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Abstract

Recently, a precomputed shadow fields method was pro-
posed to achieve fast rendering of dynamic scenes under en-
vironment illumination and local light sources. This method
can render shadows fast by precomputing the occlusion in-
formation at many sample points arranged on concentric
shells around each object and combining multiple precom-
puted occlusion information rapidly in the rendering step.
However, this method uses the same number of sample
points on all shells, and cannot achieve real-time rendering
due to the rendering computation rely on CPU rather than
graphics hardware. In this paper, we propose an algorithm
for decreasing the data size of shadow fields by reducing the
amount of sample points without degrading the image qual-
ity. We reduce the number of sample points adaptively by
considering the differences of the occlusion information be-
tween adjacent sample points. Additionally, we also achieve
fast rendering under low-frequency illuminations by imple-
menting shadow fields on graphics hardware.

1 Introduction

Creating photo-realistic images is one of the most impor-
tant research topics in computer graphics and lighting plays
an important role in it. Traditionally, people simulated the
lighting environment by placing local light sources, such as
point light sources, and area light sources. Recently, there
are many methods using a dome-like lighting environment
(environment illumination) to create photo-realistic images.
However, since most of them use the ray-tracing method for
rendering, they need a lot of computation time.

Sloan et al. presented the precomputed radiance trans-
fer (PRT) method [23] to render a scene in real-time under
environment illumination. Then, many methods were pro-
posed to enhance both of the rendering quality and the com-
putation efficiency: PRT methods using wavelet transform
[16, 17], a method to compress the precomputed data using
the principal component analysis (PCA) [22], etc. However,

these methods have a problem: objects in the scene cannot
be translated nor rotated.

Zhou et al. extended the PRT method to render dy-
namic scenes by using an environment illumination and lo-
cal light sources together and proposed the precomputed
shadow fields (PSF) method [28]. In this method, they
precompute the shadow fields which describe the occlusion
information of an individual scene entity at some sampled
points arranged on concentric shells placed in its surround-
ing space. When rendering dynamic scenes, for each object,
the occlusion information stored in its shadow fields is inter-
polated to compute its occlusion information at an arbitrary
location. Then by quickly combining the occlusion infor-
mation of all objects, the final occlusion information at an
arbitrary location is computed efficiently. As a result, the
radiance at a location can be computed fast.

Their method has two limitations. First, they store the
shadow fields using the same number of sample points at
all the concentric shells. Second, they perform the render-
ing on CPU that limits the performance. In this paper, we
propose an algorithm to solve the limitations of the origi-
nal PSF method, which includes two methods. We observe
that the occlusion information stored in the shadow fields
varies slowly with their neighbors. Hence, we first propose
a method to optimize the number of sample points by con-
sidering the difference between the occlusion information at
the nearby sample points. To increase the rendering perfor-
mance under low-frequency illuminations, we also propose
a method to use shadow fields on graphics hardware (GPU)
for fast rendering. We assume that a scene consists of trian-
gular meshes. Generally, if we approximate the light source
and the occlusion information for all-frequency effects, the
precomputed data size will become large. Moreover, for
capturing rapid changes in radiance, it is necessary to sub-
divide the mesh data much finely. For these two reasons,
all-frequency approximation is not suitable to be used in
practical applications, such as computer games and virtual
reality. Hence, in this paper we focus on the fast render-
ing under low-frequency illuminations which is sufficient
for practical applications.



The rest of this paper is organized as follows. Section 2
describes the related work. Since our method is based on
the PSF method, the algorithm and limitations of the PSF
method are introduced in Section 3. The details of our algo-
rithm are explained in Section 4. Then, Section 5 describes
the implementation on graphics hardware. The results are
shown in Section 6 and Section 7 describes the conclusion
and future work.

2 Related work

Our method uses the dome-shaped light source and lo-
cal area light sources as the lighting environment. Since
the light sources have areas, it is important to simulate the
soft shadows. Moreover, to render a scene under the dome-
shaped light sources in real-time is related with the precom-
puted radiance transfer (PRT) method. Hence, the related
work of these two categories is described in this section.
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Nishita et al. proposed methods [18, 20] to render soft
shadows caused by linear or area light sources. Moreover,
they also proposed a method [19] to calculate soft shadows
due to the dome-like sky light which is similar to the en-
vironment illumination. However, to use their methods to
generate soft shadows needs a lot of calculation, and thus it
is difficult to render in real-time.

