
Morphing Using Curves and Shape Interpolation Techniques

Henry Johan† Yuichi Koiso‡ Tomoyuki Nishita‡

†Dept. of Information Science
‡Dept. of Complexity Science and Engineering

University of Tokyo
Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan

{henry, koiso, nis}@is.s.u-tokyo.ac.jp

Abstract

This paper presents solutions to the feature correspon-
dence and feature interpolation problems in image mor-
phing. The user specifies the correspondence between the
source and the target images by drawing input curves on
the features of the objects. The correspondence between
these curves at the finest level (pixel level) is computed by
optimizing a cost function. Based on this correspondence,
the input curves are approximated by using Bézier curves.
We represent the Bézier curves and the connections among
them by using a ”dependency graph”. Feature interpola-
tion is performed by interpolating the dependency graphs
using the edge-angle blending technique. We also propose
methods for controlling the transition rates of the shape and
the color. We implemented the proposed algorithms in our
morphing system which is based on the field morphing tech-
nique. From experimental results, our algorithms can gen-
erate a smooth morphing animation even when the objects
in the source and the target images have different orien-
tations. Also, the user’s workload is reduced because the
system includes an automatic feature correspondence com-
putation.

Keywords: Morphing, Shape Interpolation, Transition
Control, Warping, Deformation, Animation.

1 Introduction

Morphing (Metamorphosis) is a technique used to gener-
ate a sequence of images that smoothly transform a source
image into a target image. This technique is often used to
create special effects for motion pictures or television com-
mercials. A conventional method of generating an interme-
diate image is by cross-dissolving the source and the target
images. This approach, however, cannot generate a high-
quality image since the features (landmarks) of the objects

in the source and the target images are generally not coin-
cident with each other. To assure smooth transformation,
first the source and the target images are warped so that the
features on both images are aligned to each other and then
the colors of the warped images are cross-dissolved.

There are four main issues to overcome in morphing.
First, how can we extract the features from the source and
the target images, and establish the correspondence between
these features. Second, how should we interpolate these fea-
tures to generate features for the intermediate image. Third,
how should we define a warp function, and lastly, how can
we control the transition rates of the shape and the color.

The first issue concerns the amount of effort required by
the user to specify the correspondence between the source
and the target images. It is important to help the user to per-
form this process easily. The feature interpolation problem
becomes complicated, especially when rotation is involved.
This paper presents solutions to these problems.

The user establishes the coarse correspondence between
the source and the target images by drawing input curves on
the both images. The correspondence between these curves
at the finest level (pixel level) is computed by optimizing
a cost function. Based on this correspondence, the input
curves are approximated by using the least squares fitting
[14] of piecewise cubic Bézier curves. We call these Bézier
curves ”feature curves”.

We present a method for interpolating the features cor-
rectly even when the orientation of the object in the source
image is different to the one in the target image. That is,
the features do not shrink during the morphing animation.
In the preprocessing step, we construct dependency graphs
for the both images. A dependency graph represents the
feature curves and the connections among them. The fea-
tures in the intermediate image are generated by applying
the edge-angle blending technique [22] on the two graphs.

Our morphing system uses the field morphing technique
[2] for the warp computation. The field morphing approach
is very simple and easy to implement, yet it can generate

impressive effects. Since the features of the images are rep-
resented using Bézier curves, we use pairs of Bézier curves
to define the mapping from one image to the other. The
Bézier curves are extended to what we call ”extended fea-
ture curves” and we use these extended feature curves in
the warp computation. We also allow the user to specify
transition curves for controlling the transition rates of shape
and color. As a result, more interesting animations can be
produced.

Section 2 describes previous work on the subproblems in
2D-image morphing. Section 3 discusses our solution to the
feature specification problem. Section 4 deals with feature
interpolation and shape transition control problems. Section
5 describes the field morphing algorithm and our approach
to color transition control. Then, we show some examples
to demonstrate the advantages of our methods. The final
section concludes this paper and describes the direction for
further research.

2 Previous work

First, we list some works related to the problem of find-
ing the correspondence between two polygonal shapes. All
of the methods that are going to be described can also be
used to calculate the correspondence between two open
piecewise linear curves. Sederberg and Greenwood [21] es-
tablished a correspondence between two polygonal shapes
by finding a global minimum solution of a work function.
Their method requires the user to specify the values of seven
physically based parameters. The drawback is that it is very
difficult to specify the values of these parameters in order to
achieve the desired result. The method in [25] established
the correspondence by maximizing the sum of the dot prod-
uct between tangent vectors at the sampling points on the
source and the target shapes. However, the calculation fails
when the orientations of the two shapes differ.

Carmel and Cohen-Or [3] proposed a method that first
warps the source object and aligns it with the target ob-
ject. Then, using the polygon-evolution algorithm, the
warped source and target objects are converted into two
convex polygons that are projected onto two identical cir-
cles. Merging the topologies of the projected objects and
projecting them back to the original objects obtains the cor-
respondence.

In feature based morphing, feature interpolation is very
important. This problem is similar to the vertex path prob-
lem in shape interpolation. Sederberg et al. [22] proposed
an algorithm that blends the intrinsic definitions (edge
lengths and vertex angles) of two polygonal shapes (edge-
angle blending). In Shapira and Rappoport [23], they repre-
sent the interior of the two shapes by using ”star-skeletons”
representation. Intermediate shapes are generated by blend-
ing the parametric description of these skeletons. Goldstein

and Gotsman [6] presented an algorithm which first applies
the polygon evolution to the two shapes and then blends the
vertex paths resulting from the polygon evolution process.

