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Abstract 
  

Recently, displaying natural phenomena such as smoke 
has become a topic of interest in computer graphics. The 
ability to simulate the complex shapes and motion of the 
smoke particles is not only important but is also a difficult 
problem to solve. In this paper, we propose a method of 
displaying swirling smoke, including the consideration of 
its passage round obstacles. By using the idea of metaballs, 
we can easily represent the 3-dimensional density 
distribution of smoke. We solve the physical equation of the 
flow, and represent the vortices by using the vorticity 
vector. Therefore, we can make a model of the smoke flow 
even if there are obstacles in it’s path. 
   
Keywords and phrases: Smoke, Metaballs, Vorticity, 
Computational Fluid Dynamics, Natural Phenomena. 
   
   

1. Introduction 
   
  Methods of displaying smoke are used in various fields, 
such as visual simulation, entertainment, etc. Therefore, 
there is quite a demand in several industries to mimic the 
appearance and motion of smoke. The problem of modelling 
it’s complex behaviour from it’s interactions with the 
surrounding air and obstacles is a topic of interest. We can 
see such motion as a part of so many everyday scenes. 
  We can handle smoke as a set of small smoke particles , 
but the interaction between the smoke and obstacles is 
difficult to evaluate when we simply consider the forces that 
act upon these smoke particles. We can deal with smoke as 
a type of fluid, and when we deal with it in this way we can 
simulate more accurately  smoke flow around obstacles. 
Therefore, when we want to describe a realistic flow and to 
consider its passage around obstacles, we have to take into 
account some of the fluid properties of the smoke.  
  Firstly, we have to represent the non-uniform density 
distribution of smoke, which changes as time goes by. Since 
smoke is one kind of the fluid, we can consider the smoke as 
a set of smoke clusters. We can then consider a model of the 
smoke’s density distribution. In this model we deal with 
some of the smoke particles as a set, and hence deal the 

smoke in it’s entirety as a combination of these sets. The 
main problem is how we define these sets. 
  Secondly, smoke has a complex motion because it exhibits 
turbulent flow. In turbulence there are random velocity 
components, which make the calculation of the flow complex. 
When we consider the introduction of obstacles into the 
flow path, the problem becomes even more difficult, because 
the obstacles clearly affect the flow. An animator takes 
pains to depict such flows by only inputting the velocity by 
hand. The modelling and simulation of such flows are, of 
course, important problems in the fields of science and 
engineering. Fluid simulations are based on the standard 
mathematical framework. Many methods have been 
proposed in various areas regarding how we can compute 
the fluid’s flow numerically. We can choose one of these 
methods to calculate the flow of smoke around obstacles.  
  Thirdly, there are a lot of vortices in turbulence. We have 
to consider vortices which cause swirling within the smoke. 
The strength of the rotational velocity and the direction of 
the rotational axis depend on the condition of the velocity 
distribution. Therefore, we need to model these properties of 
the vortices. It is one of the fundamental problems regarding 
how we deal with vortices in the fluid simulation system. 
  Therefore, we propose a method of displaying smoke with 
these three properties. A summary of our method is as 
follows. 
(1) We use metaballs to simulate the density distribution of 
smoke. Each metaball has a 3-dimensional density 
distribution, and we consider that the smoke is a 
combination of metaballs. 
(2) We calculate the velocity field, which can be expressed 
by the physical equations of the flow. The result of the 
equations represents a realistic flow around obstacles. 
(3) We generate small vortices by a concept called 
‘vorticity’. The vorticity vector defines the strength and 
direction of the vortices. By using these vortices, we can 
display the swirling smoke.  

  
2. Previous Work 

  
  Many methods have been proposed to display the 
simulated flow of smoke or clouds. Clouds have some 



    

   

properties similar to those of smoke, so we can often apply 
the method used for clouds to also display smoke. 
  It seems to be natural to think of modelling the smoke as 
a set of smoke particles. The particle system is popular for 
natural phenomena. In this method, gas is dealt with as a 
set of particles. Reeves [1], Ebert, Carlson, and Parent [2], 
and Reeves and Blau [3] displayed smoke by using the 
particle system. However, to model the density distribution 
of the smoke requires a large number of particles. 

