
Efficient Rendering of Lightning Taking into Account Scattering Effects due to
Clouds and Atmospheric Particles

Yoshinori Dobashi Tsuyoshi Yamamoto Tomoyuki Nishita†

Hokkaido University †University of Tokyo
Kita 13, Nishi 8, Kita-ku, 7-3-1, Hongo, Bunkyo-ku
Sapporo, 060-8628, Japan Tokyo, 113-0033, Japan

{doba, yamamoto}@nis-ei.eng.hokudai.ac.jp nis@is.s.u-tokyo.ac.jp

Abstract

A number of methods have been developed for creating
realistic images of natural scenes. Their applications
include flight simulators, the visual assessment of outdoor
scenery, etc. Previously, many of these methods have
focused on creating images under clear or slightly cloudy
days. Simulations under bad weather conditions, however,
are one of the important issues for realism. Lightning is
one of the essential elements for these types of
simulations. This paper proposes an efficient method for
creating realistic images of scenes including lightning.
Our method can create photo-realistic images by taking
into account the scattering effects due to clouds and
atmospheric particles illuminated by lightning. Moreover,
graphics hardware is utilized to accelerate the image
generation. The usefulness of our method is demonstrated
by creating images of outdoor scenes that include
lightning.

Keywords: Lightning, Clouds, Atmospheric Scattering,
Efficient Rendering, Level of Detail, Graphics Hardware

1. Introduction

The simulation of natural phenomena using computer
graphics, such as clouds, water, terrain, smoke or fire, is
one of the most important research areas. A number of
methods have been developed and there exist many
applications that use these methods, such as flight
simulators and the visual assessment of outdoor scenes.
For these applications, simulations not only under fine
weather conditions but also under bad weather conditions
are very important. There are many important elements
for creating realistic images of scenes under bad weather
conditions. For example, the effects of windstorm, sand

storms, rain and lightning should be taken into account.
Amongst these scenes, this paper focuses on rendering
images that include lightning. Several methods have been
developed for rendering images of lightning [1][2][3] that
are employed by a lot of commercial software. These
previous methods, however, focus on the rendering of the
lightning itself. However, the flash of lightning
illuminates the surrounding clouds and atmospheric
particles. That is, the clouds are brightened and there is a
glow surrounding lightning strokes. These phenomena
must be taken into account to create realistic images. The
previous methods display these phenomena by using
heuristic algorithms and their models are different from
the actual physical phenomena. Physical-based rendering
is desirable for realistic image synthesis. Moreover, most
of the previous methods employ the ray-tracing algorithm
for image generation. This results in increasing
computation time.

This paper proposes a new method to address these
problems. Our method can create realistic images by
taking into account not only the lightning itself, but also
scattering effects due to cloud and atmospheric particles
illuminated by the lightning. The clouds and the effects of
atmospheric scattering are rendered based on the physical
phenomena. Furthermore, graphics hardware is utilized to
accelerate the computation. Recently, several
hardware-accelerated methods for rendering clouds and
the atmospheric effects have been proposed [4][5][6][7].
Unfortunately, to our knowledge, there seems to be no
hardware-accelerated method, at present, for rendering
images that include lightning. Using our method, realistic
scenes that include lightning can be generated within half
a minute. Since computers and graphics hardware are
becoming faster and faster, we believe that real-time
rendering using our method will be realized in the near
future.

In this paper, Section 2 discusses the previous work

related to the rendering of lightning. Next, in Section 3,
the basic idea of our proposed method is described. In
Section 4, methods for efficient calculation of the
intensity of color of clouds and atmospheric scattering of
light due to lightning are proposed. Then, the usefulness
of the proposed method is demonstrated by several
examples in Section 5. Finally, conclusions and future
work are discussed in Section 6.

