
Radiosity for Point-Sampled Geometry

Yoshinori Dobashi Tsuyoshi Yamamoto
Hokkaido University

Kita-ku Kita 14, Nishi 9,
Sapporo, 060-0814, Japan

{doba, yamamoto}@nis-ei.eng.hokudai.ac.jp

Tomoyuki Nishita
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku,
Tokyo, 113-0033, Japan
nis@is.s.u-tokyo.ac.jp

Abstract
In this paper, we propose a radiosity method for the

point-sampled geometry to compute diffuse interreflection
of light. Most traditional radiosity methods subdivide the
surfaces of objects into small elements such as quadrilater-
als. However, the point-sampled geometry includes no ex-
plicit information about surfaces, presenting a difficulty in
applying the traditional approach to the point-sampled ge-
ometry. The proposed method addresses this problem by
computing the interreflection without reconstructing any
surfaces. The method realizes lighting simulations without
losing the advantages of the point-sampled geometry.

1. Introduction
Recently, point-sampled geometry [14][15] has in-

creased its importance in the computer graphics commu-
nity. Traditionally, the shapes of objects have been repre-
sented by using surfaces as basic primitives, such as poly-
gons. The point-sampled geometry uses points as the ba-
sic primitives. The shapes of objects are represented by
a set of points. Information regarding connectivities be-
tween points is no longer stored. This simplifies data
structures and reduces the memory requirement. There-
fore, many methods have been developed [11][13][19].

This paper proposes a radiosity method for the point-
sampled geometry to compute the interreflection of light.
Traditionally, there are two approaches to compute the in-
terreflection [6]. One of these is a probabilistic approach
based on the Monte-Carlo simulation. A few methods using
this approach have been proposed for the point-sampled ge-
ometry [1][16]. The other approach is based on the finite el-
ement method. This paper is not intended to discuss which
approach is superior, but discusses the possibility of apply-
ing the finite element approach to the point-sampled geom-
etry. To date, there have been no methods based on the finite
element approach for the point-sampled geometry.

In the finite element approach, the energy transfer be-
tween small surface elements is calculated. The traditional

radiosity methods calculate this by subdividing the sur-
faces into small elements such as quadrilaterals (or patches).
However, traditional methods cannot be applied directly to
the point-sampled geometry since it possesses no explicit
information about surfaces. One possible solution is to re-
construct the surfaces from the point set and then to use
traditional methods. However, this approach degrades the
advantages of the point-sampled geometry. To address this
problem, a new radiosity method that can handle the points
directly is proposed here. We assume a point model is rep-
resented by a set of surfels [14]. A surfel is a point primi-
tive consisting of its position and properties of the original
surface around the point such as a reflectance and a nor-
mal vector. First, the proposed method computes an area
represented by each surfel. To compute the area, we use
a tangent disk assigned to each surfel [14]. Since the tan-
gent disks generally overlap, we propose a method taking
into account the overlap for computing the area of each sur-
fel. We call the area an effective area. This allows the cal-
culation of form factors between surfels. Then, the inter-
reflection is computed, using the method proposed by Stam-
minger et al [17]. The proposed method uses points instead
of patches. However, the intensity distribution may not be
represented accurately by using only the original set of sur-
fels. To address this, a method is proposed for adding new
points adaptively.

Using the proposed method, the interreflection of light
is simulated without degrading the advantages of the point-
sampled geometry. In this paper, the reflectance of the sur-
faces of objects is assumed to be purely diffuse.

2. Related Work

Points were used as display primitives for the first time
by Levoy and Whitted in 1985 [10]. Then, in 2000, the pa-
pers by Pfister et al. [14] and Rusinkiewica et al. [15] led
to the recent development of many application methods for
point-sampled geometry [19][8]. However, these methods
consider only direct illumination, since their purpose is the
display of point-sampled geometry.

patch i
θi

normal ni

Aj

patch j

θj

normal nj

rij

Ai

Figure 1. Calculation of form factors.