One of the methods to model the density distribution of 
smoke is to define a function that shows the density 
distribution of smoke or clouds. Musgrave created a 
typhoon by a procedural approach using 2-dimensional 
fractals [4]. Gardner [5] and Nishita et al. [6] displayed 
smoke by using a Fourier series. However, these three 
methods use mathematical functions to define the smoke 
flow, so it is difficult to add physical parameters to 
represent a more realistic smoke flow. 

There have been several approaches to modelling the 
flow of the smoke or clouds. For depicting clouds, Kajiya et 
al. simulated cloud formation by considering the phase 
transition effects from vapor to water [7]. However, this 
method is complex and time-consuming. Sakas [8], Stam et. 
al. [9], and Shinya et. al. [10] have modeled the turbulent 
motion by taking a stochastic approach. The user simulates 
the flow by stochastic parameters, so it is not easy to add 
the physical parameters which the user requires to these 
systems. 

One of the approaches to representing the turbulence is 
to consider the wind field or vortex field. Fluid’s flow 
satisfies the physical equations such as Navier-Stokes 
equations [11, 12], and we can solve these equations on a 
computer for the wind field or vortex field. Wejchert and 
Haumann [13] modelled the motion of gas by using a wind 
field. Sims [14] also used a wind field, and introduced the 
concept of random turbulence. However, in these two 
methods users have to set the velocity or vortices manually. 
To model the smoke automatically, we need to simulate the 
smoke flow, and many methods have been proposed to 
achieve this. Yaeger, Upson, and Myers [15] first used 
2-dimensional vortices coupled with a Poisson solver to 
calculate turbulence flow, and generated an animation of 
the surface of the planet Jupiter. Later, Chen et al. solved 
the 2-dimensional Navier-Stokes equations and animated 
water surfaces by utilising the pressure term [16]. Chiba et 
al. also generated the 2-dimensional vortex field [17]. 
Results using these methods are limited to using a fixed 
viewpoint to get realistic images. 

Foster et al. modelled the 3-dimensional smoke flow 
around obstacles by solving the Navier-Stokes equations 
[18], although the calculation used in this method can be 
unstable according to the parameters used . Since the 
allowable parameters in this method are restricted for 
achieving stable calculation, it is troublesome to display 
swirling smoke. Stam et al. proposed a method using the 

same equations [19]. They solved the equations in a faster 
and more stable way for real-time animation, but this 
method cannot be applied for the other equations of flow, 
which include the random velocity components in the 
turbulence.  

In our method, we use metaballs to model smoke based 
on a physical-based fluid model, so that we can represent 
the 3-dimensional density distribution of smoke, and it 
requires less data than the particle system. We use 
equations that take into account random velocity in order to 
represent a more realistic flow. Furthermore, to represent the 
swirling smoke, vortices are evaluated using the calculated 
flow. 

  
3. Modelling the Smoke by Using Metaballs 

  

 
   (a)Set of smoke particles     (b)Example of 
                               density distribution 
Figure 1: The smoke puffs and the density 
distribution. 
   
  Smoke has a complex density distribution due to the 
nature of smoke particles. To model this distribution by 
using the particle system, a lot of particles are needed. To 
model the density distribution of the smoke with less data, 
we consider a ‘set’ of smoke particles. 
  As shown in Figure 1, we can deal with smoke as a 
combination of smoke clusters. This cluster is called a 
“puff.” The puff is ball-shaped, and has a density 
distribution, which satisfies the following condition. The 
density of the puff is highest at the center, and the farther 
from the center, the lower it becomes. In general, the 
Gaussian function can be applied to represent the density 
distribution of the smoke puff, but it has infinite domain. 
We use a metaball to define the density distribution of the 
puff. In our method, we use a sixth degree function for the 
density distribution of the metaball [20]. 
  We calculate the flow of metaballs in the velocity field by 
the method described in Chapter 4. This velocity field is 
calculated in advance. We make metaballs move by 
considering the calculated velocity field. As shown in 
Figure 2(a), the velocity field represents the flow avoiding 



    

   

obstacles, and so the flow of metaballs also avoids 
obstacles as shown in Figure 2(b). 