2. Related Work

In the field of computer graphics, the first method for
creating synthetic images of lightning was developed by
Reed et al. [1]. In their method, the strokes of lightning
are probabilistically generated by using particle systems.
The lightning and its glow are rendered by employing a
heuristic approach. However, clouds illuminated by
lightning are not taken into account, since the purpose of
their method is solely for creating images of lightning.
Moreover, their model for the glow is completely
different from the actual physical phenomena, since one
of the physical mechanisms for the glow is atmospheric
scattering due to the flash of lightning. This must be taken
into account to create realistic images. Kruszenwski
proposed an alternative method for generating the
lightning strokes based on probabilistic theory [2]. This
method can create the desirable shape of lightning
interactively by controlling several parameters. The
novelty of his method is in the modeling. He employs the
same method as [1] for rendering. So, the scattering
effects due to cloud and atmospheric particles are not
taken into account. Sosorbaram et al. developed a method
for simulating lightning taking into account clouds [3]. In
the paper, a method for rendering clouds illuminated by
lightning was proposed. They use the ray-tracing
algorithm. Therefore, their method requires a great deal of
time.

There have been a large number of research reports on
the generation of images which take into account
scattering effects due to the presence of clouds and
atmospheric particles [8][9][10][11][12][13][14][15][16].
In these methods, light sources are assumed to be natural
light sources, such as sunlight/skylight, and/or artificial
light sources such as spotlights. So, they are not suitable
for our purpose where the lightning strokes themselves
are the light sources. Moreover, most of them require
dozens of minutes to create an image, since they use the
ray-tracing algorithm. Recently, hardware-accelerated
methods have been proposed for fast image generation.
Stam has used a three-dimensional hardware texture
mapping function to display smoke in real-time [4].
However, this method focuses on simulating the motion
of smoke and the atmospheric scattering is not taken into
account. Dobashi et al. have developed an efficient
method for rendering clouds together with the

atmospheric scattering [5]. This method is limited to an
infinite light source such as sunlight. They have been able
to extend this to point light sources [6]. The purpose of
this method, however, is to render shafts of light due to
spotlights and is not applicable to clouds. Therefore, the
previous methods are not suitable for our purpose of
rendering clouds illuminated by lightning and to render
its glow taking into account the atmospheric scattering.

3. Basic Idea of Our Method

The lightning strokes are generated by using Reed’s
method [1], and are represented by a set of line segments.
That is, an initial segment in the clouds is generated at
first. Then new segments are repeatedly spawned at the
endpoints of the previous segments. The lengths and the
orientations of the new segments are determined
randomly [1]. Lightning is displayed by a line drawing
function of OpenGL. The color of the lightning is
specified by the user. In general, lightning consists of a
main channel and several branches. The widths and
intensities of the lightning strokes are decreased as they
branch. These are simulated by decreasing the widths and
intensities of the line segments according to a specified
ratio.

The intensity of the clouds illuminated by lightning
and of the atmospheric scattering due to lightning are
computed by generating point light sources on the line
segments as shown in Fig. 1. Then, the clouds and
atmospheric scattering are rendered by summing
contributions from each point light source. We assume the

Figure 1. Basic idea of our method. Point
l ight sources are placed on lightning
strokes to compute the intensity of clouds
illuminated by lightning and the glow of
lighting due to atmospheric scattering.

point light source

clouds

lightning stroke

metaball

density distribution of the atmospheric particles is
uniform. This makes it possible to prepare a lookup table
in a pre-process that stores the intensity of scattered light
due to a single point source. The total intensity of light
reaching the viewpoint can be quickly obtained by using
this table. The density distribution of clouds is expressed
by a set of metaballs [14][5]. Clouds illuminated by
lightning are rendered efficiently by making use of
graphics hardware. We extend the method developed by
Dobashi et al. [5] to allow it to handle point light sources
for rendering clouds. Moreover, to realize further speed
improvements, we apply the idea of level of detail (LOD)
to clouds by using octrees.

4. Efficient Rendering of Scenes with
Lightning

In this section, an efficient method for calculating the
intensity of light due to atmospheric scattering is
described. Then, the intensity of clouds illuminated by
lightning is explained.

