Ray Tracing Trimmed Rational Surface Patches

Tomoyuki Nishita*, Thomas W. Suz:derbe:rgJr and Masanori Kakimoto®

*Fukuyama University

TBrigham Young University
FFujitsu Laboratories LTD

Abstract

This paper presents a new algorithm for computing the points at which a ray intersects
a rational Bézier surface patch, and also an algorithm for determining if an intersec-
tion point lies within a region trimmed by piecewise Bézier curves. Both algorithms
are based on a recent imnavation known as Beézier clipping, described herein., The in-
tersection algorithm is faster than previous methods for which published performance
data allow reliable comparison. It robustly finds all intersections without requiring spe-
cial preprocessing.

Categories and Suhject Descriptors: 1.3.3 [Computer Graphics]:
Picture/Image Generation; 1.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism.

General Terms: Algorithms

Additional Key Words and Phrases: Computer graphics, ray trac-
ing, visible surface algorithms, parametric surfaces.

1 INTRODUCTION

The history, theory and capabilities of ray tracing are well docu-
mented [3], [5). This paper deals with the ray tracing of parametric
surface patches. Specifically, we present an algorithm for comput-
ing all points at which a ray intersects a rational Bézier surface patch
of any degree. We also describe an algorithm for determining if a
point lies within a trimmed region of the patch. We define a trimmed
region to be an area bounded by piecewise (possibly rational) Bézier
curves in the parameter plane of the patch.

1.1 Ray-Patch Algorithms

Solutions to the ray/patch intersection problem can be categorized
roughly as being based on subdivision, algebraic or numericai tech-
niques.

Subdivision approaches are described by Whitted [19], Rogers
[10] and Woodward [20). These algorithms harness the convex hull
property of Bézier surfaces: if the ray does not intersect the convex
hull of the control points, it does not intersect the patch. Through
recursively subdividing the patch and checking convex hulls, the
intersection points can be computed at a linear convergence rate,
amounting to a binary search, Whitted’s algorithm operates in three
dimensions, whereas Rogers and Woodward map the problem to
two dimensions.

Numerical solutions tc the ray/patch intersection problem in-
clude those developed by Toth [18], Sweeney and Bartels [17], and
Joy and Bhetanabhotla [4]. Toth’s algorithm is based on interval
Newton iteration. It works robustly on any parametric surface for
which bounds on the surface and its first derivatives can be obtained.
Sweeney and Bartels ray trace B-spline surfaces by refining the con-
trol mesh using the Oslo algorithm until the mesh closely approxi- .
mates the surface. The ray intersection is then computed by inter-
secting the control mesh with the ray, and using that intersection
point as a starting point for Newton iteration. Joy and Bhetanab-
hotla’s algorithm uses quasi-Newton optimization to compute the
poini(s) on the patch nearest the ray, including intersection points.

Kajiya[6] devised an intersection algorithm based on algebraic
technigues (ie., resultants). Kajiya’s algorithm reduces the problem
of intersecting a bicubic patch with a ray into one of finding the real
roots of a degree 18 univariate polynomial,

Our ray/patch intersection algorithm is based on the convex
hull property of Bézier curves and surfaces using a technique we
refer to as Bézier clipping. ‘Traditionally, intersection algorithms
(such as curvefcurve [131, surface/surface [71, or ray/surface [19])
based on the convex hull property (that is, subdivision based algo-
rithms) perform a linearly converging binary search. Bézier clip-
ping uses the convex hull property in a more powerful manner, by
determining parameter ranges which are guaranteed to not include
points of intersection. Variations of this concept have proven prof-
itable in algorithms for algebraic curve intersection[12] and planar
parametric curve intersection{15]. Bézier clipping has the flavor
of a geometrically based interval Newton method, and thus might
be categorized as partly a subdivision based algorithm and partly a
numerical method.

