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Abstract

Interactive applications such as virtual reality systems
have become popular in recent years. A ground surface
composed of a granular material can be deformed when
it comes into contact with an object, and, in this paper,
we propose a deformation algorithm for the ground sur-
face which is useful for such applications. The deforma-
tion algorithm is divided into three steps: (1) detection of
the collision between an object and the ground surface, (2)
displacement of the granular material, and (3) erosion of
the material at steep slopes. The proposed algorithm can
handle objects of various shapes, including a concave poly-
hedron, and a texture sliding technique is proposed to rep-
resent the motion of the granular materials. In addition,
the proposed algorithm can be used at an interactive frame
rate.

1 Introduction

In recent years, computer performance has increased
rapidly, and computer graphics has been applied to interac-
tive applications. Such applications include virtual sculpt-
ing systems [4, 8, 13] and virtual clay modeling systems
[11, 6]. For interactive applications such as virtual reality
systems, modelers, and games, it is very useful to deform
the ground surface, where this consists of a granular mate-
rial, such as sand. For example, users can interactively drag
a bucket on the sand, scoop it up in the bucket, or drop it.

The aim of this paper is to study the deformation of a
ground surface consisting of a granular material when it
comes into contact with rigid objects. In this paper, the
ground surface is modeled as a height field. Granular mate-
rial on objects is represented by height spans and that in the
air is modeled using a particle system.

The main contributions of this paper are:

• A ground surface can be deformed by objects of
various shapes including concave polyhedra using a

Height Span Map (HS Map). Collapse of granular ma-
terial on objects is also considered.

• An efficient and intuitive deformation algorithm is pro-
posed to handle various types of object motion such as
dragging/falling to the ground and scooping/dropping
granular material.

• A rendering method is proposed to represent the mo-
tion of granular material by texture sliding.

• An anti-aliasing technique is proposed. This gives a
reasonable rendering of the results at interactive frame
rates.

The rest of this paper is organized as follows. First, pre-
vious work related to the deformation of ground surfaces
is introduced in Section 2. The algorithm proposed in this
paper for deformation of the ground surface is described
in detail in Section 3. Next, the method of displaying the
ground surface is described in Section 4. The results of de-
formation of the ground surface by collisions with various
objects are shown in Section 5. The advantages of the pro-
posed algorithm are summarized in Section 6. Future work
is also described in this section.

2 Related Work

Several researchers have proposed methods for the de-
formation of ground surfaces on coming into contact with
objects [5, 2, 15]. Li et al. proposed a model [5] based on
physical laws, where the ground surface is represented as
a height field and which simulates slippage of the soil and
other operations (e.g. digging, piling, or carrying) in real
time. Their goal is similar to ours. However, their method
can only deal with convex objects for carrying the soil, and
also does not permit dragged objects other than a bulldozer.
Moreover, the mark made where the bulldozer has passed
cannot be shown. These limitations are overcome using the
method proposed in this paper.

Chanclou et al. also proposed a model based on physical
laws [2]. In their model, the ground surface was modeled



as an elastic sheet. Their model can generate contact marks
on the ground caused by objects, but the calculation time is
long, and their model is unable to represent granular mate-
rial on objects.

Sumner et al. proposed a simple algorithm in which the
contact marks made by objects on ground surfaces are gen-
erated by a simulation based on the appearance [15]. Their
basic idea is employed in this paper. However, their model
also cannot represent granular material on objects.

None of these three methods can give a representation
of granular material on a concave object. One of the con-
tributions in the work presented here is a method for doing
this.

Benes et al. proposed a layered representation for visual
simulation of terrain erosion [1]. Their method can be used
to calculate the motion of granular material on static rigid
objects, but is unable to deform the ground surface when an
object comes into contact with it.

Among the various possible types of ground surfaces,
several researchers have proposed models and rendering
techniques for snow. Nishita et al. modelled snow using
metaballs, and represented the snow piled onto various ob-
jects [10]. Fearing proposed a model to depict the fall and
accumulation of snow on objects and the ground surface,
and a stability model for the snow [3].