 
      (a)Velocity field      (b)Smoke flow 
                            by using velocity field 
Figure 2: The velocity field and the metaballs’ 
flow. 
   
  The radius of the smoke puff is not constant, because 
smoke particles diffuse in the puff. To simplify this, we 
assume that the radius of the metaball increases 
proportionally as time passes, and the larger the radius of 
the metaball is, the less dense the metaball becomes.  
   
4. Calculation of the Flow by Using the Velocity 
Field Theory  

  
  In this section, we derive a numerical model for the smoke 
flow. The space around the surface of the earth is called the 
“boundary turbulence layer, ” which has random velocity 

components. Let the velocity vector to be ),,( wvu=u , 

the average velocity vector to be ),,( wvu=u , and the 

random velocity vector to be )',','(' wvu=u . Each 

velocity component is the sum of the average component 

and random component (i.e. 'uuu += ). A fluid is 
represented as a combination of a temperature field and 
velocity field. The rotational, buoyancy and convective 
components of the smoke motion are modeled by the 
Navier-Stokes equations. Foster et al. solved the 
Navier-Stokes equations to simulate the smoke flow. These 
equations are popular, but they don’t consider the random 
velocity components of the turbulence. There are better 
equations to describe the forces acting in the smoke flow. 
We use the Reynolds equations, which consider the 
random velocity components of the flow. 

   
4.1 The equation of the flow 
   
  The velocity of the fluid is affected by a number of factors 

such as convection, buoyancy, pressure, and so on. The 
Reynolds equations fully describe the forces acting within the 
smoke flow, and consider the effects of random velocity 
components. The Reynolds equations are: 
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   ,bvF+     (1)  

where ρ  is the density, p  the pressure, ν  the 

coefficient of the viscosity, and tν  the coefficient of  

eddy viscosity.  
To calculate Equation (1), we subdivide the whole space 

that contains the smoke flow into voxels (see Section 4.2). 
By using Equation (1), we can calculate the average velocity 
components in each voxel.  

In the right sides of Equation (1), the third terms are the 
terms incorporating the random velocity components, which 
the Navier-Stokes equations do not have. These terms 
generate the random flow, which cannot be represented by 
using the Navier-Stokes equations. It is known that the 
strength of the random flow is several percent of the 
average flow. We can determine the random velocity 
component as the random value whose strength is several 
percent of the average velocity components. Figure 3 is a 
comparison of the velocity field with two differential 
equations. By using the Navier-Stokes equations we can 
only consider a simple flow, but the random components of 
the flow can be represented by the Reynolds equations.  
   

      
   
 (a)Navier-Stokes equations    (b)Reynolds equations 
   
Figure 3: The comparison of the velocity field with 
two different equations.  
   

Also in the right side of Equation (1), the fourth terms are the 
pressure terms. When we calculate Equation (1), we divide the 
pressure term and the other terms. Such a division could 
minimize the error (see Section 4.4). 
  In Equation (1), there is a buoyancy term bvF  only used 

by the third equation. To calculate it, we have to consider 
the temperature field. Temperature T  is defined as the sum 

of the average component T and the random component 
'T . To calculate the temperature field, we solve the 



    

   

equations of heat flow, which have some analogy with the 
Reynolds equations: 
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    (2) 
where α  are the coefficient of the heat diffusivity, and 

tα  is the coefficient of eddy and heat diffusivity.  

  Before calculating the buoyancy term, we calculate the 
temperature field, and bvF can be calculated as [18]. 

  There are some conditions to calculate Equation (1), called 
“boundary conditions”. In our method, we consider the 
conditions described in Section 4.3. 

