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Abstract
Fast realistic rendering of objects in scattering media is still a challenging topic in computer graphics. In presence of par-

ticipating media, a light beam is repeatedly scattered by media particles, changing direction and getting spread out. Explic-
itly evaluating this beam distribution would enable efficient simulation of multiple scattering events without involving costly
stochastic methods. Narrow beam theory provides explicit equations that approximate light propagation in a narrow incident
beam. Based on this theory, we propose a closed-form distribution function for scattered beams. We successfully apply it to the
image synthesis of scenes in which scattering occurs, and show that our proposed estimation method is more accurate than
those based on the Wentzel-Kramers-Brillouin (WKB) theory.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—

1. Introduction

Realistic simulation of light scattering can produce visually ap-
pealing images. Although rendering objects in scattering media
can be performed by computationally expensive Monte-Carlo style
methods, such as path tracing [KVH84,YIC∗10] and photon map-
ping [JC98], fast realistic rendering of such objects is still a chal-
lenging topic in computer graphics.

Explicitly evaluating scattered beam distributions would effi-
ciently simulate multiple scattering events, while avoiding re-
course to stochastic procedures. This approach has been very
successful in subsurface scattering simulation. Methods calcu-
late BSSRDFs/BSSTDFs (Bi-Directional Scattering Surface Re-
flectance/Transmittance Distribution Functions) and apply linear
filtering using distribution functions as filter kernels for the effi-
cient simulation of sub-surface scattering. Dipole [JMLH01], mul-
tipole [DJ05], and improved multipole [dI11, FHK14] methods
have proven excellent in rendering layered scattering material such
as human skin. These methods are basically low-pass filters that
blur object textures. However, they experience difficulties when
dealing with heterogeneous media.

Scattering simulations in participating media are more chal-
lenging because 3D distributions are required and heterogeneous
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structures are more visually important. It is known that Wentzel-
Kramers-Brillouin (WKB) theory [LRT82] can estimate beam dis-
tributions. Premoze et al. [PAS03] applied the WKB theory to
global illumination in participating media. Their proposed path-
integral method integrates scattered illumination using beam dis-
tributions as a filter kernel. Elek et al. [ERS13] applied the WKB
theory to simulate object blur due to scattering, and presented an
efficient filtering scheme for fast rendering.

Given a deviated light path in media, which follows a curve in
3D space, the WKB theory estimates its probability. To obtain filter
kernels, the probabilities should be integrated over all possible light
path curves starting at, and reaching specified points. This involves
very complex computations that require the introduction of major
simplifications on path curve shapes for practical computation. This
can cause large errors that limit their applications.

In this paper, we present explicit formulae for beam distributions
based on narrow beam theory [Ish78]. A naive application of the
theory to the filtering process involves 9D integrals for each pixel
calculation. We reduce the computation by evaluating moments and
fitting a heuristic function to the moments. From analysis of a sin-
gle scattering event, we found a distribution function based on the
error function (an integral of the Gaussian function) to be suitable
for this application. Reasonable agreement was experimentally ob-
served between the results from stochastic photon counting and our
proposed estimation. We applied the distribution function to object
blur due to scattering, as in Elek et al.’s approach [ERS13], and
confirmed significant improvements.

The contributions of this paper are summarized as:

• we introduce narrow beam theory, a powerful tool for estimating
scattering events, to the field of computer graphics;
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Figure 1: Coordinate system and experimental arrangement.

• we propose a heuristic distribution function based on narrow
beam theory;

• we improve a screen-space scattering simulation by using our
distribution function.

The proposed distribution function is also suitable for other im-
age synthesis applications, such as shafts of light, Premoze et al.’s
global illumination [PAS03], and BSSTDF calculations in hetero-
geneous media.

2. Narrow Beam Theory

This section gives a brief introduction to narrow beam the-
ory [Ish78]. The major symbols used in the equations are listed in
Table1, and the associated coordinate system is shown in Figure1.