For larger-scale modelling of the ground surface, Mus-
grave et al. proposed a terrain generation method [9]. They
generated the terrain by using fractal and erosion models.
Onoue et al. generated and rendered desert terrain, which
included wind-ripples and dunes [12].

3 Ground Surface Deformation

In this section, the algorithm used to calculate the defor-
mation of the ground surface is explained. The model of the
ground surface used in this algorithm is explained first, then
an outline of the deformation algorithm is described, and
each step of the algorithm is explained in detail thereafter.

3.1 Model of the ground surface

In the proposed algorithm, the volume of granular ma-
terial is divided into vertical columns along a square lattice
that defines a height field. Each lattice point in the height
field represents a vertical column of granular material and
the top of the column is centered at the lattice point. The
height of the ground surface is assumed to be the distance
from a base plane (0 in height), and is assumed to be posi-
tive. The initial height of each column can be set in various
ways, such as a constant across the height field or with ran-
dom heights. The technique can be extended to real terrain
data or data made by other modelers.
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Figure 1. HS Map in cross section.

3.2 Model of granular material on objects

Any object that can be represented by polygons includ-
ing a concave polyhedron can be dealt with in this paper.

As described in Section 3.1, the ground surface is de-
fined as a height field, but, because a height field is a single-
valued function, it cannot itself represent granular material
on an object.

Though particle systems and voxels are used to calcu-
late the motion of granular material, these models are time-
consuming, and not suitable for interactive applications. It
is necessary for particle systems to calculate the interactions
between a lot of particles with volume, and it is necessary
for voxels to calculate the quantity of granular material for
each voxel at every time step, and the number of voxels
needs to be large to achieve a realistic rendering of the re-
sult. In the proposed algorithm, objects and granular ma-
terial on them are represented by an HS Map, which is a
two-dimensional array of Height Spans (arrows(�) in Fig.
1). Each height span represents the span of an object at
each grid point. The height of the granular material at each
grid point is also represented in the HS Map (bold lines on
arrows in Fig. 1). The motion of the granular material on
the object can be calculated efficiently using the HS Map,
because only the change in the height of the granular mate-
rial for each height span needs to be taken into account, and
the number of height span can be less than the number of
particles or voxels.

Related data representations have been proposed for im-
age based rendering [14] and for simulation of the erosion
of a layered terrain [1]. An HS Map is a modified structure
of a layered terrain [1] allocated to each object. An example
of an HS Map is shown in Fig. 8. Each red/green rectangle
represents the upper/lower side of the height span, and each
blue rectangle is for the upper limit of granular material on
each height span.

An object formed from polygons is translated to this data
structure as follows.

1. The size and resolution of the HS Map is set to the size
of the bounding box of the object and to the value used



for the height field, respectively.

2. Using the bottom plane of the bounding box as a
screen, each polygon of the object is rasterized using
the Z-buffer method (implemented by software). The
resolution of the screen corresponds to the resolution
of the HS Map. Let d be the depth at each pixel and
ori be the orientation (upward/downward) of the nor-
mal to the polygon. A pair (d, ori) is stored in a list
structure allocated for each pixel. d corresponds to the
height in the bounding box.

3. After rasterizing all polygons, each list is sorted by the
value of d.

4. Height spans are generated by coupling elements with
ori = upward and ori = downward.

5. If granular material is on the object, the height of the
granular material is set by rasterizing the polygons rep-
resenting it.

3.3 Deformation of the ground surface

Because this paper targets deformation of the ground sur-
face, objects are assumed to be unaffected by collision with
this surface. Although the motion of objects is controlled
by the user in this paper, the motion of the objects could
be computed using dynamic simulations, or determined by
motion capture data. In addition, all objects are assumed to
be above the base plane.

The deformation of the ground surface for one frame of
animation is calculated in the following order.

Collision detection The detection of a collision between
an object and the ground is achieved using the HS
Map.

Displacement of granular material The granular mate-
rial of columns in contact with the object is forced out-
ward to the surrounding columns.