Recently, there are many methods have been proposed
for quickly calculating soft shadows by using GPU, which
can be divided into the shadow map [27] based methods and
the shadow volume [4] based ones. Heckbert and Herf used
the shadow map method to project multiple shadows to the
object and then combine the projected shadows to calcu-
late soft shadows [6]. Heidrich et al. proposed a method
to use GPU to calculate soft shadows caused by linear light
sources [7]. In their method, they first put several sample
points on the linear light source, and use the shadow map
method to project the shadows to the object from the sam-
ple points. Then, the soft shadows are calculated by sum-
ming the generated shadows. Soler and Sillion presented a
method to calculate soft shadows by using the fast fourier
transform (FFT) method [25]. Agrawala et al. proposed a
method to calculate soft shadows in screen space [1], but
their method did not focus on the real-time calculation.

Akenine-Moller and Assarsson extended the shadow vol-
ume method to render soft shadows by using GPU [2, 3].
However, the calculation of their methods depends on the
geometric complexity of the scene. Hence, it is difficult
to calculate the soft shadows of a complex scene efficiently.
In addition, their methods did not deal with the environment
illumination. A fast soft shadows algorithm for ray tracing

was proposed by Laine et al. [13]. This method, however,
does not compute soft shadows in real-time.
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Dobashi et al. used basis functions for fast rendering
under skylight [5]. Ramamoorthi and Hanrahan proposed a
method to render a scene under environment illumination in
real-time by using the spherical harmonics (SH) basis [21].
However, their method did not take the shadows into ac-
count. To extend their method, Sloan et al. proposed the
PRT method [23] which can render the soft shadows, inter-
reflections, and caustics in real-time. Then, to improve the
PRT method, Kautz et al. presented a method for arbitrary
bidirectional reflectance distribution function (BRDF) shad-
ing [10], and Lehtinen and Kautz proposed a method to effi-
ciently render the glossy surfaces [14]. Moreover, Sloan et
al. proposed a method to compress the precomputed data
by using the principal component analysis (PCA) [22], and
also a method to render with the PRT method and bidirec-
tional texture function (BTF) together [24]. Furthermore,
Ng et al. used wavelet transform for all-frequency relighting
[16, 17]. However, in these methods, the rendering objects
cannot be translated nor rotated in the precomputed scene.

James and Fatahalian applied the PRT method to capture
several scenes, and then they can interpolate them to sim-
ulate the translation, rotation, and deformation of the ob-
jects in the scene [8]. However, the transformation of the
objects is limited to the ones captured at the preprocessing
step. Mei et al. used the spherical radiance transport maps
(SRTM) to make the object being able to have free transla-
tion and rotation [15]. However, in their method, the radi-
ances of the vertices are calculated by using CPU only, and
thus the performance is not so good. Since the SRTM needs
many texture images while rendering, it is difficult to shift
the calculation to GPU. Hence, their method cannot render
a complex scene fast. Kautz et al. used hemispherical ras-
terization for all vertices and all frames under environment
illumination and made the object capable of free deforma-
tion [9]. However, for a complex scene, the calculation is
too complex to render the scene in real-time even after ap-
plying several optimizations. The method for fast rendering
of soft shadows in dynamic scenes which distinguished be-
tween self-shadow and shadows cast by other objects was
proposed by Tamura et al. [26]. This method, however, can-
not deal with local light sources. Efficient soft shadows ren-
dering under ambient light was proposed by Kontkanen et
al. [12]. However, this method cannot take into account the
illumination from distant lighting and local light sources.