4.1 Rendering of Atmospheric Scattering due to
Lightning

Fig. 2 shows the idea of our method. Let us denote the
intensity of a point source, k, on the lightning strokes as
Ik(λ), where λ is a wavelength. When light from the point
source k reaches point P on the viewing ray, it is scattered
by the particles and then reaches the viewpoint. Let us
assume that the density distribution of the atmospheric
particle is uniform. Then, the intensity of light reaching
the viewpoint, Is

(k)(λ), is given by the following equation

[11].

)(
))(exp(

)(cos)(

2

)(

λ
κρ
αρλ λ

k
aa

a
k
s

I
s

ts

FI

+−
×

=
, (1)

where ρa is the density of the particles, Fλ the phase
function of the particles, α the phase angle (see Fig. 2), κa
the extinction coefficient, s the distance between point P
and point source k and t is the distance between point P
and the viewpoint. The phase function Fλ is typically
expressed as a cosine function of the phase angle α as
shown in Eq. 1. The total intensity of light scattering due
to the point source k, Ieye

(k)(λ), is obtained by integrating
Is
(k)(λ) along with the viewing ray. That is,

dtI
s

ts

FI

k
aa

a
k
eye

)(
))(exp(

)(cos)(

2

0

)(

λ
κρ

αρλ λ

+−
×

= ∫
∞

. (2)

To calculate Ieye
(k)(λ), Is(k)(λ) has to be integrated along the

viewing ray from the viewpoint to an infinite point as
expressed in Eq. 2. However, this is practically
impossible, so instead we truncate the integration by a
large value, T, specified by the user. The intensity of each
pixel is obtained by calculating Ieye

(k)(λ) for all the light
sources on the lightning strokes and summing them. Since
no analytical solutions are available for Eq. 2, it must be
calculated numerically by generating sample points on the
viewing ray. However, this is very time-consuming. To
address this problem, the proposed method pre-calculates
Ieye

(k)(λ) and stores these values in a lookup table. The
details are described in the following.
As shown in Fig. 2, let us define a local coordinate

system with its origin at the position of the point source.
In this coordinate system, the u axis is parallel to the
viewing ray and passes through the position of the point
source. The v axis is defined by a line connecting the
point source k with the point Q (see Fig. 2). The point Q
is on the viewing ray and is the closest point to the point
source k. Let the coordinates of point P and the viewpoint
in this system be (u, v) and (ueye, veye), respectively. The
following equation is then obtained.

+−=

−=
+=

22

22

/cos vuu

tut

vus

eye

α

(3)

Substituting Eq. 3 into Eq. 2, the following equation is
obtained.

),,()()(λλ eyeeyelk
k
eye vuIII = , (4)

where Il(ueye, veye, λ) is given by:

point source k

P(u, v)

s

t

Ik

u axis

(ueye, veye)

v axis

viewpoint

gk
e
p

dk

Q

Figure 2. Computation of atmospheric scat-
tering due to lightning.

du
vu

uuvu

vu

u
FvuI

eyea

T

u
aeyeeyel

eye

22

22

22

))(exp(

)(),,(

+

−++−
×

+

−= ∫
κρ

ρλ λ

. (5)

As shown in Eq. 5, Il(ueye, veye, λ) can be calculated
numerically, given the local coordinate of the viewpoint
(ueye, veye). Therefore, in the proposed method, Il(ueye, veye,
λ) is calculated in advance by changing ueye and veye from
-T to T. The value is stored in a two-dimensional lookup
table. Note that the wavelength λ is sampled at 675, 520,
and 460 [nm]. These values correspond to RGB
components. Using this table, the intensity of the pixel p,
Ip(λ), is obtained by the following equation.

∑
=

∆=
n

k
kpkplkp lvuIII

1
,,),,()(λλ , (6)

where n is the number of point sources on the lightning
strokes, ∆l the distance between adjacent point sources
and (up,k, vp,k) are the local coordinates of the viewpoint
determined by the position of point source k and the
viewing ray of pixel p. (up,k, vp,k) is easily obtained by the
following equations.