Erosion Steep slopes are detected, and the surface is made
smooth by moving granular material from high to low
columns.

Each step of the algorithm is explained in detail in the
following subsections.

3.3.1 Collision detection with objects and the ground
surface

In order to deform the ground surface in contact with an
object, it is necessary to find both where and to what depth
the object penetrates. This information is found by testing
the collision between each object and the ground surface as
follows.

1. An intersection test is carried out between the bound-
ing box of the object and that of the ground.

2. If these bounding boxes do not intersect, the object is
assumed not to be in contact with the ground. Even
if the object is not in contact with the ground, the HS
Map of the object is updated if granular material is on
the object and the object is rotated.

3. If these bounding boxes do intersect, the HS Map of
the object is updated by the algorithm described in Sec-
tion 3.2.

4. The bounding box of the object is projected onto the
ground to define a region for collision testing.

5. Detection of the collision between an object and the
ground is done using the HS Map. The height of each
column in the region is compared with the height of
the bottom of the object found in the HS Map.

3.3.2 Displacement of granular material

The granular material of a column that collides with the ob-
ject is displaced to its neighboring columns. The amount of
material ∆h(x, y) displaced from the column is the height
of the intersection of the object and the column.

In this paper, we simplify the motion of objects into two
types: fall and drag. An object is defined as falling if the
vertical component of the object’s velocity is less than zero;
otherwise the object is defined as being dragged.

In the case of an object falling, Sumner’s displacement
algorithm [15] is used. In this algorithm, a contour value is
defined as the discrete distance from the boundary columns
of the collision area to each column of the height field, and
a contour map is defined as a two-dimensional array of con-
tour values. Displacement is processed sequentially from
those columns with large contour values, and ∆h(x, y) is
distributed equally to those adjacent columns with lower
contour values (refer to Fig.2(a)). Eight adjacent columns
are examined here. However, this algorithm allows the
columns at the boundary of the collision area to be inter-
sected by objects (Fig.2(b)), and this will give incorrect re-
sults in the erosion step described later. We have modified
the algorithm as follows: if any column is intersected by
an object after Sumner’s displacement step, displacement is
continued and the contour map is extended outside of the
collision area.

In the case of an object being dragged, the displace-
ment is processed sequentially from the columns behind
the object to columns in front of the object along the di-
rection of the object’s movement. In this case, ∆h(x, y)
is distributed equally from each column C(x, y) in the col-
lision area to it’s adjacent columns Cn(x′, y′) which sat-
isfy the following condition: dobj · dcol ≥ 0, where dobj
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Figure 2. Displacement of granular material.

is the object’s direction vector in the horizontal plane, and
dcol = (x′, y′) − (x, y).

In the case such that the ground surface has dents as
shown in Fig.2(c), the above method allows an object to
intersect the ground where the collision area surrounds a
small non-collision area. In this case, we extend the colli-
sion area to the projected area of the object (Fig.2(d)). Then
we calculate the displacement step again.

3.3.3 Erosion

After the displacement step, granular material accumulates
in the boundary area of the height field in contact with the
object, and so the height differentials in the area are larger
than the surroundings. In the erosion step, steep slopes are
detected (points with a large difference in height between
adjacent columns), and these slopes are decreased by col-
lapsing the columns, that is, by moving the granular mate-
rial from the higher to lower columns.

The erosion algorithm we used is based on Sumner’s
method [15]: (1) examine the slope between each pair of
adjacent columns in the height field, where eight adjacent
columns are examined for each column, (2) if the slope is
larger than θ (an unique angle of repose for the granular ma-
terial), move the granular material from the higher to lower
column. We have optimized the sequence of columns ex-
amined to calculate the erosion step more efficiently. We
reduce the iteration times of the erosion algorithm by exam-
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Figure 3. Erosion on object.

ining columns from the boundary to the surrounding area of
the collision area.