As described in Section 1 of the supplemental document [PAS03,
APRN04,PARN04], the WKB theory estimates the probability for
a given light path, but the path-space formulation is not a simple
and convenient tool to obtain distribution functions in 3D space.
The narrow beam theory, on the other hand, analytically approxi-
mates solutions in real 3D space and leads to distribution functions
in more explicit forms.

Table 1: Symbols used in narrow beam theory.

r̂, r, z position (̂r = r+zẑ)
ŝ, s direction (̂s= s+ ẑ)
σt extinction coefficient
σs scattering coefficient
σa absorption coefficient (σa = σt −σs)
ρn particle density
ζ integral ofρn along path
τ optical depth (τ = σtζ)
» Fourier variable corresponding tos
q Fourier variable corresponding tor

p(s) phase function
P(») Fourier transform ofp

I0(r,s) incident light distribution
F0(»,q) Fourier transform ofI0

The light transport equation for intensityI(r̂, ŝ) can be expressed
by

(∇· ŝ)I(r̂, ŝ) = −(ρnσt)I(r̂, ŝ)+

(ρnσs)
Z

4π
p(ŝ, ŝ′)I(r̂, ŝ′)dŝ′, (1)

Z

4π
p(ŝ, ŝ′)dŝ′ = 1. (2)

whereŝ and r̂ represent the direction and position in 3D,ρn is the
density of the media,σt and σs are the extinction and scattering
coefficients, andp is the phase function normalized to1. The inte-
gral domain4π indicates the unit sphere, and the domain is infinite
unless explicitly specified.

We set the intensityI to be the sum of the direct componentIri
and indirect componentId

I = Iri + Id.

Let us assume that

• the intensityI is concentrated near thêz direction (i.e.,ŝ· ẑ =
cosθ' 1);

• the variation in the phase function is smooth, allowingId to be
approximated by a second-order Taylor expansion in directionŝ
in the spherical integral in Equation (1).

We also assume the following situations, to obtain explicit solu-
tions:

• there is only one type of scattering particles in the media andσt ,
σs, andp(s,s′) are spacially invariant;

• the scattering media is structured into layers, and the particle
density may change along thez axis, described asρ(z).

We set

r̂ = r+zẑ, ŝ' s+ ẑ,

whereẑ is the unit vector in thez direction. Using this approxima-
tion, the spherical integral witĥs in Equation (1) can be approxi-
mated by a planar integral with a 2D vectors. We also assume an
axially symmetric phase function around the forward direction:

p(s,s′) = p(|s−s′|). (3)

Using these simplifications, the integro-differential equation in
Equation (1) can be replaced by a second-order partial differential
equation. Using Fourier transform, we can obtain the solution as

Iri (z,r,s) = 1/(2π)4
Z ∞
−∞

dκ
Z ∞
−∞

exp(−i» ·r) ·exp(−is ·q) ·
F0(»,q+»z) ·exp(−σtζ(z))dq, (4)

Id(z,r,s) = 1/(2π)4 exp(−ρnσaz)
Z

Fd(z,»,q+»z) ·

exp(−is ·q)dq
Z

exp(−i» ·r)dκ, (5)

Fd(z,»,q) = σtF0(»,q)
Z z

0
ρn(z′)P(q−z′»)

exp(−σsζ(z′))exp(−q2Â(z,z′))dz′, (6)

ζ(z) =
Z z

0
ρn(z′)dz′, (7)
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Computer Graphics Forumc© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Shinya, Y. Dobashi, M. Shiraishi, M. Kawashima & T. Nishita / Multiple Scattering Approximation in Heterogeneous Media by Narrow Beam Distributions

τ(z) = σtζ(z), (8)

Â(z,z′) =
Z z

z′
A(z′′)dz′′, (9)

A(z) = ρn(z)(σs/4) < θ2 >, (10)

< θ2 > =
Z

4π
θ2p(s)ds/

Z

4π
p(s)ds, (11)

where< . > represents an average,i indicates the imaginary unit,
F0 is the Fourier transform of the incident light distributionI0(r,s)

F0(»,q) =
Z

exp(iq ·s)ds
Z

I0(r,s)exp(i» ·r)dr,

andP is the Fourier transform of the phase functionp. τ(z) indi-
cates optical depth atz, and» andq are the Fourier variables cor-
responding tor ands, respectively. Integrals without a specified
domain are planar integrals over the whole plane. For more details,
readers are invited to refer to the book of Ishimaru [Ish78].