−=

•−=−=

2
,

2
,

,)(cos

kpkkp

pkkkkp

udv

ddu egθ
, (7)

where dk is the distance between the viewpoint and point
source k, gk the unit vector toward the direction of the
point source k viewed from the viewpoint, ep the unit
vector toward the viewing direction at pixel p, and θ the
angle between gk and ep (see Fig. 2).

4.2 Fast Calculation for Rendering Clouds
Illuminated by Lightning Using LOD

In this subsection, the calculation method for rendering
clouds illuminated by lightning is described. The density
distribution of clouds is defined on three-dimensional
voxels as shown in Fig. 3(a). The density of each voxel is
determined by using the method described in [5]. The
color of clouds is calculated by extending the method in
[5]. That is, metaballs are placed at the center of each
voxel and graphics hardware is utilized to accelerate the
computation. Ametaball is a sphere and a field function is
defined inside it [17]. The metaball has two parameters,
that is, the center density q and the radius of the sphere, R.
R is called an effective radius. The center density of each
metaball is set to the density of clouds at the voxel. The
effective radius is specified by the user. The intensity of
color of the clouds is calculated by summing the intensity
of light reaching the metaballs from each point light
source on the lightning strokes. Using graphics hardware,
the intensity of light reaching the metaball is efficiently

calculated as follows. A cube is placed at the point source
as shown in Fig. 3(a). The center of the cube is at the
position of the point source. The intensity of light
reaching each metaball is computed by creating images of
clouds viewed from the center of the cube by assuming
each face of the cube acts as a screen. The images are
generated by the splatting method using billboards [5].
First, the billboard (a square) is prepared and textures for
the billboard are pre-calculated. Each element of the
texture stores the attenuation ratio and the cumulative
density of the light passing through the metaball. The
textures are mapped onto the billboards. Next, the
billboards are placed at the centers of the metaballs and
the frame buffers are initialized to 1.0 (white). Then, the
billboards are sorted in ascending order depending on
their distances from the center of the cube and they are
projected onto one of the six screens. The values in the
frame buffer are multiplied by their attenuation ratios
stored in the billboard texture. This process is done by
using a hardware blending function. Then the pixel value
corresponding to the center of the metaball is read back
from the frame buffer. This value is equal to the
attenuation ratio between the metaball and the center of
the cube, i.e. the position of the point source. The
intensity of light reaching the metaball is obtained by
multiplying the attenuation ratio by the intensity of the

point source on
lightning stroke

drawing billboards

metaball

lightning stroke six screens around
point source

(a) Calculation of cloud color

metaball

(b) Hierarchical representation of
clouds using octree

Figure 3. Efficient calculation of cloud
color using LOD.

point source divided by the square of the distance
between the metaball and the point source. After
repeating these processes for all metaballs, the clouds
viewed from the viewpoint are created by drawing the
billboards in back to front order. For more details see [5].

Basically, the intensity of clouds illuminated by
lightning can be calculated by using the above method.
This method, however, requires long time to complete.
The computational cost of the method is proportional to
the number of metaballs and the point sources on the
lightning strokes. In our experiment, thousands of
metaballs are required to create realistic shapes of clouds
and a lot of point sources have then to be placed on the
lightning strokes to calculate the color of clouds
accurately. In the example shown in Section 5, there are
about a hundred thousand metaballs and fifty point
sources. In this case, we have found that it takes several
minutes to create a single image by using the above
method. So, to address this problem, we make use of the
idea of LOD.

The intensity of light from the point source decreases
in proportion to the square of the distance. Therefore, a
straightforward approach is to ignore the metaballs far
from the point source, since the intensity of light reaching
the metaballs is then considered to be very small.
However, the contributions from a lot of point sources
can become important, even if the contribution from one
point source is very small. Therefore, this straightforward
approach does not work well. Actually we found that the
quality of images by this approach is not sufficient.
Paquette et al. pointed out the similar problem and
proposed an efficient method for shading objects
illuminated by many point sources [18]. In the method,
point sources are grouped into a hierarchical structure for
the efficient computation. Unfortunately, this method is
not applicable to our case, since their purpose is to
calculate the illuminance on diffuse and/or specular
surfaces. Moreover, the number of metaballs is far larger
than that of the point sources on the lightning strokes.
Therefore, we do not expect to reduce the rendering time
drastically by using Paquette’s method [18]. Instead,
metaballs are grouped into the hierarchical structure in
our method. The intensity of light from the point source is
small at positions far from the point source and all the
metaballs in the areas receive almost the same energy of
light. So, the proposed method uses a larger metaball
representing multiple metaballs in those areas for the
intensity calculation. The details are explained in the
following.