In order to represent the time-dependent progress of an
erosion process, such as sand settling back down after an
object has been removed, columns for which collapse is cal-
culated are stored for a constant time. The erosion step is
calculated for these stored columns at each time step. Col-
lapse from the ground onto objects is also calculated for this
time.

Erosion on objects is calculated as follows.

1. For each height span in the HS Map, the neighboring
height spans onto which granular material can collapse
is found.

2. The collapse between neighboring height spans is cal-
culated: compare tops of granular materials on height
spans, and move the granular material from the height
spans with higher granular materials to the height
spans with lower granular materials using the same
method used for collapse on the ground (see Fig. 3).
The tops of granular materials are shown as white cir-
cles in Fig. 3.

3. In the case where granular material on an object col-
lapses to the ground, the material is moved directly to
the ground if the height of the granular material on the
height span is near to the height of the neighboring
column on the ground. Otherwise, particles are gen-
erated and dropped vertically assuming that wind does
not blow (see Fig. 4). The volume of particles is the
same as the quantity of granular material moved by the
collapse.

4 Rendering of Ground Surface

The rendering method of the ground surface is as fol-
lows. The height field is rendered as a polygonal mesh.
Granular material on objects is also rendered as a polygonal
mesh which is generated by connecting the granular mate-
rial on each height span. Particles are rendered as small
points.



4.1 Texture sliding

The appearance of granular material is represented as
textures in our method. We use a 256x256 texture image re-
peatedly mapped onto the polygonal mesh. A part of the im-
age (32x32) is texture mapped onto each polygonal. How-
ever, when erosion of granular material occurs, the gener-
ated animation looks unnatural if the texture image mapped
onto a polygon is fixed. Therefore we should represent the
granular material as moving on the ground surface.

Though a flow visualization method using moving tex-
tures [7] has been proposed, the texture of granular material
should be constant everywhere on the ground surface. We
propose the following texture sliding technique exploiting
the fact that the texture image has a very fine pattern and
continuity of the pattern at the edges of polygons is unim-
portant.

Each vertex v(x, y, z) of the polygonal mesh is given a
texture coordinate T(u, v) = (ωxx, ωyy), where ωx and ωy

are parameters which determine the size of a texture image
mapped onto a polygon. We used ωx = ωy = 0.125(=
32/256) in our experiment. Each polygon is given an offset
Toffset of texture coordinate (refer to Fig. 4). For each
column where collapse is calculated, we update Toffset by
adding ∆Toffset at each time step. ∆Toffset is calculated
by the following equation.

∆Toffset = −γQcollapseE, (1)

where E(ex, ey) is the collapse direction which is one of
the eight directions from a column to it’s adjacent columns
in the horizontal plane, Qcollapse is the quantity of gran-
ular material moved by the collapse, and γ is a constant
which determines the apparent speed of granular material.
We used γ = 0.05 in our experiment. When granular ma-
terial can collapse to several adjacent columns from a col-
umn, equation (1) is calculated for each collapse direction
E, and ∆Toffset for each corresponding polygon is added.
Finally, each polygon is rendered. A texture coordinate for
each vertex of the polygon is shifted by Toffset.

4.2 Anti-aliasing

There is a trade-off between accuracy and computing
time of the proposed algorithm. We propose an anti-aliasing
technique to achieve a reasonable rendering of the results at
the interactive frame rate.

We use virtual spans to reduce aliasing at the boundaries
between granular material and objects’ polygons which are
approximately vertical (the region (1) of Fig. 6(a)). Virtual
spans are generated inside height spans with which granular
material is in contact as shown in Fig. 3. The height of a
virtual span is set to that of the adjacent height spans. The
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Figure 4. Texture sliding.
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Figure 5. Anti-aliasing by linear interepola-
tion.

aliasing is reduced by rendering polygons of the granular
material connected to the virtual spans.

We use linear interpolation at the boundaries between
granular material and an object where the granular mate-
rial is on the object (the region (2) of Fig. 6(a)). Vertices
are inserted between spans with granular material and spans
without them. The positions of the inserted vertices are de-
termined from θ as shown in Fig. 5.