1.2 Trimmed Patch Algorithms

Previous approaches to the rendering of trimmed patches include
adaptive forward differencing [16] and polygonization [9]. Neither
of these approaches adapts directly to ray tracing (unless one were
to polygonize the patch[9] and then ray trace the polygons). If trim-
ming is caused by a boolean operation involving solid geometric
models, rendering can be performed using conventional construc-
tive solid geometry methods[11]. Our algorithm renders trimmed
patches defined in a boundary representation, by determining if a
point on the patch lies inside or outside a trimmed region. One con-
tribution of this paper is a fast, robust algorithm (based on Bézier
clipping) for determining if a ray intersects a collection of trimming
curves an even or odd number of times.

1.3 Paper Overview

Section 2 introduces Bézier clipping and applies it to the problem
of point classification for trimmed patches. Section 3 describes our

ray/patch intersection algorithm, and performance comparisons are
presented in section 4.

This paper assumes the reader is familiar with rational Bézier
curves and surfaces[2].

The ray/patch intersection algorithm requires patches to be ex-
pressed in Bézier form. The point classification algorithm requires
trimming curves to be in Bézier form. Conversion from NURBS to
Bézier representation is discussed in reference 9.

2 POINT CLASSIFICATION

Figure 1 shows a trimmed Bézier surface patch. Its parameter do-
main (see Figure 2} contains several trimming curves, expressed in
Bézier (or rational Bézier) form. Regions enclosed by trimming
curves are excluded from the patch.

Point classification, in the context of trimmed patch ray tracing,
is the problem of determining if a given point 8 in s, ¢ patch param-
cter space lies IN the patch, OUT of the patch (in a region enclosed
by trimming curves), or ON a trimming curve. If 8 is a point at
which a ray intersects the patch, then 8 qualifies as a hit if it is IN,
and as a miss if it is OUT. If S is ON a trimming curve, it is reported
as a hit, but is flagged for possible anti-alias supersampling.

Trimming curves completely enclose an OUT region. This may
require linear Bézier curve segments along portions of the patch
boundary (as in Figure 2).

Recall a corollary of the Jordan curve theorem: If any ray R
in g,t patch parameter space (not to be confused with a “tracing
ray” in B} emanating from S intersects the collection of trimming
curves an even (odd) number of times, then 8 is IN (OUT of) the
patch. Our point classification algorithm amounts to an efficient
method of determining that even/odd intersection parity. For this
discussion, R points in the positive s direction. In practice, choose
the ray in the 1 s or 4-¢ direction which exits the parameter square
in the shortest distance. It might appear that ray/curve tangencies
can cause a problem. As discussed in CASE B below, this is not a
concern.

The algorithm begins by splitting the patch parameter plane into
quadrants which meet at S as shown in Figure 3. To determine if R
intersects a given Bézier trimming curve an ¢ven or odd number of
times, we categorize the curve based on which quadrants its control
points occupy. For now, assume that no end control point lies on a
quadrant boundary (a situation addressed in section 2.2.1).

CASE A: All control points lie on the same side of the
line containing R (in quadrants I, I, HI, IV, I&II, or
IM&IV) or “behind” R (in quadrants II&III). The
convex hull property of Bézier curves guarantees
zero intersections with R,

CASE B: All control points lie in quadrants I&IV, but
not case 4. Since the curve is continuous and obeys
the convex hull property, if the curve endpoints lie
in the same gquadrant, the curve crosses R an even
number of times. Otherwise, the curve intersects R
an odd number of times. Note that tangencies be-
tween the ray and trimming-curve tangencies, even
those of high order, do not pose a problem. The
only question is whether the curve endpoints strad-
dle the ray.

CASE C: All other curves.

If a curve is case .4 or B no further processing is needed to de-
termine its intersection parity with a ray. For a case C curve, we
subdivide it using the de Casteljan algorithm[2] into three Bézier
segments in such a way that the two end segments are guaranteed
a priori to be case A or B. The points at which to subdivide are
determined using a technique we call Bézier clipping, described

next. Discussion of the point classification algorithm resumes in
Section 2.2.