Note that Equation (5) involves a 5D integral. If we want to apply
filtering to the image of an objectR(r,s) with the distributionId
given by

Z Z
Id(r−r′,s′)R(r′,s′)dr′ds′,

the 5D integral should be repeated for allr′ ands′, requiring a
9D integral just to evaluate a single pixel. Consequently, we need
further simplifications.

3. Distribution Function

As seen in the previous section, drastic reductions of the computa-
tion complexity is necessary to apply narrow beam theory to image
synthesis.

The theory assumes thatId is distributed close to thêzdirection.
If the variation in the reflection from the objectR(r′,s′) is small,
we can approximate the filtering integral by

Z Z
Id(r−r′,s′)R(r′,s′)dr′ds′

'
Z (Z

Id(r−r′,s′)ds′
)

R(r′,0)dr′.

In this case, if we can efficiently calculate the filter kernel

Ψ(r) =
Z

Id(r−r′,s′)ds′, (12)

we can reduce the filtering computation.

For further reduction, we took the following approaches:

1. Analytic Fourier transform:We selected the incident lightI0 at
z = 0 and the phase functionp so that we could analytically
compute their Fourier transformsF0 andP.

2. Moment calculation:We calculated the zeroth- and second-
order moments ofId, which, fortunately, can be calculated very
efficiently.

3. Fitting with a heuristic function:We carefully selected a heuris-
tic function that gives a good approximation to the distribution.
We set the parameters of the function so as to have the same
calculated moment values.

We will now detail these three reductions in the following sections.

3.1. Incident Ray and Gaussian Phase Function

Let us specify the properties of participating media and the light-
ing conditions, and proceed with the calculations. Since we aim to
evaluate the distribution around a viewing ray, it is natural to as-
sume that the incident light be a ray, which we represent by Dirac
delta functions

I0(r,s) = δ(r)δ(s).

The phase function is assumed to be Gaussian† and is set to

p(s) = 1/(4πB)exp(−|s|2/4B), (13)Z
p(s)ds = 1.

Then, both Fourier transforms have analytical forms, such that

F0(»,q) = 1, (14)

P(q−z′») = exp(−B(q−z′»)2). (15)

Putting these expressions into Equation (5) yields a line integral

Id(z, r,s) = KG(z)exp(−|s|2)/(4Σ2
G(z))Z z

0
(π/Σ2

G)exp(−ρnσsz
′)dz′(π/C2(z′))

exp
{
−(r−zs+Bz′s/Σ2

G)2/(4C2(z′))
}

= KG(z)exp
{
−|s|2/(4Σ2

G)
}
·π2

Z z

0
dz′ exp(−ρnσsz

′)/(Σ2
G(z′) ·C2(z′))

exp
{
−(r+(−z+Bz′/Σ2

G(z′)s)2/(4C2(z′))
}

,

(16)

where

Â(z,z′) =
Z z

z′
A(z′′)dz′′

= (σt/4) < θ2 > (ζ(z)−ζ(z′)), (17)

Σ2
G(z′) = B+ Â(z,z′), (18)

C2(z′) = Bz′2[1−B/Σ2
G], (19)

KG(z) = (1/2π)4σsexp(−ρnσaz). (20)

The direct componentIri can be calculated from

Iri (z,r,s) = δ(r−zs)δ(s)exp(−τ(z)). (21)

Note thatτ = (ρnσt)z when ρn is constant. More details can be
found in Section 2 of the associated supplemental document.