To simulate the global illumination effects, Shaufler et al.
developed a ray-tracing method for point-sampled geometry
[16]. This method computes an intersection between a ray
and the point-sampled geometry by placing a disk at each
point. However, Adamson et al. pointed out a problem with
this method, and they proposed an improved method [1].
Global illumination can be simulated by combining these
methods with the idea of the Monte-Carlo simulation.

However, there have been no methods based on the fi-
nite element approach to point-sampled geometry. To em-
ploy the finite element approach, the object surfaces must
be divided into patches. This makes it difficult to apply tra-
ditional approaches to point-sampled geometry. This paper
gives a solution to this problem.

3. Concept of Radiosity Calculation
One of the simplest approaches is to subdivide surfaces

of objects into patches and then compute energy transfers
between the patches. This results in solving the following
linear equations (for details, see [3]).

Bi = Ei +
n∑

j=1,j �=i

ρjVijFijBj (i = 1, · · ·n), (1)

where n is the number of the patches, Bi is the radiosity
of patch i, Ei is the initial emittance of patch i, ρj is a dif-
fuse reflectance of patch j, and Vij is a visibility between
patches i and j. Fij is a form factor between patches i and
j. When the size of the patch is sufficiently small, Fij is ex-
pressed approximately as:

Fij =
cos θi cos θj

πr2
ij

Aj , (2)

where, as shown in Fig. 1, rij is a distance between patches
i and j, θi and θj are the angles between a line connect-
ing these patches and normal vectors of the patches i and j,
respectively.

The proposed method uses the surfels instead of the
patches. It is assumed the domain represented by each sur-
fel is sufficiently small and the radiosity is constant in the
domain. This is generally true since the point-sampled ge-
ometry usually consists of a large number of points. This as-

original surface
normal vector

tangent disk i

xiRi

point i
ni

Figure 2. Surfel and tangent disk.

sumption allows the use of Eq. (2) to compute the form fac-
tors between the surfels.

4. Basic Idea
As shown in Fig. 2, the input data to the proposed method

is a set of points, where it is assumed that normal vector ni

and diffuse reflectance ρi have been obtained for each point
xi. Pfister et al. called this type of point primitive a sur-
fel [14]. This notation is used in the following. Objects rep-
resented by the surfels are typically displayed by assigning
a tangent disk to each surfel. As shown in Fig. 2, the tan-
gent disk i is perpendicular to normal ni with its center at
xi. Its radius Ri is determined so that there are no gaps be-
tween the surfels. We can use the maximum distance be-
tween points in a small neighborhood around surfel i [14].

First, to compute the form factors between surfels, infor-
mation is required regarding the area (Aj) used in Eq. (2).
The simplest way to compute the area is to use an area of
the tangent disk. However, this leads to an overestimation
of the total area of a point-sampled object since the tan-
gent disks generally overlap. Here, to address this, an accu-
rate method is proposed for the computation of an effective
area of each surfel.

Next, for efficient radiosity computation, a hierarchical
structure is constructed by recursively grouping neighbor-
ing surfels. Surfels in the lowest level correspond to the
original set of points. The interreflection of light is com-
puted by using the method developed by Stamminger et al
[17]. However, the intensity distribution may not be repre-
sented by using only the original point set. This is especially
true for the boundaries of shadows. Thus, during the ra-
diosity computation, new surfels are adaptively added if the
difference of radiosities in a small neighborhood exceeds
a specified threshold. After the radiosity computation, a fi-
nal image is rendered by using a hardware-accelerated point
rendering method [9].

The procedure of the proposed method is summarized as
follows.

1. Computation of effective areas of the surfels.

2. Construction of the hierarchical structure.

3. Calculation of the interrefelction of light.

4. Creation of final images.

Steps 1 and 2 are done in a pre-process.
The following sections describe steps 1 through 3. For

step 4, see [9].