2.1 Bézier Clipping

Figure 4 shows a Bézier curve C and the line L in s, ¢ patch param-
eter space C is defined by its parametric equation

C(w) = 3 " C:BIu). e

i=0

C; = (s;,t;) are the Bézier control points and B (u) = (7)(1
u)™"y' denote the Bemnstein basis functions. L is defined by its
normalized implicit equation

as+bt+c=0, a>+b=1. 2)

The intersection of L and C can be found by substituting equation 1
into equation 2: -

duy=Y diB}w) =0, di=as+bti+e (3
i=0

Note that d{ u) = 0 forall values of u at which C intersects L. Also,
d; is the distance from C; to L (as shown in Figure 4).

The function d(v) in equation 3 is a polynomial in Bemstein
form, and can be represented as an “explicit” (or so-called “non-
parametric”) Bézier curve[1] as follows:

D(w) = (u,d(u)) = Y DB(u), (4)

=0

The Bézier control points Dy = (u,, d;) are evenly spaced in v
(u; = ,1;). Since E?:o %B?(u) = ul(] — u) + u]® = u, the
horizontal coordinate of any point D {u) is in fact equal to the pa-
rameter value ¢. Figure 5 shows the curve I (u) which corresponds
to the intersection in Figure 4.

Since D (u) crosses the u-axis at the same u values at which
€ (u) intersects L, we can apply the convex hull property of Bézier
curves to identify ranges of u for which C does not intersect L.
Referring again to Figure 5, the convex hull of the D; intersects the
4 aXis af POINIS U = Uy = & and u = g, = 7. Since D(u)
lies inside the convex hull of its control points, we conclude that
C does not intersect L in the parameter ranges 0 < u < tipjy O
Umaz < 4 < 1. Bézier clipping is completed by subdividing C into
three segments using the de Casteljau algorithm[2]. Segment 1 is
defined over 0 < 4 < tmin, SEEMENE 2 OVEF 1y, < U < Upnag, a0d
segment 3 OVer #,,, < u < 1.

2.1.1 Rational Curves

For rational Bézier trimming curves

E:;O w.C.B,”(u)
Do wiB}(w)

with control point coordinates C; = (s;,¢;) and weights w;, the
values of 4; must be modified as follows. Substituting equation 5
into equation 2 and clearing the denominator yields:

C(u) = 3)

du) =3 d:BMu) =0, di=wfas;+bt;+0c).

=0

I

Ui

Figure I: Trimmed Patch

/‘ Figure 5: Explicit Bézier curve

o

Figure 2: Trimming Curves
| t
II I

Figure 6: Bézier clips per classification

III IV

Figure 3: Quadrants

Figure 7: Sample trimmed patch

Figure 4: Bézier curve/line intersection

22 Point Classification Algorithm

Returning to the problem of point classification, our goal is to subdi-
vide a case C curve into three segments, such that segments 1 and 3
are assured to be case 4 or 3. This can be accomplished by applying
Bézier clipping against either the s quadrant axis (L =t — ¢, = Q)
or the ¢ quadrant axis (L = s — s, = 0) where the ray anchor
8 = (a,,t,). If a case C curve is Bézier clipped against the s quad-
rant axis, the resulting curve segments 1 and 3 must be case A and
segment 2 could be any case. If a case C curve is Bézier clipped
against the ¢ quadrant axis, the resulting curve segments 1 and 3
must be case A or B and segment 2 could be any case.

‘We should clip against the axis which will result in the smallest
segment 2. A good heuristic for this is to measure the distance from
the curve endpoints to each of the axes. Generally, the larger the
distance from an axis, the larger the clip tends to be. Denote d, =
|de! + |d,| for the case when L is the s quadrant axis, and d;, =
|do| + |du| when L is the ¢ quadrant axis. Thus, if d, > 4, itis
usually best to clip against s — s, = 0.

The complete point classification algorithm appears as follows.
For clarity, we assume that the point is nearest the edge s = 1
in the parameter square, so we count intersections of the trimming
curves with the ray in the positive s direction. If the distance from
the point to one of the trimming curves is less than a tolerance
value ON_TOL, the point is declared to be ON a trimming curve.
ON_TOL= 10~* is conservative, and was used in producing Fig-
ure 7.