Another technique for solving the vertex path problem
was presented by Carmel and Cohen-Or [3]. They compute
the vertex path with a transformation which consists of a
rigid part and an elastic part. The rigid part of the trans-
formation performs rotation and translation, while the elas-
tic part performs a linear interpolation between the corre-
sponding vertices. Next is the work of Zhang and Huang
[30]. First, they apply the wavelet decomposition to the two
shapes, then they blend their low-resolution shapes and af-
ter that they perform the wavelet reconstruction.

The shortcoming of these methods is that they only
consider the interpolation between two object boundaries.
However, in morphing, the user can specify features not
only on the boundaries, but also inside or outside the bound-
aries. Therefore, we cannot use these methods directly in
morphing

Recent work on this problem is done by Alexa et al. [1].
Their algorithm computes the compatible triangulation of
the two shapes. Next, the optimal least-distorting morph-
ing between each pair of corresponding triangles is deter-
mined. The global transformation is defined as a transfor-
mation which minimizes the overall local deformation. This
method can be used to perform the interpolation like the one
shown in Figures 12-14 if we take into account all the un-
connected features when computing the compatible trian-
gulation. However, in the paper they did not mention about
the method to compute this kind of triangulation.

Although warp computation is not the main theme in this
research, we also list some 2D-image warping techniques
here. In Wolberg’s book [28], the mesh warping method
was introduced. Another mesh-based technique was the
work of Nishita et al. [17]. Beier and Neely proposed the
field morphing technique [2]. An optimization based on a
piecewise linear approximation was proposed by Lee et al.
[11] to accelerate the warp computation. In Lee et al. [8],
Litwinowicz and Williams [13], the radial basis functions
approaches for warp computation were introduced. Wol-
berg [29], Ruprecht and Muller [19] provided an extensive
survey of this method.

Lee et al. [10] developed a method that can generate one-
to-one and C1-continuous warp functions. In [9], Lee et
al. presented a new warp generation method that is simpler
and faster than the energy minimization method [10]. The
warp function generated by this method is one-to-one and
C2-continuous. A computer vision technique called snake
[7] is used to help the user to establish the correspondence
between the images. An algorithm to transform two similar
images with little or no human interaction is proposed by
Gao and Sederberg [5], Shinagawa and Kunii [24], and Tam
and Fournier [26]. Tal and Elber [27] proposed a hybrid

P *
i

P

| angle() |

(a) (b)

i+1

P *
i-1

*

i

P *
i

P *

i+1

P *
i-1

*
i+1 PP *

i-1
P *

Figure 1. (a) Tangent vector and (b) angle cost
calculations.

approach which combines an image morphing method and
a polygonal morphing method.

3 Feature specification

Feature specification is the most tedious operation for the
user in the whole morphing process. First, the user deter-
mines a portion on the source image and its correspondence
on the target image. Then points, lines, or curves are used
to specify the locations of these features.

3.1 Feature specification primitive

We use curves as a primitive for specifying features.
These curves can be open curves or closed curves. The user
specifies the corresponding features of the objects in the
source and the target images by drawing two input curves,
one in the source image (”source curve”) and one in the
target image (”target curve”). For example, if we want to
morph a gorilla to a bear, we draw curves on the features of
these animals. These curves represent the correspondence
at a coarse level. The correspondence at a finer level are
computed automatically.

3.2 Correspondence calculation

After the user specifies two input curves, one on the
source image and one on the target image, the next step is
to find a correspondence between these curves at the finest
level (pixel level). We sample the input curve with a set
of equally spaced points and hence obtain piecewise linear
curve. Therefore, our problem is reduced to finding a corre-
spondence between two piecewise linear curves. If the input
curve is a closed curve, then the piecewise linear curve be-
comes a polygonal shape.

We extend the work of Sederberg and Greenwood [21]
and Cohen et al. [25]. By defining a new cost function,
we overcome the problems found in [21] and [25]. Our ap-
proach is as follows. Let the curves on the source and the
target images being sampled using n and m points, respec-
tively. Without loss of generality, we assume that n ≥ m.
Let PS

i , (i = 1, ..., n) and PT
j , (j = 1, ...,m) to be the

points on the source and the target curves. For each point
P ∗

i , (PS
i or PT

i) on the curve, we determine the tangent
vector

−→
P ∗

i as follows (see Figure 1(a)).

−→
P ∗

i =
P ∗

i+1 − P ∗
i−1

‖P ∗
i+1 − P ∗

i−1‖
. (1)

We calculate the correspondence by minimizing the sum
of a cost function, which is defined as a function of angle
cost and parameter cost. Let sign(x) = 1.0 when x ≥ 0.0
and sign(x) = −1.0 when x < 0.0. Also, let Z(−→A,

−→
B) =

AxBy − AyBx. The angle cost at a sampling point P ∗
i is

defined using the following equation (see Figure 1(b)).

angle(P ∗
i) =

1
2

arccos(
−−→
P ∗

i−1 ·
−−→
P ∗

i+1) sign(Z(
−−→
P ∗

i+1,
−−→
P ∗

i−1)).
(2)

The parameter cost at point PS
i is simply defined as i

n . Sim-
ilarly, the parameter value at point PT

j is defined as j
m . Us-

ing the angle and the parameter costs, we define the cost
function as follows.

cost(i, j) = w1|angle(PS
i) − angle(PT

j)| + w2| i
n
− j

m
|.
(3)

The angle term extracts the similarity between the two ob-
jects and the parameter term assures that two points far apart
will not be set to correspond to each other. Our cost function
only has two parameters, w1 and w2, which are the weights
of the angle and parameter costs. In practice, weights of
w1 = 1.0 and w2 = 3.0 seem to perform well over a wide
range of images.