5. Computation of Effective Area
This section describes the method for computing the ef-

fective area. The following subsections describe the idea
with reference to Fig. 3. First, the basic idea is explained us-
ing a simple case where the normal vectors of neighboring
surfels are the same (Section 5.1). Next, the idea is extended
to general cases (Section 5.2). Then, a hardware accelera-
tion of the area computation is described (Section 5.3).

5.1. Simple Case

As shown in Fig. 3(a), let us assume a differential sur-
face element at y on tangent disk i. The area of the differ-
ential element is ∆A(y). The number of disks that over-
lap at y is m (m = 3 in Fig. 3(a)). Clearly, the total area
Stotal represented by these disks is obtained by integrating
∆A(y) over the domain of these disks. That is,

Stotal =
∫

Ωm

∆A(y)dy, (3)

where Ωm indicates points inside the disks. On the other
hand, we assume the total area is the sum of the effective ar-
eas of m surfels, that is, Stotal = S1+S2+ · · ·+Sm, where
Si is the effective area of surfel i. To determine the effective
area, we introduce an influence function ξi(y)(0 < ξi(y) <
1.0) for each surfel i. Using this function, we define the ef-
fective area Si as:

Si =
∫

Di

ξi(y)∆A(y)dy, (4)

where Di indicates points inside disk i. It is reasonable
that the influence of the surfel i on the surface element
should increase if the distance from the surfel position to
the surface element becomes short. Furthermore, ξ1(y) +
ξ2(y) + · · · + ξm(y) must be equal to 1 in order to satisfy
Stotal = S1 +S2 + · · ·+Sm. Therefore, we use the follow-
ing function for the influence function.

ξi(y) = w(ri(y))/
m∑

j=1

w(rj(y)), (5)

w(ri(y)) =
{

exp(−κri(y)/Ri) (ri(y) ≤ Ri)
0 (ri(y) > Ri)

, (6)

where κ is a constant specified by the user and ri(y) is the
distance between y and xi (see Fig. 3(a)). The parameter
κ controls the influence of each surfel. We use 3.0 for κ
in the examples shown in Section 8. Clearly, the influence

r1

r3y
∆A(y)

r2

x1

x2

x3

disk 2

disk 1 disk 3

(a) Simple case.

(b) General case.

θ

xixj

nj ni
disk idisk j

ri(yi)
∆A(yi)

rj(yj)

∆A(yj)
yj

yi

Ri

virtual screen

surfel i
neighboring
surfel positions

∆A(yi)=4Ri
2/(nxxny)

virtual camera

(c) Hardware acceleration.

Figure 3. Computation of effective area.

function expressed by the above equations satisfies the con-
dition, ξ1(y) + ξ2(y) + · · · + ξm(y) = 1, and therefore,
Stotal = S1 +S2 + · · ·+Sm. The effective area is given by
putting Eqs. (5) and (6) into Eq. (4).

When the normal vectors of the surfels are the same,
their effective areas are obtained by the above method.
However, in general, the normal vectors are different and
the tangent disks do not exist on the same plane (see Fig.
3(b)). In the next subsection, we extend the above idea to
the general case.

5.2. General Case

As mentioned above, the tangent disks do not exist on the
same plane generally. We assume there are m surfles around
surfel i. Fig. 3(b) shows two surfels i and j among them. A
problem in this general case is the area ∆A of the differen-
tial surface element used in Eq. (4). In the simple case (Fig.
3(a)), the area of the differential element is the same for all
surfels overlapping at y, since the disks are on the same
plane. However, in the general case, this is not true. We re-
solve this problem as follows. First, we consider a differen-
tial element at yi on disk i as shown in Fig. 3(b). Then we
consider a corresponding differential element at yj on disk
j. The position yj is at the intersection between disk j and
a ray from yi in the direction of ni (see Fig. 3(b)). We use

the average of these differential areas instead of ∆A in Eq.
(4). The details are described below.