Zhou et al. proposed the PSF method which precom-
puted the shadow fields to store the occlusion information of
some sample points arranged on concentric shells placed at
the surrounding of the object. When rendering, by quickly



(a) (b)

Figure 1. The concept of the precomputed shadow fields (PSF) method. (a) Precomputation of the
shadow fields. (b) The calculation of the occlusion information due to other objects at point �.

combining the occlusion information stored in the shadow
fields, they can render dynamic scenes which may contain
several objects [28]. In their method, however, they use the
same number of sample points at all shells. In this paper, we
present a method to adaptively sample the shadow fields and
thus our method reduces the data size of the shadow fields.
Moreover, we present a GPU implementation for render-
ing using shadow fields under low-frequency illuminations.
Hence our method can be used for practical applications,
such as computer games and virtual reality.

3 Original precomputed shadow fields

In this section, we describe the overview and the limita-
tions of the original PSF method [28].
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In the PSF method, the shadow fields of each local light
source and object, which will be translated and rotated, are
precomputed as Fig. 1(a). To calculate the shadow fields,
concentric shells are placed at the surroundings of the ob-
ject. Then, a large number of sample points are gener-
ated on each shell, and the object occlusion field (OOF)
and source radiance field (SRF) of the object are calcu-
lated at each sample point. The occlusion and radiance in-
formation at each sample point are calculated in longitude
� and latitude � directions. The calculated information is
approximated using spherical harmonics as [23] or using
Haar wavelet transform as [16]. Different approximation
methods will cause different qualities of shadows, render-
ing performance, and memory consumption. Furthermore,
the self-occlusion (occlusion due to its own geometry) of
each point is also precomputed.

To render using shadow fields, the radiance at each ver-
tex is first calculated. Then, the scene is rendered by inter-
polating the radiance at each vertex. The occlusion infor-
mation due to other objects during the radiance calculation

is calculated by referring to the shadow fields as shown in
Fig. 1(b). The occlusion information of object � at point �
is calculated by interpolating the information at the sample
points near �. The occlusion information due to more than
one object is combined by using the triple product [17].

In the original PSF method, the locations of sample
points are decided by projecting a cubemap to concentric
shells. Cubemap based scheme is indeed efficient on sam-
pling distribution, however, it is difficult to keep continu-
ous interpolation near the cube edges when we optimize the
sample points on each cubemap face independently. To sim-
plify the interpolation, we employ polar coordinates model
for the locations of sample points. In our method, the co-
efficient vectors of the orthonormal basis transformed from
the occlusion information (one dimensional array under the
occlusion information in Fig. 1) are called occlusion coef-
ficient vectors (OCV). As for the source radiance informa-
tion, we call them radiance coefficient vectors (RCV).
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The PSF method proposed by Zhou et al. [28] has the
following two limitations:

� Same number of sample points at all shells. If we set
the sampling resolution � in � and � directions on �
concentric shells and each sample point stores OCV
with � elements where each element needs � byte, in
the case of fix sampling resolutions, the data size of the
shadow fields is � ��� �� �� bytes.

� Relatively low-rendering performance due to the com-
putation using only CPU.

4 Adaptive shadow fields

In this section, the adaptive sampling method for the
OOF is described. The SRF can also be adaptively sampled
by using the same method.



(a) (b)

Figure 2. Optimization of the number of sample points. (a) Previous method [28] uniformly put the
sample points (left), but our method considers the variation of the occlusion information among the
neighboring sample points to optimize the number of sample points (right). (b) Reducing the number
of sample points by halving the sampling resolution in each direction (left) and checking if the new
sample points (blue points) can approximate the initial sample points (red points) (right).

Based on our observation, the occlusion information
stored in the shadow fields varies slowly. Therefore, we can
reduce the data size of the shadow fields by removing some
unnecessary sample points at each concentric shell respec-
tively (Fig. 2(a)). We perform the optimization of sample
points at each shell independently.

The details of the algorithm for optimizing the number
of sample points at each concentric shell is as follows (see
Fig. 2(b)).

1. Set the initial sample points on the shell with resolu-
tion �, that is, ��� sample points (red points).

2. Compute the occlusion information at all initial sam-
ple points and transform them to OCV �. We use
spherical harmonics for low-frequency shadow fields
and Haar wavelet transform for all-frequency shadow
fields.

3. Arrange the new sample points on the shell with �	��
�	� sample points (blue points).

4. Calculate the OCV �� of the new sample points by
linearly interpolating the occlusion information con-
tained in its four nearest initial sample points.