   
4.2 Definition of the voxel 
   

 
(a)Voxel ),,( kji           (b)Example of  

                          boundary conditions 
Figure 4: The definition of voxel and boundary 
conditions. 
   
  To calculate Equation (1) in Section 4.1, we subdivide the 
whole space that contains the smoke flow into voxels. We 
can use other elements instead of voxels, but the regular 
voxel grid makes it easy to understand how to calculate the 
physical parameters such as velocity, pressure, and 
temperature. We deal with the coordinate systems as 
3-dimensional Euclid space in which the z -axis represents 
the vertical direction and the x - and y -axes represent the 

horizontal directions. The number of subdivisions is  
,, yx NN  and zN  in the ,, yx  and z  directions, 

respectively. 
  Within each voxel, there are some physical variables of 
the smoke. The voxel can be labeled ),,( kji  (0 xNi <≤ , 

0
yNj <≤ ,  0 zNk <≤ ) the velocity vector is ( ,,, kjiu  

,,, kjiv kjiw ,, ), the temperature is kjiT ,, , and the pressure 

is kjip ,, . To define these variables, we set some “reference 

points” on the surface of the voxel, and calculate the value 
of the variables at these points. As shown in Figure 4(a), at 
the center of each face of the voxel, we define a velocity 
component perpendicular to the face, and at the center of 
the voxel, we define variables of temperature and pressure. 

   
4.3 Boundary conditions  
   

 
Figure 5: The boundary conditions.  

   
  To calculate Equation (1), we have to consider some 
conditions called “boundary conditions.” For the boundary 
conditions, we consider the velocity on the surface of the 
obstacle, the velocity of inflow, the velocity of outflow, and 
the velocity at the top layer. We consider these conditions 
for the calculation of Equation (1). 
(1) We consider the velocity on the surface of the obstacle. 
The velocity on the surface of the obstacle is defined to be 
zero. For example, we consider the situation as shown in 
Figure 4(b). In this situation, voxel ( 1,, −kji ) is in the 

obstacle and voxel ( kji ,, ) is out of it. We can set the 

velocity component 1,, −kjiw  in the vertical direction to be  

zero. In the horizontal direction, since there is no reference 
point on the surface, it is difficult to define the velocity 
component in this direction. We can set the velocity 
component 1,, −kjiu  inside the obstacle to be kjiu ,,−  to 

approximate the velocity on the surface of the obstacle. 
(2) We have to define the flow at the boundary of the 
analytical space. We call such a flow the “inflow” (see 
Figure 5). Simply speaking, we assume that there is a flow 
only in the x  direction. For the voxels in which label in the 
x  direction is zero (voxel ( kj ,,0 ), 0 yNj <≤ , 

0 zNk <≤ ), there is inflow. At a location close to the 

surface of the obstacle, the velocity is zero, and the higher 
the position becomes, the stronger the wind flows. To 
model such a velocity distribution, we use one of the 
models of velocity distribution (see Appendix A). 
(3) We assume again that there is a flow in the x  direction. 



    

   

In the voxels whose labels in the x  direction are 
xN -1 

(voxel ( kjN x ,,1− ), 0 yNj <≤ , 0 zNk <≤ ), there is the 

flow at the boundary of the analytical space. We call such a 
flow the “outflow” (see Figure 5). Since the flow in the 
subdivided space becomes stable, the differential term of 
the velocity in the horizontal direction in the voxel 
( kjN x ,,1− ) is zero (i.e. .2 ,,3,,2,,1 kjNkjNkjN xxx

uuu −−− −= ) 

(4) In the top voxel (voxel ( 1,, −zNji ),  0 xNi <≤ , 

0 yNj <≤ ), the velocity in the horizontal direction is 

constant  (i.e. ,1,,01,, −− =
zz NjNji uu  1,0,1,, −− =

zz NiNji vv ). 