3.2. Moments

To calculate the distribution, the line integral of Equation (16) has
to be evaluated for allr ands. In order to estimate it more quickly,

† A sum of Gaussians would also be possible for a more accurate represen-
tation.
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let us calculate the zeroth- to second-order moments ofId

M0(z) =
Z Z

Id(z,r,s)dsdr, (22)

M1(z) = 0, (23)

M2(z) =
Z Z

ρ2Id(z,r,s)dsdr. (24)

Here, the first-order moment (center of mass) is null because of its
symmetry.

When the densityρn is constant, we have closed-form formulae

M0(z) = exp(−ρnσaz)(1−exp(−ρnσsz)), (25)

M2(z) = 4exp(−ρnσaz)[
exp(−ρnσsz)

{
Az2/a−2B/a2

}
+

{
2B/a2−2Bz/a+(−A/a+B)z2 +Az3

}]
, (26)

a = ρnσs. (27)

When density is not uniform but is dependent onz, we have a
line integral

M0(z) = exp(−σaζ(z))(1−exp(−σsζ(z))), (28)

M2(z) = 4
Z z

0
(ρn(z′)σs)exp(−σsζ(z′))

[
C(z′)2 +(z−Bz′/Σ2

G(z′))2Σ2
G(z′))

]
dz′. (29)

As seen in Equations (26) and (29), the moments can be efficiently
estimated in constant time in homogeneous media, and in linear
time in heterogeneous media. More details can be found in Sec-
tion 3 of the supplemental document.

3.3. Heuristic Distribution Function

The distribution functionΨ(|r|) is set according to the moments
M0 and M2. This allows for efficient estimation of the distribu-
tion without integrating Equation (16) for each value ofr ands.
Because the distribution functions include single-scattering com-
ponents, the shape of the single-scattering distributions can help us
to design our heuristic function.

Let us calculate the single scattering componentI1 of Id from

I1(z,r,s) = (ρnσt)
Z z

0
exp(−σtρny)dy

Z

4π
I0(z−y,r+ys,s′)p(s,s′)ds′

= (ρnσt)exp(−σtρnz)
Z z

0
δ(r+ys)p(s)dy. (30)

The integral overs

Ψ1(z,r) =
Z

I1(z,r,s)ds, (31)

can be calculated from

Ψ1(z,r) = (ρnσs)exp(−σtρnz) · (1/B) ·
(1/|r|)(1/

√
π)G(|r|/(z

√
2B)), (32)

using the finite integral of a Gaussian function (error function)G

G(x) = 1/
√

2π
Z ∞

x
exp(u2/2)du. (33)
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Figure 2: RMS errors and albedo (σs/σt ).

We regard this as a fundamental feature of the distribution func-
tion, and adopt a heuristic distribution function described by

Ψ(z,r) = α(z)(1/|r|)G(|r|/β(z)). (34)

Parametersα and β can be determined from the momentsMi ,
calculated using Equations (26) or (29)

α(z) = 2M0/β2(z), (35)

β2(z) = 3(M2(z)/M0(z)). (36)

Using these formulae, we can determine the filtering kernel in
constant time for homogeneous density distributions, and in linear
time for heterogeneous distributions. The details are provided in
Sections 4 and 5 of the supplemental document.

4. Experiments

4.1. Point Spread Functions

With the configuration shown in Figure1, we randomly launched
many photons at the origin along thez-axis, simulated their scatter-
ing, recorded their traces, and counted the number of photons pass-
ing through the cells (we refer to these simulations as photon count-
ing). We compared the results calculated from our heuristic func-
tion and the moment equations (Equations (34), (35), and (36)),
with the results measured by photon counting. We fixedσt = 1.0
and used a Gaussian phase function with various spread angles
dθ2 = 4B. Figure2 shows the measured RMS errors with respect
to albedo (σs/σt ) values. The phase function was fixed todθ = 30
degrees. We also calculated the direct light component using Equa-
tion (21), the single-scattering component from Equation (32), the
distribution based on the path-integral (PI) method, and Elek et al.’s
version [ERS13]. The distribution functions used in the PI method
and Elek’s method are provided in Section 1 of the supplement
document (Equations (14) to (16)). As seen in Figure2, for lower
albedo values, the errors caused by all methods are relatively small
because single-scattering components are dominant. Although er-
rors grew up with higher albedo values in general, the proposed
method keeps a reasonable accuracy.