Adopting this cost function, the optimization problem
that needs to be solved is

min
n∑

i=1

cost(i, J(i)). (4)

This optimization problem is solved subject to J(1) = α,
J(n) being a direct neighbor of α, and that J(i), (i =
2, ..., n − 1) changes in one direction from J(1) towards
J(n). We solve this problem using the dynamic program-
ming technique. When the curves are open curves, we use
a constraint that the end points of the source and the tar-
get curves correspond alternately. If the curves are closed
curves, then the global minimum can be calculated using
the algorithm in [4] without having the user specifying the
initial correspondence.

Figure 2 shows an example of shape interpolation be-
tween a turtle and a wolf (same as the example in [25]).
The correspondence between the turtle and the wolf are cal-
culated by using our algorithm. In the shape interpolation
process, the mouth, the legs, and the tail of the turtle be-
came the mouth, the legs, and the tail of the wolf. This
result confirmed that our approach could produce a correct
correspondence even when the two shapes have different
orientations.

Figure 2. Shape interpolation from a turtle to
a wolf.

3.3 Bézier curve-fitting

This process starts by subdividing the input curve into
several curves based on the correspondence, then approxi-
mating these curves with cubic Bézier curves using the least
squares fitting method [14]. In a preprocessing step, we use
the absolute values of the angle costs of all sampling points
on the source, target curves and consider them as functions
f(i), g(i), where i is the index of the sampling points. Then,
we search for the local maxima of the functions f(i), g(i).
For the subdivision process we developed an iterative algo-
rithm. Without loss of generality, we assume that the sam-
pling points in the source curve are more than the one in the
target curve. Before we perform the subdivision process, we
first determine an initial point Pinit and a last point Plast.
When the curve is an open curve, the first point and the last
point of the source curve are used as Pinit and Plast, re-
spectively. On the other hand, if the curve is a closed curve,
one of the local maxima of function f is used as both Pinit

and Plast. Next, we initialize PS
now = Pinit. The detail of

the curve-fitting algorithm is as follows.

1. PS
start = PS

now, src = 0, tgt = 0. Let PT
start to be the

corresponding point to PS
start.

2. While (PS
now 	= Plast)

2.1. Let PT
now to be the corresponding point to PS

now.

2.2. If PS
now is a local maxima of f(i) then src =

src + 1.

2.3. If PT
now is a local maxima of g(i) then tgt =

tgt + 1.

2.4. If (src = 2) or (tgt = 2) or (V(PS
start, P

S
now) > θ)

or (V(P T
start, P

T
now) > θ) then break.

2.5. PS
now = successor(P S

now).

3. Approximate the segments from PS
start to PS

now on the
source curve, PT

start to PT
now on the target curve by

using cubic Bézier curves.

4. If (PS
now 	= Plast) then go to step 1.

: L(I)i
*

: I *
i

Ci,1
* Pi,2,0

*

*Pi,1,0

Ci,2
*

Pi,3,0
*

Ci,3
*

Pi,3,3
*

Figure 3. Example of an input curve.

Function V(A,B) (see step 2.4.) returns the angle between
the tangent vectors at A and B. By checking the angle be-
tween the tangent vector at the starting points PS

start, P
T
start

and at the current points PS
now, PT

now, we ensure that the re-
sult of the subdivision can be approximated by using a cubic
Bézier curve, especially when large segments of the curve
are of the same angle costs. In our implementation, we set
the value of θ to 3

4π.

4 Feature interpolation

In morphing, linear interpolation is usually used for in-
terpolating the features. However, it fails when the two
shapes have different orientations. The feature interpolation
problem becomes complicated since the user can specify
features not only on the boundaries, but also inside or out-
side the boundaries. As a result, other shape interpolation
methods such as [22, 23, 6, 3, 30] cannot be used directly
in morphing because they only consider the interpolation
between two object boundaries. Our proposed algorithm
overcome this problem.

Before we describe our algorithm, we need to define
some keywords and notations. Assume that there are n
input curves. The input curves I∗i (see Figure 3), (IS

i

or IT
i), (i = 1, ..., n) are then approximated using Bézier

curves. We call these Bézier curves ”feature curves”. Let
m∗

i to be the number of Bézier curves used to approximate
I∗i . Then I∗i = {C∗

i,1, ..., C
∗
i,mi

}, where C∗
i,j is a Bézier

curve. Here, CS
i,j corresponds to CT

i,j . Let P ∗
i,j,0, ..., P

∗
i,j,3

to be the control points of C∗
i,j . We define the polyline

L(I∗i) as follows.

L(I∗i) = {P ∗
i,1,0, P

∗
i,2,0, ..., P

∗
i,mi−1,0, P

∗
i,mi,0, P

∗
i,mi,3}

if I∗i is an open curve,

L(I∗i) = {P ∗
i,1,0, P

∗
i,2,0, ..., P

∗
i,mi−1,0, P

∗
i,mi,0}

if I∗i is a closed curve. (5)

The idea of our approach is to represent the feature
curves and the connections among them using a directed
graph called ”dependency graph”. The node of the depen-
dency graph represents an end point of a feature curve. The

*

* *
*

*

*

* *

I2
*

I *
1

basic connection graph

v v1,1v 1,2 1,3 1,4v

v

v2,1

2,2

v 2,3

2,4v

1,1v

1,2v
1,3v

1,4v 2,2v

2,4v

2,1v 2,3v

(a) (b)

Figure 4. Example of basic connection graphs
in the case of (a) open curve and (b) closed
curve.

edge of the graph represents a directed line segment con-
necting its two nodes, and hence establishes a dependence
relationship between nodes of the graph. We build the de-
pendency graph for each of the two input images. The inter-
mediate features are generated by applying the edge-angle
blending technique [22] between these two graphs.