5. Obtain the OCV �� of each initial sample point by lin-
early interpolating its four nearest new sample points
(however, we use the nearest point for the corner, and
the two nearest points for the boundary).

6. Calculate the difference between OCV �� and OCV �
using Equation (1).
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where � is the basis function (spherical harmonics or
wavelet), � is the number of the basis functions, �

�� is
the normalization term, and � and � are the indices of
sample points in � and � directions, respectively.

7. For all the initial sample points, if the differences are
lower than a specified threshold, the initial sample
points are replaced with the new sample points, then
halve the value of � and return to Step 3. The thresh-
old will be explained in Section 6.1.

To perform the optimization recursively, we keep the num-
ber of sample points to be power of two. In our implemen-
tation, we set � � 	� in the initial state. By replacing the
OCV with the RCV, we can use the above mentioned algo-
rithm to adaptively sample the SRF.

5 GPU implementation

Our GPU implementation is for rendering using shadow
fields whose OCV and RCV are approximated using four-th
order spherical harmonics (16 bases), where each spherical
harmonics coefficient is quantized to 8-bits. Fig. 3 shows
the outline of the radiance computation using shadow fields.
Since the radiance computation of each vertex � is indepen-
dent of each other, it is possible to perform the computations
in parallel and is hence suitable for GPU implementation.
The underlined parts in the figure are performed on GPU.

In our method, we first prepare radiance texture �� and
vertex array texture �� with sizes ��� (�� � the number
of vertices) for each object. We then use CPU to perform the
visibility culling operation to calculate the visible vertex ar-
ray � and store it in ��. Next, we make the one-to-one cor-
respondence between the �-th vertex �� of � and the texel
��
 �� of �� , where � � � mod � and � � ��	��. After
this operation, we perform the calculation of each individ-
ual vertex to be that of each texel, and most of the radiance



computations are transferred to GPU as shown in Fig. 3.
Finally, the radiance of each vertex of � is stored in ��. In
the rendering stage, we use vertex shader to reference the
correspondence texel in �� to obtain the vertex color.

To perform GPU based radiance computations, we have
to keep �� , �� and �� on GPU. We use the Frame Buffer
Object (FBO) extension [11] to keep them. In our imple-
mentation, one FBO � is created and the �-th element of
each �� , �� and �� is stored in the �� mod � 
 ��-th
channel at the ��	� 
 ��-th COLOR ATTACHMENT [11]
of � . If we try to operate the computation of �-th or-
der spherical harmonics on GPU, one FBO with

�
��	�

�
COLOR ATTACHMENTs is needed. Current maximum
number of the available COLOR ATTACHMENT is four.
Thus, our GPU based radiance computation is restricted to
fourth order spherical harmonics due to hardware capabil-
ity.

The underlined parts in Fig. 3 mainly consist of the fol-
lowing four computations.

1. Reconstruct the OCV (RCV) of each object (light
source) at each vertex from the adaptive shadow fields.

2. Rotate the axes of the local coordinates of the OCV
(RCV) to the axes of global coordinates.

3. Combine the OCVs by calculating the triple product.

4. Compute the radiance by calculating the double prod-
uct of coefficient vectors.

The details of Step 1 and Steps 2, 3, 4 are described in
Section 5.1 and Section 5.2, respectively. Moreover, the
culling operation and sorting of occluders are explained in
Section 5.3.
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Fig. 4 shows the outline of the OCV reconstruction pro-
cess. In our method, we first convert the visible vertex � of
target object  to coordinates �� at the local coordinates of
the occluder ! . Then, we calculate the nearest two concen-
tric shells "�
 "� at �� . For each " , we refer to the OOF
to compute the OCV by interpolating the OCV at the near-
est four sample points. Furthermore, the computed OCV at
each shell is interpolated according to the distance from ��
to "�
 "�. The process here is fully performed on a frag-
ment shader, and hence can obtain high performance. The
RCV reconstruction is also performed as the OCV.