Figure 3 shows as color-coded the distributions measured by
photon counting and those calculated by our proposed method,

c© 2016 The Author(s)
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Figure 3: Distribution functions measured by photon counting
(path tracing), calculated by our (proposed) method, and by
the methods of (PI) Premoze et al. [PAS03] and (Elek) Elek et
al. [ERS13], all displayed with the same pseudo-colors. The spread
angle of the phase function,dθ, is 30 degrees (left) and 60 degrees
(right). Note that the axes are permuted, compared to Figure1.
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Figure 4: RMS errors and spread angle of the phase functiondθ.

with two different phase functions. The circular integral2π · r ·Ψ
is shown instead ofΨ, becauseΨ itself is singular at the ori-
gin (r = 0). The distributions become broader with respect to the
depthzand the variance of the phase functiondθ. Observe how the
distributions calculated by our proposed method agree much better
with the simulated reference solutions than the other two methods.

Figure4 shows root-mean-square (RMS) errors. The errors from
our proposed method are mostly around 10%. Observe how the
accuracy has largely been improved by taking into account the
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camera 
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z 

Figure 5: Simple scene used for the comparison.
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Figure 6: Resulting images of the square light emitter. Applied
computational methods are (from left to right) single scattering, the
path integral, Elek et al.’s, the proposed method, and path tracing.
The density is set to (from top to bottom) 1.0, 5.0, and 10.0.

multiple-scattering terms. The figure indicates significant improve-
ments by the proposed distribution functions.

4.2. Rectangular Emitter Images

To evaluate accuracy, we rendered images of a very basic scene
with path tracing and with our proposed method, and compared
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Figure 7: RMS errors for particle density values (ρn) of 10.0 and
5.0.
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Figure 8: Calculation of the distribution functions in (left) homo-
geneous media and in (right) heterogeneous media.

the synthesized images. Figure5 illustrates the configuration of the
scene, where a red square light emitter is located in a transparent
box filled with homogeneous scattering media. For path tracing, we
traced about 10K paths per pixel, which took a couple of hours per
image. For reference purposes, we also rendered images with single
scattering, path-integration filter kernels, and Elek et al.’s version
(Equation 12 in the supplemental document).

Figure6 shows the corresponding results. When the density is
low, the direct ray components are dominant, and differences be-
tween the generated images are rather subtle. However, with in-
creases in density, differences become more significant: the images
produced by single scattering and path integration are too dark,
while our proposed method captures the blurred light caused by
multiple scattering. Figure7 shows RMS errors measured in two
conditions. The filtering based on path integration does a better job
than the single-scattering approximation, but still causes large er-
rors at higher densities. Elek et al.’s distribution function has larger
errors than those of the path integral in general, possibly because
of its additional simplification. With our proposed method, on the
other hand, errors lie around 10 to 20%, and we observe reasonable
agreements with the path-tracing results.

5. Application to Screen-space Scattering Simulations

To demonstrate advantages of the proposed distribution function, it
is applied to screen-space scattering simulations, as introduced by
Elek et al. [ERS13].

5.1. Method

5.1.1. Distribution

The distributionΨ can be calculated from the momentsM0 and
M2. In the case of homogeneous media, the moments are calcu-
lated with Equation (24), using only depth values of media and
object surfaces. To do so, we save depth values in a preprocessing
stage and refer to these values when the moments are evaluated, as
illustrated in Figure8 (left).

In heterogeneous media, the moments are calculated with Equa-
tion (29), where the integral is calculated by referring to the accu-
mulated densityζ. Therefore, we perform the integral by setting
sample planes parallel to the screen, and simultaneously sumζ and
M2 in an alpha-blending fashion, as illustrated in Figure8 (right).