First, clouds are represented by the octree. As
mentioned previously, the density distribution of clouds is
defined on voxels. So, as shown in Fig. 3(b), eight
neighboring voxels are grouped and replaced by a larger
voxel. By repeating this process, the density distribution
is represented by the octree. Let us consider a voxel at

level l in the octree. Corresponding to the size of the
voxel, larger metaballs are placed (see Fig.3(b)). In the
following, the larger metaballs are called parent
metaballs and the eight metaballs in the same group are
called child metaballs. The center density of the parent
metaball is set to the mean density of eight child
metaballs and the effective radius is set to be twice as
large as that of their child metaballs. For regions far from
the point sources, the parent metaballs are used to
calculate the intensity of light reaching from the point
sources. The intensities of light reaching the child
metaballs are set to the same value of their parent
metaball. This reduces the computation time since the
number of metaballs to be processed is decreased. The
remaining issue is then the selection of the appropriate
level l in the octree to satisfy a user-specified tolerance, ε.

The intensity of light, Ikj(λ), reaching metaball j from
point source k is calculated by the following equation.

2

))(exp()(
)(

r

rI
I k
kj

τλλ −
= , (9)

where r and τ are respectively the distance and the optical
length between point source k and metaball j. The optical
length is calculated by integrating the density of cloud
particles between point source k and metaball j. That is,

∫=
r

cc dllr
0

)()(ρκτ , (10)

where κc and ρc are the extinction coefficients and the
density of cloud particles, respectively. Let us consider an
energy Ej of light received by metaball j. Approximately,
Ej is given by multiplying the intensity Ikj by the volume
of metaball j. Ej = Ikj(λ)dVj, where dVj denotes the volume.
One possible condition for selecting the appropriate level
is as follows.

{ }
ε

τλ
λ <

−

2

))(exp()(max

r

rI k
, (11)

where ε is a user-specified tolerance. The evaluation of
Condition (11) requires the computation of exp(-τ(r)).
However, computing it is equal to using child metaballs
to compute the intensity of light reaching themselves.
This does not reduce the computation time. Therefore,
instead, we use the following equation.

{ }
ε

λ
λ <

2

)(max

r

I k
(12)

The left side of Condition (12) indicates the energy that is
received by metaball j when there are no clouds between
the metaball and the light source. The computational cost
of Condition (12) is very small since it only requires the
distance between the metaball and the light source. The
coarsest level l that satisfies Condition (12) is searched in
the octree and the obtained metaball is used for the
intensity calculation of light reaching from the point
source.

4.3 Fast Rendering of Clouds Using Hierarchical
Imposters

Fast image generation is indispensable for applying the
proposed method to flight simulations under bad weather
conditions. In this subsection, an efficient method for
rendering clouds is proposed. We employ imposters to
achieve this end. An imposter replaces an object with a
semi-transparent polygon texture-mapped with an image
of the object it replaces. The image is a rendering of the
object viewed through the polygon. In our case, multiple
metaballs are replaced with the polygon as shown in Fig.
4(a). The texture mapped onto the polygon is the image of
the metaballs. This texture can be reused within some
error tolerance as long as the viewpoint is near the point
where the texture is generated. Therefore, this makes it
possible to reduce the rendering time for a flythrough
animation. There are several methods using the idea of
the imposters [19][20][21]. The purpose in these methods,
however, is to realize a real-time walkthrough of scenes
consisting of numbers of polygons such as buildings and
terrains. Their applications to clouds has not been
demonstrated. So, Harris et al. developed a method using
the imposters for fast rendering of clouds. In this method,
clouds are divided into numbers of clusters and the
imposter textures are generated for each cluster. In their
method, the clustering of clouds is static and imposters
for clouds are always used no matter where they are in
relation to the viewer. However, the precise rendering of
clouds is not realized using this method when the
viewpoint is close to them. Clouds should be divided into
appropriate clusters depending on the distance from the
viewpoint.