To realize the computation in Fig. 4, the data of the adap-
tive shadow fields have to be stored in textures �	. To con-
struct �	, we first create the texture � 


	 to store the OCVs
of the #-th �# $ �� concentric shell, which has �
 � �


sample points (that is, �
 is the sampling resolution at the

// �� : the exitant radiance texture //
// 	� : the self-occlusion information at vertex � //
// �� : the product of the BRDF and a cosine term //
rotate distant lighting 
� to align with global coordinate frame
For each entity � that is an object do

� = visible vertices of � that are visible from camera
compute distance from center of � to each scene entity
sort entities in order of increasing distance
For each visible vertex � in � do

����� = 0
�� = TripleProdut�	� � ���
rotate �� to align with global coordinate frame
For each entity � do

If � is a light source
calculate RCV 
����

rotate 
���� to align with global coordinate frame
�����	 � �����������
��
����� ���

Else
calculate OCV 	����

rotate 	� ��� to align with global coordinate frame
�� � �����������
��	� ���� ���

End If
End For
�����	 � �����������
��
�� ���

End For
End For

Figure 3. Outline of the rendering process.
The underlined parts are performed in GPU.

#-th shell). To create � 

	, we use four RGBA (four chan-

nels) textures ��%&� � �
��

��. For keeping continuous
interpolation at the boundaries of � direction, we allocate
extra texels on � 


	 borders and the OCVs at the boundary
are duplicated to the other boundary. On each texture, the
�-th �� � �
 '''
 �
� element of the OCV of a sample point
��
 � � �
 '''
 �
 � �� is stored in the �� mod � 
 ��-th chan-
nel of the ��
 � 
 �� texel at the ��	� 
 ��-th texture of � 


	.
In the extra texels ��
 �� and ��
�
 
 ��, we duplicate the
OCV of sample points ��
�
 � �� and ��
 ��, respectively.

After creating � 

	 for all concentric shells, all � 


	 are
packed to construct �	 as shown in Fig. 5. As described in
Section 4, �
 is different for each concentric shell. In our
packing method, we sort the � 


	 according to �
 to tile � 

	

as a rectangle. Although this �
 packing method may have
some gaps, it does not pose a memory consumption problem
since we only take low-frequency data into consideration in
our GPU implementation and the memory consumption is
relatively small. Furthermore, in this packing method, since
� 

	 are usually preserved as a rectangle, we can use the bi-

linear interpolation functions on GPU to efficiently interpo-
late four points when performing TextureFetch��	
 ��� in
Fig. 4. Since � 


	 in �	 is arranged according to the size of
�
, we use an additional address texture to store the posi-
tion of � 


	 on �	.

Since �	 is quantized to 8-bits, it is necessary to create
four RGBA textures �� ��%&� � ���� to store the minimum
value and step of quantization for the restoration of the OCV
on GPU. Hence, we store the minimum value of the �-th



// � : target object, � : occluder object //
Input:
� texture coordinates of screen pixel

Output:
� OCV

Constants:
�� transformation matrix from local coordinates

to global coordinates of �
�	 inverse transformation matrix from global coordinates

to local coordinates of�

	 radius of the bounding sphere �

�	 smallest radius of the first concentric shell of �

� distance between the shells of �

 the number of shells of �

Texture:
�� visible vertex position data
�� shadow fields data (8 bit quantized), 4 textures
�� quantization constant data (min value and step value), 4 textures

Note:
TextureFetch��� �� texture fetch from texture� using texture coordinates�

� = 0
local vertex position�� �TextureFetch���� ��
global vertex positon �� � �� � ��
�� = transform �� to local coordinates of� by using�	
calculate the spherical coordinates �� of ��
calculate nearest two concentric shells��� �� by using �� ,
	 , 
�	 ,
� ,

For each � do

calculate weight� of�
min, step = TextureFetch���� �� �
coeff = TextureFetch���� �� �
� +=� * ( coeff * step + min )

End For

Figure 4. Outline of our OCV reconstruction
fragment shader.

Figure 5. The concept of texture storage for
the adaptive shadow fields.

element of the #-th concentric shell as the �� mod � 
 ��-th
element of the texel ��
 #� on the ��	�
��-th texture of �� .
The step value is stored in the position ��
 #�.