QB 

screen 

 

 

 

  

 

’ 

’) 

) 

QA 

medium 

Figure 9: Kernel selection.

(a) gathering filter (b) distributing filter 

 
 

Figure 10: Filtering implementation with the gathering and dis-
tributing schemes.

5.1.2. Filtering

Elek et al. [ERS13] propose an efficient multi-scale filtering
scheme for real-time execution. In this paper, we employ a simpler
and more generic filtering scheme to avoid potential artifacts.

Consider the configuration shown in Figure9, in which pixel
valueI f ilter at pixelx is evaluated from

I f ilter (x) = ∑
x′

w(x,x′)R(x′),

wherex andx′ denote pixel positions,zA andzB are the object depth
values, andw andR represent the filter kernel and the object image,
respectively.

Along the central raŷrA(z) passing through pixelx, the distribu-
tion ΨA(z, |r|) varies with respect to depthz. Without loss of gen-
erality, let us assumezB < zA. In this case, some of the scattered
viewing rays reach object pointB, which can be evaluated from the
distributionΨA(zB,r). Therefore, we can set weightw as

w(x,x′) = ΨA(zB,dr ), (37)

dr = |r̂A(zB)− r̂B|. (38)

Furthermore, if we assume local similarity for nearby pixels

ΨA(z, |r|)'ΨB(z, |r|),
we can setw as

w(x,x′)'ΨB(zB,d) (39)
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Figure 11: Pipeline of our rendering system.

for zB < zA. This switching is necessary to avoid “illuminance leak-
ing” as discussed by Elek et al. [ERS13].

In general, filtering can be implemented in two ways: gathering
contributions from other pixels, or distributing their contribution
to other pixels, as shown in Figure10. We implemented filtering
in both ways depending on thez-value comparison. For those pix-
els with larger depth, we apply the gathering filter; for those with
smaller depth, we use the filtering result from the distributing filter.

5.1.3. Implementation

We implemented a rendering system, which is outlined in Fig-
ure11.

Preprocess: In a preprocessing stage, the shaded imagecol[] and
depth mapzbu f[] of the scene’s objects are calculated using con-
ventional methods. The shaded image will be filtered by the dis-
tribution function estimated in the following main process. Al-
though illumination from an external source may be evaluated by
simple attenuation, we adopted the simplified plane-parallel (SPP)
model [SSD∗10] to capture multiple-scattering features of the light
distributed in the scene.

Calculation of moments: Next, the moments and parameters of
distributionΨ, α andβ, are calculated at each pixel according to
Equations (25), (29), (35), and (36). We implemented this in three
passes (Algorithm1). First, we prepare a set of sample planes per-
pendicular to the viewing direction. Each sample plane is drawn
and the densityρn is accumulated via alpha-blending up to the ob-
ject depth, resulting inζ0. Second, we accumulate the second-order
momentsM2, usingζ0. Finally we obtain the parameters of distri-
butions,α andβ.

Gathering filter: Using the calculated filter kernels, both gather-
ing filter and distributing filter are applied to every pixel. For those
pixels with a larger depth value than that of the pixel in process,
we apply the gathering filter (Algorithm2). We draw points cor-
responding to each pixel through the vertex shader, and the frag-

Algorithm 1 Calculation of moments

Require: zbu f[],ρn[] /* [] indicates an array */
Ensure: α[],β[],ζ0[]

initialize: M0[],M2[]ζ0[],ζ⇐ 0
/* Draw sample planes through vertex shader */
for all sample planeszplanedo

/* Process in fragment shader */
for all pixel p do

if zbu f[p] > zplane then
ζ0+ = ρn ∗dz

end if
end for

end for
for all sample planeszplane do

for all pixel p do
if zbu f[p] > zplane then

z= zbu f[p],z′ = zplane
ζ+ = ρn ∗σt ∗dz
Â = σsB(ζ0[p]−ζ)
Σ2

G(z′) = B+ Â /* Eq. (18) */
C2(z′) = Bz′2[1−B/Σ2

G] /* Eq. (19) */
e0 = (ρn(z′)σs)exp(−σsζ)
e1 = [C(z′)2 +(z−Bz′/Σ2

G)2Σ2
G)]