BEGIN CLASSIFY
INPUT: Trimming curves, Point, ON_TOL
OQUTPUT: IN, OUT, or ON
inter = 03
Push all rimming curves onto a stack;
WHILE Stack not empty

POP a curve;

SIZE = largest dimension of the bounding box;

Determine the case;

CASE:

A No action needed.

B If the curve endpoints Cy and C, are in different quad-
rants, increment inter.

C If SIZE < ON_TOL, report ON and RETURN,

Else if d, > d,, perform Bézier clipping against L. =
8 — s, = 0. The resulting segments 1 and 3 are guar-
anteed to be case .4, so discard them. Push segment 2.

Else, perform Bézier clipping against L = ¢ — ¢, = 0.
Push all three segments.

END CASE
END WHILE
If inter is odd, report QUT; else report IN
END CLASSIFY,

2.2.1 Implementation

A problem can arise when R happens to pass through an end control
point shared by two trimming curves, because two intersections will
be reported when one is often the correct answer. The solution we
use is to perturb 8 away from R a sub-pixel distance < ON_TOL. For
the same reason, it is important that d{ timin) # 0 and d(;) #
0 (in equation 4 and Figure 5) to within floating point precision.
Therefore, make the adjustment u,,;, = 0.99 * ug,;, and u,,.. =
0.99 1., + 0.01. Another reason for this adjustment is to avoid
infinite loops. Bézier clipping a curve whose endpoint happens to
liconR (ie., dy = 0)results in segments 1 and 2 having zero length,
and segment 3 is simply the original curve.,

2.3 Performance

ON is the classification which is most expensive to compute. Our
algorithm can typically compute an ON classification to seven deci-
mal digits accuracy in four Bézier clips. Figure 6 shows the trimmed
patch in Figure 1, using color to indicate how many total Bézier
clips were used in classifying each ray intersection. The average
number of Bézier clips per point to be classified was 1.04 in this
example involving ten trimming curves. Figure 7 shows & patch
trimmed with precision by eight Bézier curves.

3 RAY-PATCH INTERSECTION

Our algorithm for computing the intersection of a patch with a ray
uses the Bézier clipping concept to iteratively clip away regions of
the patch which don’t intersect the ray.

The most costly single operation in a subdivision-based ray-
patch intersection algorithm is de Casteljau subdivision. Typically,

‘subdivision is performed in R* for non-rational patches, and in B*

for rational patches. Woodward[20] (also alluded to by Rogers{10])
shows how the problent can be projected to R2. This means that the
number of arithmetic operations to subdivide a non-rational patch
is reduced by 33% (since subdivision is applied only to z, y com-
ponents, rather than x, ¢, 2) and for a rational patch is reduced by
25% (subdivision in x, ¢, w rather thanin z, y, 2, w). Section 3.1 re-
views that projection, and further shows how the rational case can
be handled by subdividing only rwo components.

Section 3.2 then shows how to apply Bézier clipping to itera-
tively clip away regions of the projected patch which don't intersect
the ray.

3.1 Projection to R?

A rational Bézier surface patch in Cartesian three space (%, ¥, %) is
defined parametrically by

Do Loyeo BE(S) B () wy; Py
E?:o E;:o B (s) B_;.'"(t) Wij

P(s,t) = (6)

where P;; = (%i;, i, %;) are the Bézier control points with corre-
sponding weights w;;. (The symbols are hatted to later distinguish
them from the projected (z, ¢) coordinate system).

As does Kajiya[6], we define the ray to be the intersection of
two planes given by implicit equations

ak?c+bkﬁ+ck2+ek=0, k=}.,2. (7

We assume that the plane equations are normalized: o +b}+cf = 1.
In practice, it is best if the two planes are orthogonal. For primary
rays, we use the scan plane and the plane containing the ray, parallel
to the screen y axis.