��� !" ��
�
���# ���$%� ������
# ���

���%� ������


We use the ZXZXZ Rotation method [10] to perform the
spherical harmonics rotation. Fig. 6 shows the portions of
our nVIDIA Cg fragment shader code to compute the spher-
ical harmonics rotation. The number of total instructions of
the shader is 137. Since the values of alpha, beta, gamma
in Fig. 6 depend only on the amount of rotation of the ob-
ject, that means their values are the same for all the vertices,
we hence compute their values on CPU and set them as the
shader constants.

To compute the double product of the coefficient vec-
tors on GPU, we employ the vector dot product command

#define SQRT6_4 0.61237243569579447
#define SQRT10_4 0.79056941504209488
#define SQRT15_4 0.96824583655185426

half4x4 shRotXp16( const half4x4 src )
{

half4x4 dest; // rotated SH coefficients //

dest[ 0 ].r = src[ 0 ].r; dest[ 0 ].g = -src[ 0 ].b;
dest[ 0 ].b = src[ 0 ].g; dest[ 0 ].a = src[ 0 ].a;

// ... calculate dest[ 1 ].r - dest[ 2 ].a ... //

dest[ 3 ].r = -SQRT10_4 * src[ 2 ].g - SQRT6_4 * src[ 2 ].a;
dest[ 3 ].g = -0.25 * src[ 3 ].g - SQRT15_4 * src[ 3 ].a;
dest[ 3 ].b = SQRT6_4 * src[ 2 ].g - SQRT10_4 * src[ 2 ].a;
dest[ 3 ].a = -SQRT15_4 * src[ 3 ].g + 0.25 * src[ 3 ].a;

return dest;
}

half4x4 shRotXn16( const half4x4 src )
{

// ... abbreviated ... //
}

half4x4 shRotZ16( const half4x4 src, const half2 sinCos )
{

// ... abbreviated ... //
}

half4x4 SHRotate16( half4x4 src, half2 alpha, half2 beta, half2 gamma )
{

half4x4 temp1, temp2;

temp1 = shRotZ16( src, gamma );
temp2 = shRotXn16( temp1 );
temp1 = shRotZ16( temp2, beta );
temp2 = shRotXp16( temp1 );
temp1 = shRotZ16( temp2, alpha );

return temp1;
}

Figure 6. nVIDIA Cg fragment shader code
for the fourth order spherical harmonics ro-
tation.

provided in the fragment shader. Since there are 16 coeffi-
cients, we compute the dot product on every 4 coefficients
and sum up the results.

As mentioned in Ng et al.[17] and Zhou et al.[28], the
number of the non-zero tripling coefficients of the fourth
order spherical harmonics are relatively small (77). There-
fore, we determine all the non-zero tripling coefficients and
use them to compute the projection coefficients. Fig. 7
shows some portions of the fragment shader code for per-
forming the triple product. The number of total instructions
of the shader is 415.
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As in the original PSF, we perform the visibility culling
for the vertices of each object on CPU. We cull the vertices
outside the view volume and the vertices which do not be-
long to the front face triangles. The vertices that passed
the culling test are put in visible vertex array �. The co-
ordinates of the vertices in � are then put in �� and the
correspondences between the vertices in � and the texels in
radiance texture �� are redetermined. Since the number of
vertices in � (referred as ���) differs for every objects and
in every frames, for efficient computation, we only execute
the pixel shader on a rectangular region with width � and
height ���	� . The array of the self-occlusion information



half4x4 tripleProductSH16( half4x4 coeff1, half4x4 coeff2 )
{

half4x4 projCoeff; // resulting basis coefficients //

// ... calculate coefficients of the first - ninth basis ... //

// calculate coefficient of the tenth basis //
projCoeff[ 2 ].g = 0.282095 * ( coeff1[ 0 ].r * coeff2[ 2 ].g +

coeff1[ 2 ].g * coeff2[ 0 ].r );
projCoeff[ 2 ].g += 0.226179 * ( coeff1[ 0 ].g * coeff2[ 2 ].r +

coeff1[ 2 ].r * coeff2[ 0 ].g );
projCoeff[ 2 ].g += 0.226179 * ( coeff1[ 0 ].a * coeff2[ 1 ].r +