To address the problem, our method uses imposters in
a hierarchical manner. We use the octree described in the
previous section. As shown in Fig. 4(b), our system
selects appropriate level l in the octree depending on the
distance from the viewpoint. Coarser voxels are selected
in the distant regions, and finer voxels in the close regions.
Note that Fig. 4(b) depicts the two-dimensional case for
simplicity. Then, as shown in Fig. 4(c), an image of the
metaballs in the selected voxel is generated by
considering the billboard of the larger metaball as the
screen. This image is stored as a texture and it is mapped
onto the billboard. The texture-mapped billboard is used
as the imposter to create the final image. The selection
process of the level in the octree is as follows.

Let us denote the effective radius of the metaball at
level l in the octree as Rl. The sphere with radius Rl is
considered to be a bounding sphere of its child metaballs.
When the viewpoint is far from the clouds, it is visually
convincing to replace a lot of the metaballs with a single
imposter. On the contrary, using too many metaballs for
the imposter would result in unnatural images when the

viewpoint is close to them. Therefore, we determine the
level l by the following equation using the radius Rl.

dist
l C
r

R
< , (13)

where Cdist is a user-specified tolerance and r is the
distance from the viewpoint to the metaball (see Fig.
4(b)). The user can control the image quality and the
rendering time by choice of Cdist. Smaller values of Cdist
result in increasing the number of metaballs since finer
levels are then selected. This method makes it possible to

billboards

viewpoint

clouds
metaball at level l

r
R
l

(b) Hierarchical generation of imposters

(a) Basic concept of imposters

Figure 4. Fast rendering of clouds using
hierarchical imposters.

viewpoint
screen

cloud texture

metaballs in
one group

metaballs of level l
billboard

(c) Creating cloud texture

billboards

cloud images mapped
as textures

viewpoint

create imposters adaptively depending on the distance
from the viewpoint. However, creating the imposter
textures at every frame requires the same cost as that of
rendering all the metaballs. In practice, this results in an
increase in the rendering time, since the textures then
have to be transferred into texture memories. Then the
textures are updated only when changes in the angles of
the camera direction viewed from the metaballs have
become greater than an angular tolerance, Cang, specified
by the user. In the distant regions, the textures are not
updated frequently since a sudden change seldom occurs.
On the other hand, the textures are often updated in the
regions near the viewpoint. However, the textures can be
quickly generated since the number of metaballs in the
same group is small in the near regions.

In order to verify the effectiveness of our method, we
have created a simple animation. In the animation, the
camera approaches clouds after going around them. The
two tolerance values for updating the imposter textures,
Cdist and Cang, are set to 0.1 and 5, respectively. In this
animation, there were 30 frames and the animation takes
130 seconds without using the imposters. The rendering
time is reduced to 30 seconds by using the imposters. The
proposed method can create the animation four times
faster.

5. Result

In this section, the usefulness of the proposed method
is demonstrated by several examples. To create images
shown in this section, the size of the lookup table for the
atmospheric scattering is 128x128 (see Section 4.1). The
value of T (see Eq. 5) for integrating intensity of
atmospheric scattering to compute this table is set to 1.5
[km]. The intensity of clouds is efficiently calculated by
using the octree (see Section 4.2). The tolerance, ε, for the
intensity error is 0.2 (see Eq. 12).

First, the effectiveness of the proposed method is
verified by using a simple example. Fig. 5 shows example
images of scenes that include lightning. In the figure,
there is one lightning. 50 point light sources are generated
on the lightning strokes. The realistic glow due to
scattering effects of atmospheric particles illuminated by
the lightning is depicted. The clouds are brightened since
they are illuminated by lightning. In Fig. 5(a), the
intensity of clouds is calculated by using the octree. In
Fig. 5(b), the octree is not used. As shown in these images,
their qualities are almost the same. The sizes of the
images are 720x480 and we use a desktop PC (PentiumIII
733MHz) with NVIDIA GeForce2GTS as the graphics
hardware device. The computation times for Figs. 5(a)
and (b) are 8 and 400 seconds, respectively. This result
shows that the proposed algorithm can create images 50
times faster without losing the image quality.