4.1 Preprocessing step

In the preprocessing step, we construct a dependency
graph for the two input images. The dependency graph is
constructed by generating a ”connection graph” and then
traversing the connection graph starting from the base ver-
tex in a breadth-first manner and assigning a direction to
each edge. At the same time, the intrinsic definitions of the
edges are computed and stored in the nodes of the depen-
dency graph.

4.1.1 Connection graph construction

Let γi to be the number of vertices in L(I∗i). We redefine
L(I∗i) = {v∗i,1, ..., v∗i,γi

}. We can consider the polyline
L(I∗i) as an undirected graph. We call this graph ”basic
connection graph Gi”. The nodes and the edges of graph
Gi represent the vertices and the line segments in the poly-
line L(I∗i). We define V (Gi) = {vi,1, ..., vi,γi} to be the
set of Gi’s nodes. Figure 4(a) shows an example of a basic
connection graph when I∗i is an open curve, whereas Fig-
ure 4(b) shows an example in the case of a closed curve.
We call the edges in these examples ”feature edges”, since
these edges represent feature curves.

We build the connection graph by linking together the
basic connection graphs that are located close to each other
by putting edges among them. We call these edges ”non-
feature edges”. Before we describe the linking algorithm,
we need to define the distance between two basic connec-
tion graphs. Let distance(A,B) returns the Euclidean dis-
tance between vertex A and vertex B. The distance between
L(I∗i), (i = 1, ..., n) and L(I∗k), (k = 1, ..., n) is defined as

*

* *
*

*

*

*

*

: feature edge
: non-feature edge

1,1v

1,2v
1,3v

1,4v

2,1v
2,2v

2,3v

2,4v

v

v

vv v1,1v 1,2 1,3 1,4

2,1

2,2

v 2,3

2,4v

Figure 5. Connection graph by linking two ba-
sic connection graphs.

follows.

distance line(L(I∗i), L(I∗k)) = min distance(v∗i,j , v
∗
k,l),

(j = 1, ..., γi), (l = 1, ..., γk), (6)

where v∗i,j ∈ L(I∗i), v∗k,l ∈ L(I∗k). Since a basic connection
graphGi represents L(IS

i) and L(IT
i), the distance between

two basic connection graphs Gi and Gk is

distance BCG(Gi, Gk) = min(distance line(L(IS
i), L(IS

k)),
distance line(L(IT

i), L(IT
k))).
(7)

The linking operation is as follows.

1. For (i = 1, ..., n), (j = i + 1, ..., n), set dist[i, j] =
dist[j, i] = distance BCG(Gi, Gj). Let dist[i, j] =
distance(vGi , vGj), where vGi ∈ Gi and vGj ∈ Gj .
If dist[i, j] < ε (ε: user specified constant), then
put a non-feature edge between vGi and vGj and set
connected[i, j] = connected[j, i] = True. Otherwise,
set connected[i, j] = connected[j, i] = False.

2. Q = {G1}, R = {G2, ..., Gn}.

3. While (R is not empty)

3.1. Search for (i, j), (Gi ∈ Q and Gj ∈ R) such that
dist[i, j] is minimum.

3.2. If (connected[i, j] = False) then put a non-feature
edge between vGi and vGj .

3.3. Q = Q ∪ {Gj}, R = R− {Gj}.

After we applied the above algorithm to the basic connec-
tion graphs, we obtained the connection graph, which guar-
antees that a path always exists from any arbitrary node to
the other nodes. Figure 5 shows an example of a constructed
connection graph.

4.1.2 Dependency graph construction

Figure 6 shows the dependency graph with respect to the
connection graph in Figure 5. To build the dependency
graph, we first create a root node for the base vertex. A
vertex that minimizes ‖vS

i,j − vT
i,j‖, (i = 1, ..., n), (j =

reference
edge

level 1

level 3

level 0

level 2

v

v v

v

v

vv

2,1v 1,3

2,4 1,2 1,4

1,1

2,3

2,2

Figure 6. Dependency graph for the connec-
tion graph in Figure 5.

1, ..., γi) is chosen as the base vertex. In Figure 5, we as-
sume that v2,2 is the base vertex. Next, one of the feature
edges that attached to the base vertex is chosen as a refer-
ence edge. For the connection graph in Figure 5, v2,2v2,1 is
chosen as the reference edge. The intrinsic definition [22] of
the reference edge are calculated with respect to the x-axis.
The intrinsic definitions of the remaining edges which have
the base vertex as their end point, v2,2v2,3 and v2,2v1,3, are
calculated with respect to the reference edge.

We then traverse the connection graph starting from the
nodes (v2,1, v2,3, v1,3) that share edges with the base vertex
in the breadth-first manner and assign a direction to each
edge. If we visit node vk,l from node vi,j , we store the
intrinsic definition of vi,jvk,l in node vk,l. For instance,
in Figure 6, node v1,2 holds the intrinsic definition of edge
v1,3v1,2 with respect to edge v2,2v1,3. Note that a node can
store more than one intrinsic definition and thus can have
more than one dependency.