M2[p]+ = e0 ∗e1 /* Eq. (29) */
end if

end for
end for
for all pixel p do

M0[p] = σt exp(−σaζ(z))(1.0−exp(−σsζ0))
β[p] = 3∗ (M2[p]/M0) /* Eq. (36) */
α[p] = 2∗M0/β[p] /* Eq. (35) */

end for

ment shader processes the filtering. We limit the size of the fil-
ter at pixelp by simply multiplyingβ[p] by user-specified factor
cuto f f , which was set to1.0 during our experiments. For all pixels
p′ within the filter, we calculate the filter weight,weight, and sum
up the weighted colors if the depthzbu f[p′] is larger thanzbu f[p].
The error functionG(x) can be evaluated by Hastings’ approxima-
tion [Has55], for example.

Distributing filter: For those pixels with a larger depth value than
that of the pixel in process (p), we apply the distributing filter (Al-
gorithm3). In the vertex shader, we calculate the filter size for each
pixel and draw a rectangle centered at the location of the pixel in
process covering the filter. In the fragment shader, we calculate
the filter weight if the depthzbu f[p′] is larger thanzbu f[p]. The
weighted colors are summed up by alpha-blending.

Calculation of scattered external light: Since this screen-space
filtering cannot capture effects from light sources out of the im-
age, we optionally calculate their contributions using conventional
methods. This may be conducted by a standard ray-marching
method capturing single-scattering components. In our implemen-
tation, we adopted the SPP method as in the pre-processing phase.
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Algorithm 2 Gathering filter

Require: zbu f[],col[],α[],β[],cuto f f
Ensure: Igather[]

initialize: Igather⇐ 0
/* draw pont and process in fragment shader */
for all pixel p do

z0 = zbu f[p]
r = WorldCoord(p) /* transform to world coordinate */
FilterSize= cuto f f ∗β[p] /* filter size */
for all pixel p′ within the filter centered atp do

if zbu f[p′] > z0 then
r′ = WorldCoord(p), dr = |r′−r|
weight= (α[p]/dr )G(dr/β[p]) /* Eq. (34) */
Igather[p]+ = weight∗col[p′]

end if
end for

end for

Algorithm 3 Distributing filter

Require: zbu f[],col[],α[],β[],cuto f f
Ensure: Idistr[]

initialize: Idistr[]⇐ 0
/* draw rectangles centered at each pixels via vertex shader */
for all pixel p do

z0 = zbu f[p], I0 = col[p]
r = WorldCoord(p) /* transform to world coordinate*/
FilterSize= cuto f f ∗β[p] /* filter size */
/* draw a rectangle and process filtering in fragment shader */

for all pixel p′ within the filter rectangledo
if zbu f[p′] > z0 then
r′ = WorldCoord(p), dr = |r′−r|
weight= (α[p]/dr )G(dr/β[p]) /* Eq. (34) */
Idistr[p

′]+ = weight∗ I0
end if

end for
end for

Blending: Finally, we bend the calculated components into the fi-
nal image (Algorithm4).

Algorithm 4 Blending

Require: ζ0[],col[], Idistr[], Igather[], Iext[]
Ensure: I f inal []

/* draw points corresponding to pixels*/
for all pixel p do

T = exp−ζ0[p]
I f inal [p] = T ∗col[p]+ Idistr[p]+ Igather[p]Iext[p]

end for

5.2. Synthesized Images

We synthesized images of scenes with heterogeneous scattering
media.

(a) path-tracing (2K rays/pixel) 

(b) proposed 

(c) Elek’s 

Figure 12: Comparison for the CityLight images.
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(a) path-tracing (4K rays/pixel) 

(b) proposed 

(c) Elek’s 

Figure 13: Comparison for the Westminster images.