The intersection of plane & and the patch can be represented by
substituting equation 6 into equation 7 and clearing the denomina-
tor:

n m
sty =YY B(s)BP(D)df =0 (8)
=0 =0
where
d.:; = w,»j(ak:“c,-,- + bk@{j + Ck%,‘j + Ek). (9)

P (3,1 lics on plane k iff d*(3,1) = 0.
Note that df; is related to the distance from control point P;; to
plane k:

d, = wi; x DISTANCE(B,;, Plane k). (10)

We can now project the patch to a two dimensional (z, y) coor-
dinate system by taking the projected control point coordinates to
be

Pi; = (2, vi) =(d}j)d§') (11)
from equation 9. The projected patch is defined:

"

P(s,) =Y > BN BIOPy (12)
=0 j=0
In this projection, plane 1 becomes the y axis, plane 2 becomes

the 7 axis, and the ray projects to the coordinate system origin, 0.
Figure 8 shows a sample projected patch P (s,t).

=S
Plane 2\’ W:;&-‘
\i““ 15’"

Figure 8: Projected patch P

The ray-patch intersection problem now becomes one of finding
{{s,)[P(s,1) =0; 0 <s,t< 1} (13)

For a non-rational patch (that is, all w;; = 1), P is a simple or-
thographic projection of P along the ray. P(s,t) is always non-
rational (all its weights are equal), even if P (s, t) is rational.

3.2 BEZIER CLIPPING P

This section applies Bézier clipping to the problem of finding all
solutions to
P(s,t)=0. (14)
Begin by defining a line L, through 0 parallel to the vector Vg +
¥V, as shown in Figure 9. Bézier clipping will be used to identify
ranges of the s parameter in which P (s,¢) does not map to 0.
If L, is defined by its implicit equation

az+by+c=0, 2+ =1 (15)

then the distance D,; from each control point Py; = (x5, y;;) to L,
is

.D,'j = atiy + byg,- +C. (16)

The D;; are shown in Figure 10. Likewise, the distance D(s,1)
from L, to any point P (s,?) on the projected patch is

D(s,t) =Y 3 BN&)Bt)Dy (17

=0 j=0

The function d(s,t) can be represented, in an (s,t,d) coor-
dinate system, as an explicit (or so-called non-parametric) surface

Figure 9: Line L,

Figure 10: Control point distances

patch[1] whose control poi_nts D;; = (sy;,ti;, Dy;) areevenly spaced
insandi: s;; = ., &y = L. A point on such a patch has coordinates

D(s,y =YY BI(s)BF()D; = (5,8, D(s,)). (18)

=0 j=0

The top view of this patch is shown in Figure 11, with control point
D coordinates labeled. Compare those values with the distances in
Figure 10.

4

-2
-9 6
-8
2 5
- 10 7 8

-1
Figure 11: Top view of D (s, {) patch.

A side view of the D (s,) patch, looking down the ¢ axis, is
shown in Figure 12. The convex hull of the projected control points

Figure 12: Side view of D (s,t) patch.

bounds the projection of the D (s, t) patch. In this example, that
convex hull intersects the s axis at points s,,;, = 2/5 and 8,4; =
2 /3. We conclude that d(s,t) # 0, and therefore P{s,t) # 0, for
s <« 2/5 and s > 2 /3. The de Casteljau subdivision algorithm
is applied to clip away those regions, leaving the two dimensional
patch in Figure 13.

This process of identifying values s, and ..., which bound
the solution set, and then subdividing off the regions s < 8., and
8 > Smaz Will be referred to as Bézier clipping in s. In an obviously
similar manner, we define the process of Bézier clipping in ¢.

Figure 13: First clip in s.