4.2 Intermediate features generation step

The intermediate features at time t are computed as fol-
lows. Let va,b to be the base vertex. First, we compute the
shape transition rate at each node. Section 4.2.1 discusses
this in detail. After that, we compute the coordinates of the
base vertex vI

a,b using the linear interpolation of vS
a,b and

vT
a,b at a transition rate of SR(vS

a,b, t).

vI
a,b = (1.0 − SR(vS

a,b, t))v
S
a,b + SR(vS

a,b, t)v
T
a,b. (8)

Here, SR(vS
i,j , t) returns the transition rate of node vS

i,j at
time t. Then, we traverse the dependency graph, starting
from the root (base vertex) in a breadth-first manner, and
compute the coordinates of the nodes in the order visited.
Suppose that the visited node vi,j has d dependencies (see
Figure 7). We compute the new position of vI

i,j as follows.

vI
i,j =

∑d
k=1 wkv

I
i,j,k∑d

l=1 wl

. (9)

Here, vI
i,j,k (k = 1, ..., d) are the new positions of vi,j with

respect to each dependency. We calculate vI
i,j,k using the

-thd1st

2nd

v
1

2
v

d
v

i,j
v

Figure 7. Node vi,,j with d dependencies.

y

x local coordinates

y’

x’

world coordinates

i,j,1P*

i,j,0P

*

i,j,2P*

i,j,3P

*

i,j,2
*

Oi,j,3
*

O

Oi,j,0
*

Oi,j,1
*

Figure 8. Conversion from the world coordi-
nates to the local coordinates system.

edge-angle blending technique. wk is the weight of the k-
th dependency. To generate a smooth interpolation, edge
with small changes on its length (the difference between
the length of the edge in the source graph and in the target
graph is small) should not suffer a great distortion on its
length during the interpolation. Therefore, the weight of
such edge should be large. Let, length(vi,jvk,l) returns the
length of edge vi,jvk,l. We define wk as follows.

wk =
1

β + |length(vS
k v

S
i,j) − length(vT

k v
T
i,j)|

(10)

β (a small value) is used to avoid division by zero. In our
implementation, we set the value of β to 10−5.

After we have calculated the coordinates of the nodes,
we have the coordinates and the transition rates at the end
points of the feature curves. Since the feature curves are
cubic Bézier curves, the next task is to calculate the coordi-
nates of the rest of their control points. At the preprocessing
step, for each feature curve C∗

i,j , we define a local coordi-

nate system with line
−−−−−−−→
P ∗

i,j,0P
∗
i,j,3 as the x-axis and compute

the local coordinates O∗
i,j,k ofP ∗

i,j,k, (k = 1, 2) with respect
to this coordinate system (see Figure 8).

We calculate the coordinates of P I
i,j,k, (k = 1, 2) at

the intermediate image as follows. First, we compute the
transition rate αk at PS

i,j,k using the linear interpolation of
SR(PS

i,j,0, t) and SR(PS
i,j,3, t) at a rate of k/3. Then, we

calculate the local coordinates OI
i,j,k using the linear inter-

polation of OS
i,j,k and OT

i,j,k at a rate of αk. Finally, we
transform OI

i,j,k into coordinates with respect to the world
coordinates system.

: I S
i

Ci,1
S

vi,1
S

i,1
S

vi,2
S

Ci,2
S

vi,3
S

L(I)i,2
S

Ci,3
S

vi,4
S

L(I)

Figure 9. Subdivision of L(IS
i) into L(IS

i,1) and
L(IS

i,2).

4.2.1 Features transition control

We use a Bézier curve to define a transition curve. To con-
trol the transition rates of the features, we allow the user
to specify the transition curves at the points in L(IS

i). As-
sume that the transition rates of some points in L(IS

i) are
specified. Then, by using these points, we can subdivide
L(IS

i) into several polylines L(IS
i,j). If only one of the

end points of L(IS
i,j) has its transition rate specified (for

instance, L(IS
i,1) in Figure 9), then we set the transition rate

at the other end point as the transition rate at this point.
The transition rates of the remaining points in L(IS

i,j)
are computed using the linear interpolation of the transition
rates at L(IS

i,j)’s end points. Let the transition rates at the
end points of L(IS

i,j) to be α1 and α2. Assume that L(IS
i,j)

has γi,j vertices. The transition rate at the k-th point (k =
1, ..., γi,j) is a linear interpolation of α1 and α2 at a rate of
k/γi,j . If the user does not specify the transition rates for
any of the node points, then we set the transition rates for
all of the node points with a linear function.

5 Field morphing

In our morphing system, the field morphing technique
[2] is used for the warp computation. Since the features
of the images are represented using Bézier curves, we use
pairs of Bézier curves to define the mapping between the
input images. However, for computing the warp, we use
extended feature curves, which are the extended version of
Bézier curves.

5.1 Extended feature curve

Figure 10 shows an example of an extended feature
curve. The extended feature curve C is constructed of three
parts. The center segment is a Bézier curve Cc and attached
to Cc’s end points are two line segments Ch and Ct. The
gradients of these line segments are the same as the gradi-
ents at the end points of the Bézier curve.