Let us denote the areas of the differential elements at yi

and yj are ∆A(yi) and ∆A(yj), respectively. ∆A(yj) is
expressed as ∆A(yj) = ∆A(yi)/ cos θ = ∆A(yi)/(ni ·
nj), where θ is an angle between ni and nj . Then the
weighted average ∆Ā(yi) of ∆A(y1),∆A(y2), · · ·, and
∆A(ym) is calculated. The weighting function expressed
by Eq. (6) is used again. That is, ∆Ā(yi) is calculated by
the following equation.

∆Ā(yi) =

∑m
j=1 w(rj(yj))∆A(yj)∑m

j=1 w(rj(yj))
, (7)

∆A(yj) = ∆A(yi)/(ni · nj), (8)

where rj(yj) is the distance between the center of surfel j
and the surface element on disk j (see Fig. 3(b)). We use
the weighted average ∆Ā(yi) instead of ∆A(y) in Eq. (4).
The effective area Si of surfel i is then expressed by the fol-
lowing equation.

Si =
∫

Di

w(ri(yi))∆Ā(yi)∑m
j=1 w(rj(yj))

dyi. (9)

5.3. Hardware Acceleration

We make use of graphics hardware for fast computation
of the effective areas expressed by Eq. (9). In the follow-
ing, details of our algorithm are described with regard to
the computation of the effective area of surfel i.

To use graphics hardware, a virtual camera is placed in
the direction of the normal vector of surfel i as shown in
Fig. 3(c). The reference point of the camera is the surfel po-
sition xi and the parallel projection is specified. A virtual
screen is placed on the same plane of the tangent disk of
surfel i (see Fig. 3(c)). The size of this screen is 2Ri × 2Ri,
where Ri is the radius of the tangent disk. The screen is di-
vided into nx×ny pixels. Each pixel corresponds to the dif-
ferential surface element on surfel i. The differential area
∆A(yi) in Eq. (8) is ∆A(yi) = 4R2

i /(nx × ny). We as-
sume that each pixel of the frame buffer consists of R, G, B
and α components.

First, surfels around surfel i are extracted. This can be
done efficiently using the kd-tree [7]. Among them, only
the surfels whose normal vectors are similar to that of sur-
fel i are extracted. This excludes surfels that are considered
to be on different surfaces. Those surfels should not be used
for the computation of the effective area of surfel i. For this
process, we use the second condition of Eq. (10) for build-
ing the hierarchical structure (see Section. 6).

Next, the weighted average ∆Ā(yi) is calculated by us-
ing Eq. (7). The computation of Eq. (7) is equivalent to ren-
dering an image by using the surface splatting method [19]
after assigning ∆A(yj) (Eq. (8)) to intensity of surfel j. We

use a hardware-accelerated surface splatting method [9] to
speed up the computation. In [9], the normalization corre-
sponding to the denominator of Eq. (7) is processed only at
every surfel instead of every pixel for real-time display. In
our method, the normalization is processed at every pixel
for accurate computation. Only surfel i and its neighboring
surfels are taken into account for this image generation.

The image is created as follows. First, a quadrilateral,
whose side length is the diameter of the tangent disk, is
placed at the position of each surfel. Then, a texture rep-
resenting the weighting function expressed by Eq. (6) is
mapped onto each quadrilateral. Each of RGBα compo-
nents stores the same value. The quadrilaterals are ren-
dered after multiplying RGB components of the texture by
∆A(yj) and their colors are accumulated using additive
color blending functions. In this image generation process,
the intensity of each component of the weight texture and
the intensity representing ∆A(yj) must be scaled appro-
priately since most graphics hardwares quantize them with
8 bit precision. The scaling factor must be carefully cho-
sen to reduce the quantization errors. We determined the
scaling factor experimentally so that any overflows do not
occur. This problem can be resolved by using video cards,
such as nVidia GeForce FX, that support floating point tex-
ture/frame buffer formats. After the rendering, RGB com-
ponents of each pixel in the frame buffer store the numer-
ator of Eq. (7) (each of RGB components stores the same
value) and α component stores the denominator. The pixel
values are then read back from the frame buffer to the main
memory.