coeff1[ 1 ].r * coeff2[ 0 ].a );
projCoeff[ 2 ].g += -0.094032 * ( coeff1[ 1 ].r * coeff2[ 3 ].g +

coeff1[ 3 ].g * coeff2[ 1 ].r );
projCoeff[ 2 ].g += 0.148677 * ( coeff1[ 1 ].g * coeff2[ 3 ].b +

coeff1[ 3 ].b * coeff2[ 1 ].g );
projCoeff[ 2 ].g += -0.210261 * ( coeff1[ 1 ].b * coeff2[ 2 ].g +

coeff1[ 2 ].g * coeff2[ 1 ].b );
projCoeff[ 2 ].g += 0.148677 * ( coeff1[ 1 ].a * coeff2[ 2 ].b +

coeff1[ 2 ].b * coeff2[ 1 ].a );
projCoeff[ 2 ].g += -0.094032 * ( coeff1[ 2 ].r * coeff2[ 2 ].a +

coeff1[ 2 ].a * coeff2[ 2 ].r );

// ... calculate coefficients of the eleventh - sixteenth basis ... //

return projCoeff;
}

Figure 7. nVIDIA Cg fragment shader code for
the fourth order spherical harmonics triple
product.

�� of the vertices in � are also stored in textures in every
frame.

Since for each object, we compute the radiances of its
vertices simultaneously on GPU, to efficiently perform the
radiance computations, for each object, we sort its occlud-
ers and use the results when computing the radiance of all
its vertices. However, if the object is very large, the sorting
results may not applicable at some of the vertices. To avoid
this problem, for large objects, we divide the mesh into sev-
eral sub-meshes and perform the radiance computation in
the unit of sub-mesh.

6 Results

In this section, we show the rendering results using adap-
tive shadow fields. In our experiments, we use a desktop
PC with a Intel Pentium D 3.0GHz CPU and a GeForce
7800GTX GPU. The occlusion and the radiance informa-
tion are computed as maps with resolution 	� � 	�. For
low-frequency shadow fields, we use 32 concentric shells
and 	� � 	� sample points as the initial sampling resolu-
tion. The information in the shadow fields is approximated
using the fourth order spherical harmonics with 16 coeffi-
cients, where each coefficient is quantized to 8 bits. For all-
frequency shadow fields, we use 32 concentric shells and
	� � 	� sample points as the initial sampling resolution.
The information is approximated using wavelets and 
� of
the largest coefficients are kept, where each coefficient is
also quantized to 8 bits. The center of the concentric shells
is placed at the center of the object and the radius of the #-th
�# � �
 '''
 ��� shell is �'�(��� 
 #�, where (� is the radius
of the bounding sphere of the object.

Table 1. Optimal number of sample points.
Sampling resolution �� at the shells

Teapot (L) 8 64 64 64 64 64 64 64 64 32 32 32 16 16 16 16
16 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Teapot (A) 8 64 64 64 64 64 64 64 64 64 64 64 64 64 32 32
32 16 16 16 8 8 8 8 8 8 8 8 8 8 8 8

Statue (L) 64 64 64 64 64 64 64 64 32 16 16 16 16 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Statue (A) 64 64 64 64 64 64 64 64 64 64 32 32 16 16 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Plane (L) 64 64 64 64 64 64 64 64 64 64 64 32 16 16 16 16
16 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8

Plane (A) 64 64 64 64 64 64 64 64 64 64 64 64 64 32 32 32
16 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8

Table 2. The data sizes of the shadow fields.
Fix sampling Adaptive sampling

(MB) (MB)
Teapot (L) 2.0 0.59
Teapot (A) 21.9 13.0
Statue (L) 2.0 0.55
Statue (A) 21.3 11.7
Plane (L) 2.0 0.75
Plane (A) 19.5 11.9

&�� '�
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In order to determine the threshold value to be used when
we optimize the number of sample points, we performed
several experiments as follows. We made a scene consist-
ing of three different types of objects, that is, an almost
isotropic object (a teapot), a long object (a statue), and a
plane (thin rectangular solid). Then, we rendered it by vary-
ing the threshold using non-adaptive and adaptive, low- and
all-frequency shadow fields. The results are shown in Fig.
8. We can notice the difference between the images gen-
erated by non-adaptive shadow fields and adaptive shadow
fields when setting the threshold to �'���, but the difference
is not notable when seting the threshold to �'���. Therefore,
we set the threshold to �'��� for all the rest of the examples
presented in this section.