Fig. 6 (see color plate) shows images of lightning

under different conditions. Figs. 6(a) and (b) show
multiple lightning strokes. The clouds and the glow are
more brightened than those of Fig. 5. In Figs. 6(c) and (d),
the color of lightning is set to pink. Figs. 6(e) and (f)
show lightning at sunset. These images depict beautiful
color variations. The rendering times for these images are
from 10 to 25 seconds.

Next, the proposed method is applied to the flight
simulation. We created an animation that had an airplane
make a takeoff under thunderclouds. The initial points of
lightning are determined randomly in clouds. Center
positions of cloud voxels are selected for the initial points.
The periods from occurrence to the extinction of lightning
are also determined randomly. The periods are less than
0.5 seconds. The terrain is brightened in proportion to the
intensity of lightning. Fig. 7 (see color plate) shows stills
from the animation. In Figs. 7(a) and (b), lightning is not
visible since it flashes in the clouds. Figs. 7(c) and (d)
show the images of clouds just after the takeoff. Figs. 7(e)
and (f) are the images close to the clouds.

Examples shown in this section demonstrate that the
proposed method realizes the efficient generation of
photo-realistic images including lightning.

6. Conclusion

An efficient method for rendering scenes including
lightning has been proposed in this paper. Photo-realistic
images can be generated by taking into account scattering
effects due to clouds and atmospheric particles
illuminated by lightning. The proposed method has the
following advantages.

1. The atmospheric effects are efficiently rendered
by preparing a lookup table. This stores the
integrated intensity of the light scattering due to
atmospheric particles.

2. The density distribution of the clouds is
represented by using metaballs in the hierarchical
structure using an octree. Using this structure,
clouds illuminated by lightning are efficiently
rendered by applying the idea of LOD to clouds.

3. Images of clouds viewed from the viewpoint are
efficiently created by using hierarchical
imposters.

There are several future projects that remain to be
addressed. Firstly, the cloud-rendering algorithm using
imposters may cause a ‘popping’ problem when the
tolerance is greater than a certain value. That is, a sudden
change in the clouds may be perceptible due to updating
the imposter textures. A simple solution is to use smaller
values for the tolerance [7]. However this results in
increasing the rendering time. One method to address this
problem has to be developed. Next, our method requires

about ten seconds to create a single image. Further
acceleration of the process is needed for real-time
simulations. Enhancing the reality is also an important
issue. This may be achieved by taking into account the
physics of lightning. For example, the intensity and color
of lightning should be calculated by taking into account
the energy of lightning, atmospheric condition, and so on.
Moreover, for users that want to synthesize scenes
including lightning, it would be useful to incorporate a
function to specify the initial and destination points of
lightning. Finally, since the intensity of the flash of
lightning is very strong, methods for rendering
high-dynamic range images may be incorporated [22].

Acknowledgments
This work is supported by Mitsubishi Electric

Corporation.

References

[1] T. Reed, B. Wyvill, “Visual Simulation of Lightning,”
Proc. SIGGRAPH’94, pp. 359-364 (1994).

[2] P. Kruszewski, “A Probabilistic Technique for the
Synthetic Imaginary of Lightning,” Computers &
Graphics, Vol. 23, No. 2, pp. 287-293 (1999).

[3] B. Sosorbaram, T. Fujimoto, K. Muraoka, N. Chiba,
“Visual Simulation of Lightning Taking into Account
Cloud Growth,” Proc. CG International 2001, pp. 89-95
(2001).

[4] J. Stam, “Stable Fluids,” Proc. SIGGRAPH'99, pp.
121-128 (1999).