Finally, the following computations are repeated for each
pixel. The average area ∆Ā(yi) expressed by Eq. (7) is
computed by dividing the R component by the α compo-
nent. Then, the distance between surfel position xi and a
point corresponding to each pixel is computed to obtain a
weight w(ri(yi)) in Eq. (9). The integrand of Eq. (9) is ob-
tained by multiplying ∆Ā(yi) by w(ri(yi)) and then divid-
ing the result by the α component. The sum of the results of
the above computations for all pixels is the effective area Si

of surfel i.

6. Building Hierarchical Structures

The hierarchical structure is constructed by grouping
surfels with almost the same normal vectors in a small
neighborhood. There have been several such methods for
building the hierarchy [2][5][12]. We use the simplest of
these approaches, where the surfels are grouped by search-
ing the neighbors. We explain the basic idea briefly using
Fig. 4. Note that Fig. 4 shows a two-dimensional case for
simplicity.

First, surfel i is randomly selected. Next, surfel j (j �=
i), satisfying the following conditions, is classified into the

average position

average normal
bounding sphere

Figure 4. Building hierarchy.

same group (see Fig. 4).

|xi − xj | < b, ni · nj > ε, (10)

where b is equal to double the radius of the tangent disk i
(b = 2Ri) and ε is specified by the user (|ε| < 1.0). ε is a
threshold for the difference between the normal vectors. We
use the kd-tree [7] for an efficient search of surfels satisfy-
ing the above conditions. Next, a surfel that has not been
grouped is selected and the grouping process is repeated.
These processes are repeated until all surfels are grouped.

Next, for each group, an average position and an aver-
age normal of the surfels are computed as shown in Fig. 4.
The total area of the surfels in the group is also assigned to
each group. Then a bounding sphere is generated at the av-
erage position. The radius of the sphere is computed so that
all the surfels in the group are included inside the sphere.
Next, all the groups are reclassified by applying the condi-
tions of Eq. (10) to the average position, the average normal,
and the bounding sphere. In this case, b is set to 2.0× (Ra-
dius of bounding sphere). The hierarchy is constructed by
repeating the above processes recursively.

7. Radiosity Calculation

In the computation of the interreflection of light, we need
to determine the form factors and the visibilities between
any pairs of surfels. The form factor Fij between surfels i
and j is calculated by Eq. (2) using their positions, normal
vectors, and the effective areas. The visibility Vij is deter-
mined by an intersection test between all tangent disks and
a line segment connecting surfels i and j. This intersection
test is efficiently examined by making use of the hierarchi-
cal structure.

We use the method proposed by Stamminger et al [17]
for calculating the interreflection. First, the interreflection
is calculated by using the surfels corresponding to the top
level (the coarsest level) of the hierarchy. The form fac-
tors are calculated by using the average positions, the av-
erage normals and the total areas. Next, the error is eval-
uated. The groups with large errors are replaced by their
children. Next, the interreflection is calculated again. These
processes are iterated until the error becomes less than a
specified threshold, ζ.

position of
surfel i

normal
vector ni

u

v w

positions of
new surfels

error vector ei

Figure 5. Adding new surfels.

In the above procedure, the error evaluation method
needs to be defined. Moreover, the surfels at the leaf nodes
of the hierarchy (i.e., surfels corresponding to the original
point set) may not be sufficient to represent the intensity
distribution. To address this problem, new surfels are adap-
tively added. Details are described in the following subsec-
tions.

7.1. Error Evaluation

The error is evaluated by using differences of radiosties
in a small neighborhood around surfel i. First, surfel j sat-
isfying Eq. (10) around surfel i are extracted. A group is
replaced by its children if the following condition is satis-
fied.

max
j

|dij | > ζ, dij = Bj − Bi, (11)

where Bi and Bj are the radiosities of surfels i and j, re-
spectively.