Each pixel has (u, v) coordinates with respect to each
extended feature curve. We define u as a parameter on the

Ch

Cc

Xp

P2

P3

P0

P1

X

N(u)

C’(u)

Ct

Figure 10. Example of an extended feature
curve.

extended feature curve, and v as a signed distance from the
pixel to the extended feature curve. Let P0,...,P3 be the con-
trol points of Bézier curve Cc. Assume that length(Cc) rep-
resents the length of Bézier curve Cc. The u coordinate of
any pixel X is computed by first projecting X onto the ex-
tended feature curve, thus yielding a point Xp. If Xp is on
Cc, the value of u is such that Cc(u) =

∑3
i=0 PiB

i
3(u) =

Xp. When Xp is on Ch, u = −(‖P0Xp‖
length(Cc)

). In the case

when Xp is on Ct, u = 1.0 + (‖P3Xp‖
length(Cc)

).
We compute v as follows. Let d to be the distance

between pixel X and the extended feature curve. The
tangent vector on Xp is C′(u) and the normal vector is
N(u)(N(u) = X −Xp). We define z = Z(C′(u), N(u)).
If z > 0.0 then v = d. When z < 0.0 then v = −d. If
z = 0.0 then v = 0.0 since X is located on the extended
feature curve.

5.2 Field morphing algorithm

Field morphing uses an inverse mapping approach to
warp the source and the target images. In inverse mapping,
for every pixel in the intermediate image, we compute its
corresponding pixels in the two input images. Thus, we
guarantee that every pixel in the intermediate image gets set
to an appropriate value.

Before we warp the source and the target images, we use
the method described in Section 4 to compute the feature
curves in the intermediate image. These feature curves are
then converted to extended feature curves. We use these
extended feature curves to define the mapping from one im-
age to the other. Figure 11 shows the mapping computation.
The complete warping algorithm can be found in [2].

In the warp computation, we have to calculate the (u, v)
coordinates for every pixel with respect to each extended
feature curve. Therefore, we have to compute the projection
from a pixel to a Bézier curve. We employ the Bézier Clip-
ping method [16] to solve this problem (see [18]). Because
we use curves, there is a possibility that we can get more
than one closest point for a single curve. Let Xp1, ...,Xpn

P0

P1

P2

P3

M0

M3

M1

M2

u1
u2

v2

v1

Destination Image

X

P’2

M’1

0M’

P’3

0P’

v2D1
D2

X’1

X’2P’1

M’2

M’3

v1

u1

u2

Source Image

X

X’

(a) (b)

Figure 11. Warp computation in field morph-
ing.

to be the closest points. Assume (ui, vi) to be the (u, v)
coordinates of Xpi. We solve this problem by recording
the value of the parameter u, ulast, which belongs to the
last pixel processed, and choose the point which minimizes
|uj−ulast|, (j = 1, ..., n) as the closest point. To accelerate
the warp computation, we adopted an adaptive computation
method similar to [11].

After we warped the source and the target images, the
next thing to do is to blend the colors of the warped images
to produce the final intermediate image. We allow the user
to control the transition rates of the colors (see Section 5).
Here, we assume that we know the color transition rate for
each pixel in the source image. For every pixel X in the
intermediate image at time t, let Xs and Xt to be the corre-
sponding pixels in the source and the target images, respec-
tively. The color of X is determined by using the following
equation.

Inter(X, t) = (1.0 − CR(Xs, t))Src(Xs) +
CR(Xs, t)Tgt(Xt). (11)

Here, CR(Xs, t) returns the color transition rate at time t
of pixel Xs in the source image.

5.3 Color transition control

The user controls the color transition rates by specifying
color transition primitives on the source image and desig-
nating a transition curve for each primitive. We use points
and curves as the color transition primitives.

For each pixel X in the intermediate image at time t, let
Xs to be the corresponding pixel in the source image. To
determine the color at pixel X , we need to know the color
transition rate of pixel Xs (see Equation 11). The color
transition rate at time t of pixel Xs is computed by interpo-
lating the transition rates at time t of all primitives. Assume

that there are n color transition primitives CP1,...,CPn. Let
CPi(t) to be a function that returns the transition rate at
time t of the i-th primitive. First, we compute the weight
wi of each primitive CPi by

wi =
(

1.0
p + distance(Xs, CPi)q

)r

, (12)

where distance(Xs, CPi) returns the distance between pixel
Xs and primitive CPi. p, q, and r are user specified param-
eters. In our tests, we use p = 1.0, q = 2.0, and r = 2.0.
Then, we use the following equation to calculate the color
transition rate of pixel Xs at time t.

CR(Xs, t) =
∑n

i=1 wi.CPi(t)∑n
j=1 wj

. (13)

Since the weight wi of each primitive at a pixel does not
depend on time t, we can calculate look-up tables of the
weights in advance and use them when generating the in-
termediate images. As a result, we can compute the color
transition rates very fast. When there are n color transition
primitives, we create n look-up tables, i.e. one for each
primitive. The weight of the i-th primitive at pixel (x, y)
is stored in the (x, y) element of the i-th look-up table. To
accelerate the computation of the look-up tables, we adap-
tively subdivide the image plane until the error is below a
given threshold, and then we use bilinear interpolation to
calculate the weights.

6 Examples

In our experiment, we use SGI O2 (MIPS R12000
270Mhz) to perform the computation. Figures 12 - 14 show
the examples of shape interpolation. In each example, Fig-
ure (a) shows the result of our algorithm, whereas Figure (b)
shows the result when we did not consider the non-feature
edges in the connection graph (i.e. simply applying the
edge-angle blending technique between each pair of corre-
sponding features in the two images). We also marked the
portions of the intermediate shapes which exhibit artifacts
by using circles.