   
4.4 The calculation of the pressure term 
   

To calculate the pressure terms , we can directly calculate 
the variables p  and ρ  (see Section 4.1), however, this 

calculation is unstable. In our method, we assume that the 
fluid is incompressible, and we calculate pressure terms 
based on this assumption. To minimize the error, we divide 
the calculation of the pressure term and the calculation of 
the other terms in the Reynolds equations. The pressure 
term can be calculated to solve the Poisson equation 
derived from the continuity (the preservation of mass) 

.0=⋅∇ u    (3) 
  There are several methods of calculating the pressure 
term, and we apply one of them, which is simple to calculate. 
First, in each voxel ),,( kji , we calculate the difference 

udiv  between the inflow and outflow in the voxel. Then 
we calculate the change of the pressure p∆  in a time-step. 

p∆  in the voxel ),,( kji  is expressed by:  
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where yx ∆∆ , , and z∆  are the voxel sizes in the ,, yx  

and z  directions, respectively (see Figure 4(a)). And Ω  
is a constant. The user can control Ω  to accelerate the 
calculation. After that, we calculate the velocity components 

by using p∆ . We update kjiu ,,  to 
x
p

u kji ∆
∆

+,,
, and 

kjiu ,,1−  to 
x
p

u kji ∆
∆−− ,,1

. We update the other velocity 

components in the same way. We have to calculate 
Equation (4) recursively. The calculation terminates when 
the p∆  value of each voxel is smaller than the specified 

value. 

   

4.5 The boundary layer equation 

   
  In Section 4.1, we applied the Reynolds equations as the 
equations of flow, but these do not always achieve the 
correct answer, because there are unstable terms in them. 
Moreover, as we have seen in Section 4.4, to calculate the 
pressure term recursively in each time step is 
time-consuming. Hence we tried to use other equations 
which define the force in the turbulence flow to decrease the 
unstable terms or the number of iterations necessary . 

In most cases smoke flows in the “boundary turbulence 
layer,” which is a very thick layer on the surface of the earth. 
In the boundary layer, we have to assume that the 
differential term of the pressure in the horizontal direction, 
which is defined in Equation (1), is zero. Of course, this 
condition is not always satisfied, but we can locally assume 
it to be the case in order to optimize the calculation. To 
apply equations that represent the flow in this layer, we 
consider the effects of the random velocity components. But, 
to calculate these effects, we apply ε−k  model, and we 
have to add the following two parameters, that is, turbulence 

energy k , and range 2t  of the random component of the 
temperature. On the surface of the obstacles, these 
parameters are zero. The equations representing the flow in 
the turbulence layer are as follows. 
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We can represent each of these equations as: 
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Γ is the coefficient of the effective diffusion, and 

kc SS , are the other terms. To calculate φ , we can use the 

following equation, which is derived from Equations (3) and 
(6). 
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We calculate the physical variables in Equation (7) from the 
voxels (0, kj, ) (0 yNj <≤ ,  0 zNk <≤ ) to the voxels 

( kjNx ,,1− ) (0 yNj <≤ , 0 zNk <≤ ). 

  Equation (7) has some advantages that make it better than 
the Reynolds equations. 
1) The number of the unstable terms is decreased, so the 
calculation becomes more stable. 
2) When we calculate the physical variable kji ,,φ  of the 

voxel ),,( kji , the physical variables of the voxel 

),,1( kji +  and voxel ),1,( kji +  are not needed, and so 

we can calculate the equations sequentially. 
3) We assume that the pressure in the horizontal direction is 
constant, therefore we do not need the recursive calculation 
of the pressure term, which is needed by the Reynolds 
equations, and we can calculate the velocity field faster. 
   
4.6 The smoke flow algorithm 
   
  To calculate the smoke flow, we use the Reynolds 
equations, which consider the random velocity components. 
The calculations necessary for one frame of the animation 
are as follows. 
(1) Calculate the distribution of the temperature (i.e. the 
temperature field). We need it for the calculation of the 
buoyancy term in the Reynolds equations. 
(2) Calculate the velocity field. In this calculation, we 
perform the following. 
  (2.1) Set the value of the inflow, which is one of the 
boundary conditions (see Section 4.4). 

(2.2) Calculate terms in the Reynolds equations except for 
the pressure term. 