QOur ray-patch intersection algorithm consists of alternately per-
forming Bézier clipping in s and ¢t. Figure 14 shows the patch after
Bézier clipping in s, then ¢, and again in s. The remaining sub-

e\

Figure 14: Iterating to the solution,

patch is not yet small enough 1o satisfy our tolerance conditions.
(In this case, let’s assume the tolerance value is 10 ~*. In practice,
one should pick a tolerance value which assures sub-pixel accuracy.
This is done by finding a bound on the largest first derivative of
screen space x or y with respect to parameter space s or t.) How-
ever, in COMPULNg iix, tmar TOr the next ¢ clip, it tums out that
tmaz — tmin < 10°%. Without subdividing in t, we then compute
Smin, Smaz TOT an s clip, and discover that s,,0; — Spmin < 1074
also. Thus, in the final step, we compute the intersection to within
tolerance without actually subdividing to the clip values, The to-
tal number of operations in this typical example is: Spyn, Smex OF
tmins max 15 cOmputed five times, and three pairs of de Casteljau
subdivisions are performed.

3.3 No intersection

If a Bézier trim calculation determings s,,in > 1, Smez < 0, Lrain >
1, 0r ter < 0, the ray does not intersect the patch.

It is possible to have tpa; — tmn < 107 and Spps — Spin <
104, and yet the ray does not intersect the patch. However, this
can only occur if S = 0, Smaz = L tmin = 0, OF Ear = 1.
Whenever the subpatch lies on the boundary of the original paich,
even if the tolerance criteria is satisfied, an additional Bézier clip

calculation should be performed to assure that the intersection does
lie within the patch boundaries.

3.4 Multiple intersections

If there are multiple intersections, Bézier clipping will not converge
to a single value. Therefore, if a Bézier clip fails to reduce the pa-
rameter interval width by at least, say, 20%, split the patch in half
and resume Bézier clipping on each half. There is little theoreti-
cal basis for this value of 20%. Empirically, 20% seems to provide
nearly optimal performance in most cases. Execution speed is not
highly sensitive to small changes in this 20% value, although for
values less than 10%, excessive Bézier clipping can occur and for
values greater than 40%, unnecessary binary subdivision can occur.

The case of multiple intersections is illustrated in Figure 5.
First, Bézier clipping in s discards regions labelled 1. In atternpt-

|t

o+
i
[

11 2 |32 1

S

Figure 15: Patch domain - two intersections

ing to clip in ¢, it turns out that ¢,,,, — ¢, > 0.8. Therefore, the
remaining domain is subdivided in half at t = 0.5. A stack data
structure is used to store subpatches. We push one of the two sub-
patches onto the stack, and proceed to process the other subpatch
by Bézier clipping in s to eliminate regions 2 and clipping in ¢ to
remove regions 3. As in the example in Figure 14, without further
subdivision we can compute the intersection which lies between re-
gions 3 to within tolerance.

There remains one subpatch on the stack, which we now pop and
begin to process by clipping regions 4. The second intersection is
refined in two more Bézier clips, as shown.

3.5 Primary Ray Preprocessing

Bézier clipping can be used to advantage in a preprocessing step
applied at the initialization of each scan line, By Bézier clipping P
against the scan line in both g and ¢ directions, regions of P’ can be
discarded which do not intersect any primary ray along the scan line.
Figure 16 shows the patch in Figure 8 after Bézier clipping against
the scan line (z axis). By performing this preprocess, a savings of
up to two subdivisions per primary ray/surface intersection can be
realized, and also non-intersecting rays can be detected more often.
For example, in applying this preprocessing to rendering the teapot
in Figure 17, 86% of the calls to the intersection routine resulted in
a hit,

3.6 Implementation

To avoid potential infinite loops due to numerical roundoff, make
the adjustment s, = 0.99 * 84, a0d 85, = 0.99 # 8, + 0.0]

Figure 16: Trimming to the Scan Line.

and similarly for ¢ in computing values at which to Bézier clip.

Other than the ray/patch intersection algorithm, all of the other
implementation details are standard. Antialiasing was performed
using adaptive supersampling [5], and Murakami’s voxel partition-
ing [8] was implemented. Shadows, reflection and refraction are
dealt with in the conventional manner, using our ray-patch inter-
section algorithm.