The effect of anti-aliasing is shown in Fig. 6. A reason-
able image quality of rendered result is achieved by using
the anti-aliasing method.

5 Results

Fig. 7 compares the result of moving the sphere on the
sandy surface with a photograph. This example shows that
our algorithm can generate realistic marks on the ground
surface.

Fig. 9 shows sandy surfaces deformed by a torus with
various motions. Fig. 9(a) is a result of burying the torus



(a) without anti-aliasing. (b) with anti-aliasing.

Figure 6. Examples showing the anti-aliasing
effect.

(a) result of the proposed method.

(b) photograph

Figure 7. Marks created by the moving sphere
compared with the photograph.

in sand. Then the torus is taken up as shown in Fig. 9(b).
Particles falling down from the torus are displayed in this
image. Fig. 9(c) shows a result of dragging the torus. Sand
passing through the hole of the torus leave such a mark dis-
played in this image. The proposed algorithm can handle
vaious types of object motions as shown in these results.

Ground surfaces of sand and soil deformed by a foot are
displayed in Fig. 10. The values of the angle of repose pa-
rameter θ are π/6 for sand and 5π/18 for soil, respectively.
Therefore, merely changing these parameters can represent
different types of ground surfaces.

In order to show that our algorithm is useful for virtual
reality systems, results of manipulating a bucket on sand
are shown in Fig. 11. The bucket is dragged (Fig. 11(a)),
burried in sand (Fig. 11(b)), and dropping sand (Fig. 11(c)).
These results have been made interactively. The height field
of 256 × 256 resolution and HS Map of 30 × 30 resolution
are used, and the bucket consists of about 4,000 triangles.
The frame rate varies with the amount of moving granular
material. In this case, the frame rate varies from 7 to 14.
The calculation times were measured by using a Dell Di-
mension8250 computer with an Intel Pentium4 3GHz CPU,
and a Radeon 9700 Pro GPU.

More complex examples are shown in Figs. 12 and 13.
Fig. 12 shows a result of lifting the letters “HENRY” bur-
ried in sand. There is sand on each letter and particles are
falling from each letters. Fig. 13 shows the mark created by
placing “HENRY” on sand.

6 Conclusion and Future Work

This paper has presented a deformation algorithm for
a ground surface in contact with objects. We have pro-
posed an efficient and intuitive deformation algorithm that
can handle various types of object motions such as drag-
ging/falling on the ground and scooping/dropping the gran-
ular materials. The deformation has been done by calcu-
lating the following three steps: (1) the collision detection
with objects and the ground surface, (2) displacing granular
material, and (3) calculating the erosion. The collapse of
granular materials on the objects of various shapes includ-
ing concave polyhedron have been represented by using an
HS Map. We have represented the granular material as mov-
ing on the ground surface realistically by the texture slid-
ing technique. Moreover we have proposed an anti-aliasing
technique using virtual spans. This gives a reasonable ren-
dering of the results at the interactive frame rate.

Future work may include the followings. The proposed
method works well if objects move relatively slowly, but if
objects move fast, dynamic effects such as spattering sand
will be necessary. The motion of the objects is not affected
by the ground in our method. If we consider the affection,
we will be able to automatically make scenes such that a



bucket free-falls and rolls on sandy surface or a ball begin
to roll on sandy surface if collapse occured around the ball.

Figure 8. HS Map of torus.

(a) footprints on sand.

(b) footprints on soil.

Figure 10. Marks created by a foot.

Acknowledgements

We would like to thank Professor Nelson Max (Lawrence
Livermore National Laboratory) for helpful comments and
useful discussions.

(a) dragging a bucket.

(b) a bucket burried in sand.

(c) a bucket is dropping sand.

Figure 11. Results of manipulating a bucket
on sand.



(a) torus burried in sand. (b) torus lifted. (c) torus dragged.

Figure 9. Sandy surface deformed by a torus with various motions.

Figure 12. “HENRY” lifted from sand.

Figure 13. A mark created by placing
“HENRY” on sand.
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