7.2. Adaptive Addition of Surfels

Surfel i, corresponding to the leaf node of the hierarchy,
is deleted when Eq. (11) is satisfied. Then four new surfels
are added around surfel i. These four surfels are inserted as
children of surfel i in the hierarchy. This idea is similar to
the adaptive subdivision scheme that is often used in the tra-
ditional patch-based radiosity [4]. The addition of the sur-
fels is recursively processed for the surfels at the leaf nodes.
The positions of the new surfels are determined as follows.

It is expected that the accuracy is improved by placing
surfels along the boundary of the shadows. In addition, it is
clear that adding surfels at the same position is inefficient.
Therefore, the following two conditions are taken into ac-
count when determining the position of the new surfels.

(1) Surfels should be placed along the direction that is per-
pendicular to the gradient of the intensity.

(2) Surfels should be placed as uniformly as possible.

In the following, we explain our method using Fig. 5. The
shading in Fig. 5 indicates the intensity distribution around
surfel i.

First, to take into account condition (1), surfel j(j =
1, · · ·m) satisfying Eq. (10) around surfel i are extracted.
m is the number of surfels around surfel i. Then, we de-
fine an error vector ei as the weighted sum of the normal
vectors from surfel i toward surfel j. That is,

ei =
m∑

j=1

dij
(xj − xi)
|xj − xi| , (12)

where xi and xj are positions of surfels i and j, respec-
tively, and dij is the difference of the radiosities (see Eq.
(11)). As shown in Fig. 5, ei nearly indicates the steep-
est direction of the gradient of intensity at surfel i. If the
magnitude of ei is zero, we can use an arbitrary vector per-
pendicular to normal ni, instead of ei. Using this vector,
we define a local coordinate system uvw with an origin
at surfel i. The normal vector ni corresponds to w axis. u
axis is determined so that it is perpendicular to both w axis
and the error vector ei. Then v axis is set to the direction
perpendicular to both u and w axes. Using this coordinate
system, we add four surfels at positions (−cRi, cRi, 0.0),
(cRi, cRi, 0.0), (cRi,−cRi, 0.0), (−cRi,−cRi, 0.0) (see
Fig. 5). c(0.0 < c < 1.0) is a constant specified by the user
and Ri is the radius of the tangent disk. c controls the dis-
tance from the surfel i to the new surfels. We use 0.3 for c
in the examples shown in Section 8. In this way, new sur-
fles are generated at positions reflecting the gradient of the
intensity at surfel i. That is, condition (1) described above
is taken into account. Radii of the tangent disks of the new
surfels are set to half of the tangent disk i. Their effective
areas are quarter of that of surfel i. Normal vectors and re-
flectances are determined by interpolation, using the neigh-
boring surfels.

Next, to satisfy condition (2), we modify the positions
of the new surfels. The point repulsion method [13][18] is
used for this modification. This method modifies the posi-
tions by considering forces between the surfels. The magni-
tudes of the forces depend on the distances between the sur-
fels. When the surfels are close, repulsive forces are gener-
ated. When the surfels are sufficiently far apart, no forces
are generated. The surfels are moved toward the direction
of the forces. Then the forces are computed again. These
processes are repeated until the iterations reach a specified
number. This method prevents the positions of the surfels
from being gathered in a small region. Since the initial po-
sitions are determined by the previous process, the surfels
are moved to the positions that satisfy both of the two con-
ditions.

Strictly, the hierarchy should be reconstructed since the
newly added surfels may distort the hierarchy. However, it is
very time-consuming and, in general, the distortion is quite
small. In our experiment, it has not caused any serious prob-
lems. Therefore, we do not reconstruct the hierarchy. We

modify only the size of the bounding sphere of each group
in the hierarchy.

7.3. Combining with Polygonal Models

In this subsection, we mention a way to incorporate
polygonal models into our method. As we mentioned pre-
viously, the traditional radiosity methods subdivide sur-
faces of objects into small patches. Our method can han-
dle the polygonal models by placing surfels at centers of
the patches. In this case, we assign the areas of the patches
to the effective areas and we use circumscribed disks as the
tangent disks.