(a) CityLight 

(b) Westminster 

Figure 14: Example from the video sequence.

Figure 12 shows a night scene, rendered by (a) path tracing,
(b) the proposed distribution function, and (c) Elek et al.’s [ERS13]
approximation. In the scene, buildings with colored lit windows are
partially immersed in thick heterogeneous fog. Light in the lower
parts of buildings are more attenuated and blurred by the fog, which
was successfully simulated by our proposed method, which reason-
ably agrees with the result from path tracing. The RMS difference
from the path-traced image is 28.6%. Elek et al.’s kernel is more
concentrated in its center, and over-estimates the blurring near light
sources; its RMS difference is 52.7%.

Figure13shows another familiar example, where a famous clock
tower stands in heavy heterogeneous fog. The image rendered by
our proposed function reasonably agrees with the one by path trac-
ing, demonstrating significant improvements.

We also created fly-through sequences using these scenes. Rep-
resentative frames from the sequences are shown in Figure14.
Since this screen-space method cannot capture effects from out-
of-screen light sources, we set a weak parallel light, calculated its
scattered intensity by the SPP method [SSD∗10], and blended it to
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the filtered images. Varying fog density was created from a fluid
simulation, and stored as voxel data.

As an indication of typical rendering times, complete process-
ing times were 110 msec and 100 msec, for Figure14-(a) and (b),
respectively, on a Windows PC (Intel Core i7-3770K @3.50GHz,
GeForce GTX 690), while path tracing took several days. The im-
age size is 640× 480. The most time-consuming part of the al-
gorithm is the linear filtering process, especially for large kernel
sizes. To accelerate this process, we utilized multi-resolution im-
ages, similar to a MIP map, and applied a filter to a coarser image
when the kernel size is large (larger than 9 pixels in our implemen-
tation).

5.3. Limitations

As mentioned in Section2, the theory assumes narrow and smooth
distribution of scattering light as well as layered, single-type scat-
tering media. Screen-space algorithms, in general, assume that ev-
erything necessary is visible on screen and do not count contribu-
tions from invisible/out-of-screen light sources. These assumptions
limit applicable scenes and the accuracy of the method, for exam-
ple, in the following situations:

• Mixed material:Scattering media composed with more than two
different materials, such as milk poured into coffee, may have
spatially varying mixture ratios, which makes the phase function
spatially variant and hard to be correctly handled by the theory.

• Occlusion/shadowing:Occlusion causes sharp changes in light
distribution, which the theory cannot correctly handle. The pro-
posed method tries to reduce artifacts by switching gathering and
distributing filters based on depth comparisons, but errors still
remain.

• Large variation of density:When the density function is not lay-
ered and variation perpendicular to viewing direction is large, the
estimated distribution may involve large errors.

• Very small particles:Particles much smaller than the wavelength
tend to have strong backscattering properties as in Rayleigh scat-
tering. The theory ignores backward-scattering components and
the method may produce large errors.

• External light sources:Lighting effects due to external light
sources out of screen are not taken into account by the filter-
ing process. The proposed method separately estimates the ex-
ternal light components and simple blending is applied, which
may cause errors.

Note that these general limitations are related to the filtering ap-
proach, which affect also Elek’s method [ERS13].

6. Conclusion

In this paper, we proposed useful beam distribution functions in
heterogeneous scattering media. Based on the narrow beam the-
ory, we formulated the moments of the distribution and proposed a
heuristic distribution function to fit to the calculated moments. Ex-
periments show that the proposed functions are more accurate than
WKB-based functions previously used. The proposed function was
successfully applied to screen-space simulations of object blurring
due to multiple scattering, and demonstrated significant image im-
provements over previous functions.

The proposed distribution functions can be also applied to mul-
tiple scattering of directional light sources, such as car headlights,
shafts of light through clouds, or city light beams in the night sky.
They are also suitable for other image synthesis applications, such
as Premoze et al.’s global illumination [PAS03], and BSSTDF cal-
culations in heterogeneous media.
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