&�� ��
���% 
���%��	 ��
�%�
���


Table 1 shows the sampling resolutions at the concentric
shells of the shadow fields of the three objects described in
Section 6.1. The shells are sorted in order of increasing ra-
dius. For each object, the upper and the lower row are the
results for low-frequency (L) and all-frequency (A) shadow
fields, respectively. Table 2 shows the data sizes of the
shadow fields. By using adaptive sampling, generally, we
achieve about 60% - 70% and 40% - 45% reduction on the
data sizes of the low-frequency and all-frequency shadow



(a)

(b)

Figure 8. Determining the threshold values for (a) low-frequency shadow fields and (b) all-frequency
shadow fields. The images from left to right are the result of using non-adaptive shadow fields (for
comparison) and the results of using adaptive shadow fields and setting the threshold to 0.020,
0.010, 0.005, respectively. The images at the bottom show the differences (scaled 15 times) between
the result of non-adaptive shadow fields and the results of adaptive shadow fields.

fields, respectively. The reason why the first shell of the
teapot has the smallest resolution is that all sample points
of the shell are located inside the teapot, and thus the differ-
ences of occlusion information are everywhere zero. Note
that in our implementation for low-frequency shadow fields,
we use 32 shells, each consisting of 4,096 samples, and
each sample has an OCV at size 16 bytes. Therefore, the
data size of our non-adaptive low-frequency shadow fields
is ��� �
 ��	� �	 � � MB.

&�� ��������	 ��
�%



Fig. 9 - 11 show the rendering results using our algo-
rithm. We rendered three scenes while changing the envi-
ronment illumination and moving the objects. The objects

are moved by user in Fig. 9, and by rigid body simulation
in Fig. 10 and 11. For the rigid body simulation, we use
the PhysX Engine1. The statues scene (Fig. 9) has 6 ob-
jects and 32,875 vertices, the bowling scene (Fig. 10) has
15 objects and 41,340 vertices, and the falling objects scene
(Fig. 11) has 20 objects and 88,739 vertices. For the stat-
ues and the falling objects scenes, some of the objects have
glossy BRDF. For the bowling scene, during the animation,
we changed the BRDF of the ball to glossy BRDF.

Table 3 shows the total sizes of the shadow fields and the
comparison of the rendering performances using CPU and
GPU of the three scenes. It is obvious that using the pro-
posed GPU implementation, we were able to significantly
speed up the rendering process.

1Ageia (PhysX Engine): http://www.ageia.com/



Figure 9. The statues scene (6 objects, 32,875 vertices).

Figure 10. The bowling scene (15 objects, 41,340 vertices).

Figure 11. The falling objects scene (20 objects, 88,739 vertices).

Table 3. The total data sizes of the shadow
fields and the rendering performances.

Sizes of SF CPU GPU
(MB) (fps) (fps)

Statues 4.6 4 - 18 70 - 100
Bowling 4.2 1 - 3 30 - 40
Falling objects 12.9 0.5 - 1 12 - 16

7 Conclusion and future work

In this paper, we have presented an algorithm for adap-
tively sampling the shadow fields and for fast rendering of
dynamic scenes under environment illumination and local
light sources. Concretely, we solved the limitations of the
original PSF method. We decrease the data size of shadow

fields by reducing the amount of the precomputed data,
since the difference between the nearby precomputed data
is small. Thus, we can adaptively optimize the number of
sample points of the shadow fields. Furthermore, we realize
the fast radiance computation under low-frequency illumi-
nations by implementing the PSF method on GPU.

The next thing to do is to explore the possibility of com-
pressing the all-frequency shadow fields. We also believe
that our algorithm can be extended to adaptively control the
number of the concentric shells.
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