8. Examples
In this section, we first discuss the validity of the pro-

posed method by using a simple example. Next, the pro-
posed method is applied to complex examples. All exam-
ples shown in this section are calculated using a desktop PC
(Pentium4 2.8GHz) with a nVidia GeForce4.

8.1. Experimental Results

We have applied the proposed method to a scene shown
in Fig. 6. There are three spheres in a room. The spheres are
represented by surfels and the walls (including the ceiling
and the floor) are polygons. The length of each side of the
walls is 3.5 m and the radii of the spheres are 0.8 m, 0.4 m,
and 0.2 m. Each of the walls is subdivided into 400 patches
and each of spheres is sampled by 642 points. We created
a hierarchical structure with four levels by setting ε in Eq.
(10) to 0.8.

First, we computed the surface area of the biggest sphere
in order to verify the validity of the area computation
method proposed in Section 5. The sum of the effective ar-
eas of all the surfels is 8.23m2. The true value is 8.04m2

and therefore the relative error is 2.63 %. This implies that
our method can calculate the effective areas with sufficient
accuracy.

Next, four area light sources are placed on the ceiling and
the interreflection of light is simulated. Fig. 6(a) shows the
resulting image. Fig. 6(b) shows the positions of surfels. As
shown in Figs. 6(a) and (b), the surfels are adaptively added
according to the intensity gradients. To verify the accuracy
of the proposed method, we calculated the interreflection by
using the same scene sampled more densely (1,600 points
for each wall and 2562 points for each sphere). The re-
sulting image is shown in Fig. 6(c). We calculated the dif-
ferences in intensity between Figs. 6(a) and (c). Fig. 6(d)
shows the difference image where 100 % means the differ-
ence is 255. As shown in Fig. 6(d), the errors are less than
10 %, implying that the accuracy of the proposed method is
adequate.

Regarding the calculation time, the calculation of the ef-
fective areas took 5 seconds, the construction of the hierar-
chy took 1 second, and the interreflection took 32 seconds.

The results shown in this subsection demonstrate the ef-
fectiveness of the proposed method.

8.2. Practical Examples

The proposed method is applied to complex examples
shown in Fig. 7.

First, Fig. 7(a) shows two bunnies placed in a room. Tex-
tures of a marble and a leopard patterns are mapped onto
these bunnies. Each of the bunnies consists of 34,834 sur-
fels. It took 68 seconds to compute the effective areas. As
in Fig. 6, the walls of the room are polygons and each of
them is subdivided into 400 patches. There are four area
light sources as shown in Fig. 7(a). The radiosity calcula-
tion took 47 seconds. The both bunnies have become green-
ish due to the reflections from the walls. In addition, the
marble bunny has become slightly yellowish due to the re-
flections from the leopard bunny.

Next, the proposed method is applied to a lighting sim-
ulation of a gallery as shown in Fig. 7(b). The statues in
the gallery are represented by surfels and walls are poly-
gons. The total number of surfels is 351,686. To verify the
effects of the interreflection in detail, the images of some of
the statues are shown in Fig. 7(c). It took 6 minutes to com-
pute the effective areas for these statues. There are three
area light sources and five spotlights (some of them are not
displayed in this image). The geometries of the light sources
are not taken into account in the radiosity computation. The
computation time of the radiosity solution is 36 minutes.
The soft lighting effects are achieved due to the interreflec-
tion and a very realistic image is created.

9. Conclusions

In this paper, a method has been discussed for comput-
ing the interreflection of light for point-sampled geometry.
Both the computation method for the effective areas of sur-
fels and its acceleration using graphics hardware have been
proposed. This enables the computation of the form factors
between the surfels. An efficient computation of the inter-
reflection has been realized by applying the hierarchical ra-
diosity method to point-sampled geometry. To capture the
rapid changes in intensity, a method has been proposed for
adding surfels adaptively.