Figure 12 shows a shape interpolation of a woman tilting
her face. The orientations of the woman’s face in the source
and in the target shapes are only slightly different. As a
result, when we performed the interpolation independently
for each pair of corresponding features, the results did not
exhibit many artifacts. However, we still can see that some
features overlapped with each other at the woman’s hair. On
the other hand, we did not encounter this problem when we
used our algorithm.

The next two examples clearly show the advantages of
our algorithm. In Figure 13, the gorilla and the bear have

Table 1. Image sizes, numbers of input curves
and feature curves, and computation times of
the morphing examples.

Figure Size #Input #Feature CPU time
curves curves (secs)

15 270 × 320 7 46 1.4
16 450 × 505 28 103 6.7
17 400 × 284 5 33 1.3

different orientations. The example in Figure 14 is an in-
terpolation between two cartoon characters. The shapes
contain many features that are not connected to each other.
Moreover, several parts of the source and the target shapes
have different orientations. By combining all these features
into one dependency graph, we could produce a smooth in-
terpolation sequence.

The examples demonstrate that our method works well
even when there are many unconnected features and when
the source and the target shapes have different orientations.
The feature interpolation process can be performed in short
computation time. The preprocessing step for the examples
in Figures 12 and 13 can be computed in about 0.01 sec-
onds. For the example in Figure 14, the preprocessing step
took about 0.02 seconds of computation time. The anima-
tion sequence of the features can be generated in real time.

Examples of morphing are shown in Figures 15 - 16 (see
Color Plate). In each example, Figure (a) shows the source
and the target images and their associated feature curves and
Figure (b) shows the morphing sequence (from left-to-right
and top-to-bottom). Figure 15 is an example of a morphing
from a gorilla to a bear. Here, we have to put additional
feature curves in order to reduce the ghost. Still, some of
the intermediate images exhibit the ghost problem. For in-
stance, between the rear legs in the 2nd through the 6th im-
ages of the morphing sequence. The ghost between the rear
legs are caused by the fact that there are spaces between the
gorilla’s rear legs, whereas there is no space between the
bear’s rear legs. Figure 16 shows a morphing between two
cartoon characters. In the morphing sequence, the colors
were set to change from the legs towards the head. Similar
to Figure 15, we put some additional feature curves to avoid
the ghost problem.

Figure 17 (see Color Plate) shows a series of images that
transform a butterfly to another type of butterfly. In Fig-
ure 17(a), we controlled the color transition rates such that
the colors change gradually from the bottom towards the
top of the butterfly. We also varied the shape transition
rates so that the lower wings transform faster than the upper
wings. For comparison, we generated a morphing sequence
between the source and the target butterflies using the same
transition rates everywhere (Figure 17(b)). It is obvious that

by allowing the transition rates to vary across the image, we
can generate a more interesting animation.

The image size, the number of input curves and fea-
ture curves, and the computation time for each example are
shown in Table 1. By computing the correspondence be-
tween the features automatically, we can reduce the user’s
workload on specifying corresponding input curves. This is
cause by the fact that the user can specify two long curves
and the correspondence between the similar areas in the two
curves are computed automatically. For the examples in
Figures 15 and 17, the user specified only few input curves.
In the case of Figure 16, the user specified 23 input curves
on the features of the objects (five additional curves are used
to reduce the ghost problem). This number is reasonable
considering the shapes and the textures of the objects in the
source and the target images. However, sometimes the au-
tomatic correspondence computation yields a result which
differs from what the user expects. To solve this problem,
the user specifies the correspondence at few points and then
repeats the correspondence computation.

7 Conclusions and discussions

In this paper, we have proposed a method for computing
the correspondence (at pixel level) between two curves and
a method for generating the intermediate feature curves for
the morphing computation. To establish the correspondence
between two input curves, we developed an automatic al-
gorithm based on minimizing a cost function. The method
tends to set correspondence between similar areas in the two
curves. As a result, feature specification process becomes
easier. For the feature interpolation, we developed an al-
gorithm that uses a directed graph to represent the relation-
ships among the feature curves. For the interpolation com-
putation, we employed the edge-angle blending technique
[22]. From experimental results, the algorithm produces a
smooth transformation even when the user specified many
unconnected features. However, we have not been able to
prove that the algorithm can prevent the intersections be-
tween features during the interpolation.

We have also presented methods for controlling the tran-
sition rates of shape and color. The shape transition control
is a part of the feature interpolation. For controlling the
color transition, the user specifies the color transition prim-
itives (points, curves) and assigns a transition curve for each
primitive. Each primitive has a field of influence, and by in-
terpolating the transition rates at the primitives, we compute
the color transition rates of the remaining pixels.

We have implemented the proposed algorithms in our
morphing system. This system is based on the field mor-
phing technique [2]. Since the features in the images are
represented by using Bézier curves, we use pairs of Bézier
curves to define a mapping between the source and the tar-

get images. In our system, the user uses a tablet for drawing
the input curves. To make this operation more comfortable,
we are planning to adopt an image segmentation tool, for
instance intelligent scissors [15].

The proposed feature correspondence and shape interpo-
lation algorithms can also be used in conjunction with other
morphing algorithms such as the radial basis function tech-
nique [8, 13] and the multilevel free form deformation tech-
nique [9]. However, the shape interpolation algorithm still
has a room for improvement. Since, we employ the edge-
angle blending technique for interpolating the dependency
graphs, it mights distort the area of the intermediate shape.
In our future research, we want to solve this problem by
developing a multi-resolution shape interpolation algorithm
for interpolating the dependency graphs.

References

[1] M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-as-possible
shape interpolation. In Proc. of SIGGRAPH 2000, 2000.