4 DISCUSSION

4.1 Examples and Timings

‘We tested the algorithm on an Iris-4D/70GT workstation and cre-
ated Figures 17-20 at 500X500 resolution. Each figure caption lists
the number of patches in the scene, total CPU time for rendering,
{CPU time for rendering a similar scene, not antialiased, with pri-
mary rays only), percentage of background pixels, and average num-
ber of patch subdivisions per foreground pixel for primary rays. All
patches are non-rational bicubics. The chains in Figure 19 were ori-
ented using Free-Form Deformation[14].

4.2 Performance Comparisons

It is difficult to derive precise quantitative comparisons between
various ray/patch intersection algorithms. The predominant single
expense in most ray-patch intersection algorithms is de Casteljau
subdivision. Our intersector spends 45% of its time computing sub-
divisions. To spiit a projected two-dimensional bicubic patch in ei-
ther parameter direction requires 144 floating point operations. All
previous subdivision-based algorithms can take advantage of this
projection to H#? (which, as mentioned, saves 33% of subdivision
costs for non-rational and 50% for rational patches).

We compared the number of subdivisions per non-background
pixel required by our algorithm with the algorithms of Toth[18] and
Woodward[20]. To attain three digits accuracy in s, t, Toth reported
an average of 19.66 subdivisions for each non-background pixel in
his Figure 6 (an example of a single patch in which roughly 30%
of non-background pixels involve two ray-patch intersections). We
duplicated the patch and viewing parameters for Toth’s Figure 6 as
nearly as possible, and tested our and Woodward’s algorithms. The
average number of subdivisions per non-background pixel is listed
in Table 1. SUN SPARCstation I CPU times for 120X120 image
are shown in parenthesis.

It is difficult to make quantitative comparisons with the other
published algorithms. Newton [17] and quasi-Newton [4] itera-

Figure 17: Newell’s teapot: 33 patches, 65% background, 5.2 sub-
divisions/ray, 6.7 cpu min. (3.9 min. primary rays only)

Figure 20: Teapot encased in deformed glass cube: 39 patches, 21.3
cpu min on SUN SPARCstation [

Figure 18: Modified teapot: 2304 patches, 64% background. 4.0
subdivisions/ray, 12.5 cpu min. (8.6 min. primary rays only)

Figure 21: House of mirrors

Tolerance

Algorithm i i2et
Our’s 8.6 11.4

(24 sec) | (26 sec)
Woodward 29.2 48.6

(80 sec) | (116 sec)
Toth NA 19.6

Figure 19: Chain on patch-work quilt: 4024 patches, 18% back- Table 1: Subdivisions per pixel and (total cpu time)

ground, 5.6 subdivisions/ray, 29.0 cpu min. (17.6 min. primary
rays only)

tion appear to converge quickly, but without actually implementing
those algorithms, we cannot estimate the computational expense re-
quired to assure robustness.

4.3 Higher Degree Patches

This algorithm works on patches of arbitrary degree. However,
since de Casteljau subdivision is an O(n*) operation for surface
patches, execution speed suffers as patch degree increases. A sam-
ple bicubic patch containing a silhouette curve took 50 cpu seconds
to render with 11.4 subdivisions per pixel. After elevating that same
patch to degree four, the rendering took 94 cpu seconds with 11.2
subdivisions per pixel. The subdivisions per pixel tends to decrease
with degree because the control polygon approximates the patch
more closely as degree elevation is applied. Table 2 tallies the exe-
cution speed for patches elevated up to degree eight.

Degree 3 4 5 6 7 8
Seconds 50 94 | 130 | 186 | 243 | 322
sub/pixel || 11.4 | 11.2 | 109 | 10.9 | 10.7 | 10.7

Table 2: Higher Degree Patches

Acknowledgements: The authors gratefully acknowledge the sup-
port of Professor Nakamae of Hiroshima University in providing
access to his computer graphics lab. The second author was sup-
ported in part by the National Science Foundation under grant num-
ber DMC-8657057. This work originated while the first author was
visiting Brigham Young University, on leave from Fukuyama Uni-
versity.

