some of the ex-
amples in the paper. This work is supported in part by the
Japan Society for the Promotion of Science.

References

[1] M. Alexa. Local control for mesh morphing. In Proceedings
of Shape Modeling and Applications 2001, pages 209–215,
2001.

[2] M. Alexa. Recent advances in mesh morphing. Computer
Graphics Forum, 21(2):173–196, 2002.

[3] M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-as-possible
shape interpolation. In Proceedings of ACM SIGGRAPH
2000, pages 157–164, 2000.

9

(a) (b) (c) (d)

(e)

(f)

Figure 13. Input shapes (163 vertices), (a) a table, (b) a Triceratops, (c) a Stegosaurus, and (d) a
Tyrannosaurus. (e) Morphing a table to a new species dinosaur (head from Triceratops, back and
tail from Stegosaurus, and legs from Tyrannosaurus) (f) Morphing results by weighted averaging the
coordinates of vertices of the input shapes.

[4] E. M. Arkin, P. L. Chew, D. P. Huttenlocher, K. Kedem,
and J. S. B. Mitchell. An efficiently computable metric for
comparing polygonal shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(3):209–216, 1991.

[5] C. Bregler, L. Loeb, E. Chuang, and H. Deshpande. Turning
to the masters: Motion capturing cartoons. ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH 2002),
21(3):399–407, 2002.

[6] S. E. Chen and R. Parent. Shape averaging and its appli-
cations to industrial design. IEEE Computer Graphics and
Applications, 9(1):47–54, 1998.

[7] D. Cohen-Or and E. Carmel. Warp-guided object-space
morphing. The Visual Computer, 13(9-10):465–478, 1998.

[8] M. S. Floater and C. Gotsman. How to morph tilings injec-
tively. Journal of Computational and Applied Mathematics,
101:117–129, 1999.

[9] E. Goldstein and C. Gotsman. Polygon morphing using a
multiresolution representation. In Proceedings of Graphics
Interface 95, pages 247–254, 1995.

[10] C. Gotsman and V. Surazhsky. Guaranteed intersection-free
polygon morphing. Computers and Graphics, 25(1):67–75,
2001.

[11] T. Kanai, H. Suzuki, J. Mitani, and F. Kimura. Interactive
mesh fusion based on local 3d metamorphosis. In Proceed-
ings of Graphics Interface 1999, pages 148–156, 1999.

[12] S. Lee, G. Wolberg, and S. Y. Shin. Polymorph: Morph-
ing among multiple images. IEEE Computer Graphics and
Applications, 18(1):60–73, 1998.

[13] T. Michikawa, T. Kanai, M. Fujita, and H. Chiyokura. Mul-
tiresolution interpolation meshes. In Proceedings of Pacific
Graphics 2001, pages 60–69, 2001.

[14] R. Ohbuchi, Y. Kokojima, and S. Takahashi. Blending
shapes by using subdivision surfaces. Computers and
Graphics, 25(1):41–58, 2001.

[15] E. Praun, W. Sweldens, and P. Schröder. Consistent mesh
parameterizations. In Proceedings of ACM SIGGRAPH
2001, pages 179–184, 2001.

[16] J. R. Rossignac and A. Kaul. Agrels and bips: Metamorpho-
sis as a bézier curve in the space of polyhedra. Computer
Graphics Forum, 13(3):179–184, 1994.

[17] T. W. Sederberg, P. Gao, G. Wang, and H. Mu. 2d shape
blending: An intrinsic solution to the vertex path problem.
In Proceedings of ACM SIGGRAPH 93, pages 15–18, 1993.

[18] M. Shapira and A. Rappoport. Shape blending using the
star-skeleton representation. IEEE Computer Graphics and
Applications, 15(2):44–50, 1995.

[19] V. Surazhsky and C. Gotsman. Controllable morphing of
compatible planar triangulations. ACM Transactions on
Graphics, 20(4):203–231, 2001.

[20] V. Surazhsky and C. Gotsman. Intrinsic morphing of com-
patible triangulations. In Proceedings of the 4th Israel-
Korean Binational Conference on Geometric Modeling and
Computer Graphics, 2003.

[21] A. Tal and G. Elber. Image morphing with feature preserving
texture. Computer Graphics Forum, 18(3):339–348, 1999.

[22] G. Turk and J. O’Brien. Shape transformation using vari-
ational implicit functions. In Proceedings of ACM SIG-
GRAPH 99, pages 335–342, 1999.

[23] Y. Zhang. A fuzzy approach to digital image warping. IEEE
Computer Graphics and Applications, 16(4):34–41, 1996.

[24] Y. Zhang and Y. Huang. Wavelet shape blending. The Visual
Computer, 16(2):106–115, 2000.

10