(2.3) Calculate the pressure term in the Reynolds 
equations recursively. 
  (2.4) Apply the boundary conditions besides the inflow. 
(3) Move metaballs according to the calculated velocity 
field. 
   

 
(a)The flow around the obstacle (from bottom to top) 

  

   
(b) Markers’ movement in the flow (a) 

   
Figure 6:  Examples of the calculation of velocity 
field. 
   

When the field satisfies some conditions described in 
Section 4.5, we can locally use the boundary layer 
equations to optimize the calculation. When we use them 
instead of the Reynolds equations, we don’t need the 
recursive calculation. 

By using the proposed method, we can calculate the 
velocity field as shown in Figure 6(a), and markers in the 
flow avoid the obstacle as shown in Figure 6(b). 

   
5 Modelling of Vortices Using Vorticity 
   
  In turbulent flow, there are many vortices generated by 
random velocity components. Foster et al. [18] tried to show 
the swirling smoke flow by using only the velocity field, but 
to calculate the vortices, we have to subdivide the space 
into a large number of voxels, which makes the calculation 
unstable. To model the vortex, there are three parameters 
that need to be considered, the rotational axis, the rotational 
velocity, and the convective velocity of the vortex. These 



    

   

three parameters depend on the random velocity 
components. 

 
(a)Vorticity vector and   (b)Vorticity vector 
  vortex filaments         at the center of the voxel(i,j,k) 

Figure 7: The vorticity vector. 
   

To represent the vortices simply, we use the vorticity 
vector (see Figure 7(a)). The vorticity vector is a vector that 
defines the direction of the rotational axis and strength of 
the rotational velocity of the vortex. The vorticity vector is 
given by: 
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  Each voxel has six reference points of the velocity 
components on the surface of it (see Figure 7(b)). By using 
these velocity components, we can easily calculate the 
vorticity vector at the center of the voxel. And the vortices 
are defined by the vorticity vector. We call these vortices 
as vortex filaments. To model the velocity distribution of 
the vortex filaments, we use the Rankinn’ vortex [16].  
  To calculate the rotational velocity of the vortex, we 
define a point to refer the vorticity vector, and we call it 
“the reference point of the vorticity vector”. To explain the 
vorticity vector, we define the positional vector of the 
reference point as vP , the vorticity vector at vP  as 

vorticityv , and the time-step as t∆  (see Figure 8(a)). The 

rotational axis at vP  is vorticityv , the direction of the 

rotational velocity rotv  is perpendicular to vorticityv , and 

the strength of the rotational velocity is the length of 

vorticityv . Since we model the velocity distribution of the 

vortex using the Rankinn vortex, we can calculate the 

rotational velocity rotv  at the point P  around vP  as 

follows:  

 
(a)Rotational velocity vrot at P (b)Reference points around P 
Figure 8: The calculation of the rotational velocity. 
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where )( vv PP − is a function to represent the velocity 

distribution of the Rankinn’ vortex [16]. 
The reference points of the vorticity vector are movable, 

while the other reference points of the physical variables 
defined in Section 4.1 are fixed. The movement of the 
reference point of the vorticity vector is as follows. First, we 
define the initial position of the vorticity vector’s reference 
point randomly within the analytical space. Then, using the 
vorticity vector at this point, the point is convective in each 
animation frame (i.e. the positional vector of vP  at the next 

frame is vorticityv t vP ⋅∆+ ). We can define the vorticity 

vector vorticityv  at vP  by using the tri-linear interpolation 

of the vorticity vector at the center points of the voxels. 
We can calculate the swirling motion of the metaball by 

the rotational velocity rotv . The rotational velocity of the 

vortex filament at the center of metaball P  is calculated as 
follows. 
(1) Calculate the vorticity vector at the center of the voxel. 
(2) Find reference points which have a smaller distance to 
P  than given value maxR , which is the radius of the 

Rankinn’ vortex. In most case, there are many points which 
satisfy such a condition (see Figure 8(b)). We define the 
number of points that satisfy this condition as n , and 

define the i -th point as viP . 