[5] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, T. Nishita,
“A Simple, Efficient Method for Realistic Animation of
Clouds,” Proc. SIGGRAPH2000, pp. 19-28 (2000).

[6] Y. Dobashi, T. Yamamoto, T. Nishita, “Interactive
Rendering Method for Displaying Shafts of Light," Proc.
Pacific Graphics 2000, pp. 31-37 (2000).

[7] M. J. Harris, A. Lastra, “Real-Time Cloud Rendering,”
Computer Graphics Forum (Proc.
EUROGRAPHICS2001), to appear (2001).

[8] J. T. Kajiya, B. P. V. Herzen, “Ray Tracing Volume
Densities,” Computer Graphics, Vol. 18, pp. 165-174
(1984).

[9] N. Max, “Atmospheric Illumination and Shadows,”
Computer Graphics, Vol. 20, No. 4, pp. 117-124 (1986).

[10] R. V. Klassen, “Modeling the Effect of the Atmosphere on
Light," ACM Trans. on Graphics, Vol.6, No.4, pp.
215-237 (1987).

[11] T. Nishita, Y. Miyawaki, E. Nakamae, “A Shading Model
for Atmospheric Scattering Considering Distribution of
Light Sources,” Computer Graphics, Vol. 21, No. 4, pp.
303-310 (1987).

[12] H. E. Rushmeier, K. E. Torrance, “The Zonal Method for
Calculating Light Intensities in The Presence of a
Participating Medium,” Computer Graphics, Vol. 21, No.
4, pp. 293-302 (1987).

[13] D. S. Ebert, R. E. Parent, “Rendering and Animation of
Gaseous Phenomena by Combining Fast Volume and
Scanline A-Buffer Techniques,” Computer Graphics, Vol.

24, pp. 357-366 (1990).
[14] T. Nishita, Y. Dobashi, E. Nakamae, “Display of Clouds

Taking into Account Multiple Anisotropic Scattering and
Sky Light," Proc. SIGGRAPH’96, pp. 379-386 (1996).

[15] Y. Dobashi, T. Nishita, H. Yamashita, T. Okita, “Using
Metaballs to Modeling and Animate Clouds from Satellite
Images,” The Visual Computer, Vol. 15, No. 9, pp.
471-482 (1998).

[16] H. W. Jansen, P. H. Christensen, “Efficient Simulation of
Light Transport in Scenes with Participating Media using
Photon Maps,” Proc. SIGGRAPH’98, pp. 311-320 (1998).

[17] G. Wyvill, A. Trotman, “Ray-Tracing Soft Objects,” Proc.
CG International, pp. 439-475 (1990).

[18] E. Paquette, P. Poulin, G. Drettakis, “A Light Hierarchy
for Fast Rendering of Scenes with Many Lights,”
Computer Graphics Forum (Proc. EUROGRAPHICS’98),
Vol. 17, No. 3, pp. 63-74 (1998).

[19] P. Maciel, P. Shirley, “Visual Navigation of Large
Environments Using Textured Clusters,” Proc. 1995
symposium on Interactive 3D graphics, pp. 95 (1995).

[20] G. Schaufler, “Dynamically Generated Imposters,” GI
Workshop Modeling – Virtual Worlds – Distributed
Graphics, pp. 129-136 (1995).

[21] J. Shade, D. Lischinski, D. Salesin, T. Derose, J. Snyder,
“Hierarchical Image Caching for Accelerated
Walkthroughs of Complex Environments,” Proc.
SIGGRAPH’96, pp. 75-82 (1996).

[22] P. E. Devebec, J. Malik, “Recovering High Dynamic
Range Radiance Maps from Photographs,” Proc.
SIGGRAPH’97, pp. 369-378 (1997).

(a) octree is used for clouds.

(b) octree is not used.

Figure 5. Examples of lightning.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Examples of lightning under different conditions. (a) and (b) show multiple lightning strokes.
(c) and (d) show colored lightning (pink). (e) and (f) show lightning at sunset.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Application to flight simulation. (a) and (b) show flash of lightning in clouds. (c) and (d) show
images just after takeoff. (e) and (f) show images close to clouds.