An important task for the future is to take into account
specular reflections for the creation of more realistic im-
ages. The proposed method may be combined with many
traditional radiosity methods that can handle the specular
reflections.

References

[1] A. Adamson and M. Alexa. Ray tracing point set surfaces.
Proc. Shape Modeling International 2003, pages 272–279,
2003.

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Leving,
and C. T. Silvia. Computing and rendering point set sur-
faces. IEEE Trans. on Visualization and Computer Graph-
ics, 9(1):3–15, 2003.

[3] M. Cohen and J. R. Wallace. Radiosity and Realis-
tic Image Synthesis. Morgan Kaufman Publishing (ISBN
0121782700), 1993.

[4] M. F. Cohen, D. P. Greenberg, D. S. Immel, and P. J. Brock.
An efficient radiosity approach for realistic image synthe-
sis. IEEE Computer Graphics and Application, 61(2):26–35,
1986.

[5] C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Se-
quential point trees. ACM Trans. on Graphics (Proc. SIG-
GRAPH 2003), 23(3):657–662, 2003.

[6] C. Damez, K. Dmitriev, and K. Myszkowski. State of art
in global illumination for interactive applications and high-
quality animations. Computer Graphics Forum, 21(4):55–
77, 2003.

[7] H. W. Jansen and P. H. Christensen. Efficient simulation of
light transport in scenes with participating media using pho-
ton maps. Proc. SIGGRAPH’ 98, pages 311–320, 1998.

[8] A. Kalaiah and A. Varshney. Modeling and rendering points
with local geometry. IEEE Trans. on Visualization and Com-
puter Graphics, 9(1):30–42, 2003.

[9] H. P. L. Ren and M. Zwicker. Object space ewa surface splat-
ting: A hardware accelerated approach to high quality point
rendering. Computer Graphics Forum, 21(3):461–470, 2002.

[10] M. Levoy and T. Whitted. The use of points as a display
primitive. Technical Report TR 85-022, The University of
North Carolina at Chapel Hill, Dept. of Computer Science,
1985.

[11] M. Pauly and M. Gross. Spectral processing of point-
sampled geometry. Proc. SIGGRAPH 2001, pages 379–386,
2001.

[12] M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification
of point-sampled surfaces. Proc. IEEE Visualization 2002,
pages 163–170, 2002.

[13] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape
modeling with point-sampled geometry. ACM. Trans. on
Graphics (Proc. SIGGRAPH 2003), 23(3):641–650, 2003.

[14] H. Pfister, M. Zwicker, J. V. Baar, and M. Gross. Surfels:
Surface elements as rendering primitives. Proc. SIGGRAPH
2000, pages 335–342, 2000.

[15] S. Rusinkiewica and M. Levoy. Qsplat: A multiresolution
point rendering system for large meshes. Proc. SIGGRAPH
2000, pages 343–352, 2000.

[16] G. Shaufler and H. W. Jansen. Ray tracing point sampled ge-
ometry. Proc. Eurographics Workshop on Rendering 2000,
pages 319–328, 2000.

[17] M. Stamminger, A. Scheel, and H. P. Seidel. Hierarchical ra-
diosity with global refinement. Proc. Vision, Modeling, and
Visualization 2000, pages 263–271, 2000.

[18] G. Turk. Re-tiling polygonal surfaces. Computer Graphics
(Proc. SIGGRAPH’ 92), 26(3):52–64, 1992.

[19] M. Zwicker, H. Pfister, J. V. Baar, and M. .Grossn. Surface
splatting. Proc. SIGGRAPH 2001, pages 371–378, 2001.

(a) Two texture mapped bunnies. (b) Gallery of point models.

Figure 7: Practical examples.
(c) Images of the statues shown in Fig. 7(b).

Figure 6: Experimental results.

(c) Ideal result.(b) Result of adaptive
 addition of surfels.

(a) Our result. (d) Difference image.

5

10

0

[%]