[2] T. Beier and S. Neely. Feature-based image metamorphosis.
In Computer Graphics (Proc. of SIGGRAPH’92), Vol. 26,
No. 2, pages 35-42, 1992.

[3] E. Carmel and D. Cohen-Or. Warp-guided object-space mor-
phing. In The Visual Computer, Vol. 13, pages 465-478,
1997.

[4] H. Fuchs, Z.M. Kedem, and S.P. Uselton. Optimal surface
reconstruction from planar contours. In ACM of Communi-
cations, Vol. 20, No. 10, pages 693-702, 1977.

[5] P. Gao and T. Sederberg. A work minimization approach to
image morphing. In The Visual Computer, Vol. 14, pages
390-400, 1998.

[6] E. Goldstein and C. Gotsman. Polygon morphing using a
multiresolution representation. In Proc. of Graphics Inter-
face’95, pages 247-254, 1995.

[7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active
contour models. In International Journal of Computer Vi-
sion, pages 321-331, 1988.

[8] S. Lee, K.Y. Chwa, J. Hahn, and S.Y.Shin. Image morphing
using deformable surfaces. In Proc. of Computer Animation,
pages 31-39, 1994.

[9] S. Lee, K.Y. Chwa, S.Y. Shin, and G. Wolberg. Image
metamorphosis using snakes and free-form deformations. In
Proc. of SIGGRAPH’95, pages 439-448, 1995.

[10] S. Lee, K.Y. Chwa, J. Hahn, and S.Y. Shin. Image morphing
using deformation techniques. In The Journal of Visualiza-
tion and Computer Animation, Vol. 7, No. 1, pages 3-23,
1996.

[11] T. Lee, Y.C. Lin, L. Lin, and Y. Sun. Fast feature-based
metamorphosis and operator design. In Computer Graphics
Forum (EUROGRAPHICS’98), Vol. 17, No. 3, pages 15-22,
1998.

[12] A. Lerios, C. Garfinkle, and M. Levoy. Feature-based vol-
ume metamorphosis. In Proc. of SIGGRAPH’95, pages 449-
456, 1995.

[13] P. Litwinowicz and L. Williams. Animating images with
drawings. In Proc. of SIGGRAPH’94, pages 409-412, 1994.

[14] D. Moore and J. Warren. Least-squares approximations to
Bezier curves and surfaces. In Graphics Gems II, pages 406-
411, 1991.

[15] E. Mortensen and W. Barrett. Intelligent scissors for image
composition. In Proc. of SIGGRAPH’95, pages 191-198,
1995.

[16] T. Nishita, T. Sederberg, M. Kakimoto. Ray tracing trimmed
rational surface patches. In Computer Graphics (Proc. of
SIGGRAPH’90), Vol. 24, No. 4, pages 337-345, 1990.

[17] T. Nishita, K. Fujii, and E. Nakamae. Metamorphosis using
Bezier clipping. In Proc. of Pacific Graphics’93, pages 162-
173, 1993.

[18] T. Nishita and H. Johan. A Scan Line Algorithm for Render-
ing Curved Tubular Objects. In Proc. of Pacific Graphics’99,
pages 92-101, 1999.

[19] D. Ruprecht and H. Muller. Image warping with scattered
data interpolation. In IEEE Computer Graphics and Appli-
cation, Vol. 15, pages 37-43, 1995.

[20] T. Sederberg and S. Parry. Free-form deformation of solid
geometric models. In Computer Graphics (Proc. of SIG-
GRAPH’86), Vol. 20, No. 4, pages 151-160, 1988.

[21] T. Sederberg and E. Greenwood. A physically based ap-
proach to 2D shape blending. In Computer Graphics (Proc.
of SIGGRAPH’92), Vol. 26, No. 2, pages 25-34, 1992.

[22] T. Sederberg, P. Gao, G. Wang, and H. Mu. 2D shape blend-
ing: An intrinsic solution to the vertex path problem. In
Proc. of SIGGRAPH’93, pages 15-18, 1993.

[23] M. Shapira and A. Rappoport. Shape blending using the
star-skeleton representation. In IEEE Computer Graphics
and Application, Vol. 15, pages 44-51, 1995.

[24] Y. Shinagawa and T.L. Kunii. Unconstrained automatic im-
age matching using multiresolutional critical-point filters. In
IEEE Trans. on Pattern Analysis and Machine Intelligence,
Vol. 20, No. 9, pages 994-1010, 1998.

[25] S. Cohen, G. Elber, and R. Yehuda. Matching of freeform
curves. In Computer Aided Design, Vol. 29, No. 5, pages
369-378, 1997.

[26] R.C. Tam and A. Fournier. Image interpolation using unions
of sphere. In The Visual Computer, Vol. 14, pages 401-414,
1998.

[27] A. Tal and G. Elber. Image morphing with feature preserv-
ing texture. In Computer Graphics Forum (EUROGRAPH-
ICS’99), Vol. 18, No. 3, pages 339-348, 1999.

[28] G. Wolberg. Digital image warping. IEEE Computer Soci-
ety Press, 1990.

[29] G. Wolberg. Image morphing: a survey. In The Visual Com-
puter, Vol. 14, pages 360-372, 1998.

[30] Y. Zhang and Y. Huang. Wavelet shape blending. In The
Visual Computer, Vol. 16, pages 106-115, 2000.

(a)

(b)

Figure 12. Woman tilting her face.

(a)

(b)

Figure 13. Shape interpolation from a gorilla to a bear.

(a)

(b)

Figure 14. Shape interpolation between two cartoon characters.