REFERENCES

1. Béhm, Wolfgang, Farin, Gerald and Kahmann, Jurgen. A
survey of curve and surface methods in CAGD. Computer
Aided Geometric Design, 1, 1 (1984), 1-60.

2. Farin, Gerald. Curves and Surfaces for Computer Aided Geo-
metric Design, Academic Press, 1988.

3. Glassner, Andrew ed., Infroduction to Ray Tracing. Aca-
demic Press, 1989.

4. Joy, Keneth and Bhetanabhotla, Murthy. Ray Tracing Para-
metric Patches Using Numerical Techniques and Ray Coher-
ence. Proceedings of SIGGRAPH ’86 (Dallas, TX, August
18-22, 1986). In Computer Graphics, 20, 4 (August 1986),
279-285.

5. Joy, Kenneth , Grant, Charles ,Max, Nelson and Hatfield,
Lansing. Computer Graphics: Image Synthesis. Computer
Society Press, 1988.

6. Kajiya, Jim. Ray tracing parametric patches. Proceedings of
SIGGRAPH ’82 (Boston, MA, July 26-30, 1982). In Com-
puter Graphics,16 ,3 (July 1982), 245-254.

7. Lane, Jeff and Riesenfeld, Rich. A Theoretical Development
for the Computer Generation and Display of Piecewise Poly-
nomial Surfaces. IEEE Trans. RAMI,2 (1980), 35-46.

8. Murakami, Koichi, Hirota, Katsuhiko and Ishii, Mitsuo. Fast
ray tracing. Fujitsu Science and Technology Journal, 24, 2
(1988), 150-159.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Rockwood, Alyn, Heaton, Kurt and Davis, Tom. Real-Time

Rendering of Trimmed Surfaces. Proceedings of SIGGRAPH
'89 (Boston, MA, July 31 - August 4, 1989). In Computer
Graphics, 23, 3 (July 1989), 107-117.

Rogers, Dave. Procedural Elements for Computer Graph-
ics. McGraw-Hill, New York, 1985, 296-305.

Roth, Scott. Ray Casting for Modeling Solids. Computer
Graphics and Image Processing, 18, 1982, 109-144.

Sederberg, Tom. An Algorithm for Algebraic Curve Inter-
section. Computer-Aided Design, 21, 9 (1989), 547-554.

Sederberg, Tom and Parry, Scott. A Comparison of Three
Curve Intersection Algorithms. Computer-Aided Design, 18,
1 (1986), 58-63.

Sederberg, Tom and Parry, Scott. Free-Form Deformation
of Solid Geometric Models. Proceedings of SIGGRAPH 86
(Dallas, TX, August 18-22, 1986). In Computer Graphics,
20, 4 (August 1986), 151-160.

Sederberg, Tom , White, Scott and Zundel, Alan. Fat Arcs: A
Bounding Region with Cubic Convergence. Computer Aided
Geometric Design, 6 (1989), 205-218.

Shantz, Mike and Chang, Sheue-Ling. Rendering Trimmed
NURBS with adaptive Forward Differencing. Proceedings of
SIGGRAPH 88 (Atlanta, GA, August 1-5, 1988). In Com-
puter Graphics, 22, 4 (August 1988), 189-198.

Sweeney, Michael and Bartels, Richard. Ray Tracing Free-
Form B-Spline Surfaces. IEEE CG&A, 6, 2, 1986, 41-49.

Toth, Dan. On Ray Tracing Parametric Surfaces. Proceed-
ings of SIGGRAPH ’85 (San Francisco, CA, July 22-26,
1985). In Computer Graphics 19, 3 (July 1985), 171-179.

Whitted, Turner. An Improved Illumination Model for Shaded
Display. CACM, 23, 6, 1980, 96-102.

Woodward, Charles. Ray Tracing Parametric Surfaces by
Subdivision in Viewing Plane. in W. Strasser and H.-P. Sei-
del, editors, Theory and Practice of Geometric Modeling,
Springer-Verlag, 1989, 273-290.