(3) For each viP  found in step (2), calculate vorticity 

vector ivorticity−v  at viP . 

(4) For each viP  , calculate rotational velocity irot−v .  

(5) When the velocity at P  in the calculated velocity field 



    

   

is vfv , moving the center of the metaball from P  to 

)(
1

∑
=

−+⋅∆+
n

i
irotvft vvP . i.e. the velocity of the 

metaball is the sum of the velocity, which the velocity field 
represents, and the rotational velocity calculated in step (4). 
Figure 9 shows the comparison of the smoke with and 
without vorticity. 
   

   
(a) The case with no vortices  (b)The case with vortices  
   (side view)                (side view)  

   
(c)The case with no vortices   (d)The case with vortices 
  (top view)                  (top view) 

Figure 9: The comparison of the vorticity. 
   
6 Examples 
   

We have variated our method with several examples.  To 
render metaballs, we use Dobashi’s method, which uses 
OpenGL hardware rendering [21]. By using this method, we 
can render realistic smoke faster than [9]. 

Figure 10 shows the smoke flow around a tower building. 
A strong wind flows from the factory to the tower. Also 
Figures 12(a) and (b) (see color plate) show the smoke in the 
strong wind. As we can see in Figure 12(b), the smoke 
flowing to the tower makes a branch. Figures 12(c) and (d) 
(see color plate) show the smoke flow in the weak wind. 
They are generated at the same time step, but we can control 
the color of the smoke by the attenuation coefficient of the 
smoke particles. Figure 11 and Figure 13 (see color plate) are 
the smoke from a chimney with a roof. The smoke avoids the 
chimney’s roof. In Figure 11, there is swirling smoke in the 
large vortices above the chimney’s roof. 
  We calculated these examples on Intergraph TDZ 2000 
GX1 (PentiumIII 550MHz). The image size is 720× 480. In 
Figure 10, the number of voxels is 20×20× 20. There are 
2,533 metaballs, and the calculation time is 52.735 seconds. 
In Figure 11, the number of voxels is 40× 40× 20. The 
number of metaballs is 3,212, and the calculation time is 
57,841 seconds. 

  As shown in these examples, we have realized realistic 
smoke animation.  
   

 
(a)bird’s eye view of smoke 

   

 
(b) top view of smoke 

Figure 10: Example (1). 
   

 
Figure 11: Example (2). 

   
7 Conclusion 
   

In this paper, we have proposed a method of displaying 
swirling smoke that has a 3-dimensional density distribution, 



    

   

while considering its passage round obstacles. The 
advantages of the proposed method are as follows. 
(1) We deal with smoke as a combination of sets of smoke 
particles, called puffs. We model the puff by using a 
metaball. By using metaballs, we can represent a 
3-dimensional density distribution for the smoke. 
(2) To represent the motion of smoke flow allowing for 
obstacles, we use a velocity field method. The velocity field 
is generated by solving physical equations of flow, the 
Reynolds equations. This  takes into account random 
velocity in the turbulence. The result of the model using 
these equations is a realistic flow that takes obstacles into 
consideration. To optimize the calculation of the velocity 
field, we can locally use the boundary turbulence layer 
equations instead of the Reynolds equations. 
(3) The small vortices in the flow are generated from the 
vorticity vector and vortex filaments. The vorticity vector 
represents the strength and direction of the vortices, and we 
can calculate the vorticity vector simply. The vortices in the 
turbulence are dealt as vortex filaments.  
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APPENDIX 
   
A. Model of Inflow 
In the turbulence, the velocity close to the ground is zero, 
and the higher we go up, the stronger the wind flows. We 
can set such a flow kju ,,0  in the voxel ),,( kji  by using 

the following equation. 
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where S is the height between the voxel which represents 
the surface of the obstacle and the bottom layer (see Figure 
5), zN  is the number of the subdivision in the vertical 

direction, and z∆  is the size of the voxel (see Figure 4(a)).  



    

   

  
   



    

   

 


