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Abstract We propose a particle-based hybrid method
for simulating volume preserving viscoelastic fluids with
large deformations. Our method combines smoothed particle
hydrodynamics (SPH) and position-based dynamics (PBD)
to approximate the dynamics of viscoelastic fluids. While
preserving their volumes using SPH, we exploit an idea of
PBD and correct particle velocities for viscoelastic effects
not to negatively affect volume preservation of materials. To
correct particle velocities and simulate viscoelastic fluids,
we use connections between particles which are adaptively
generated and deleted based on the positional relations of
the particles. Additionally, we weaken the effect of velocity
corrections to address plastic deformations of materials. For
one-way and two-way fluid-solid coupling, we incorporate
solid boundary particles into our algorithm. Several examples
demonstrate that our hybrid method can sufficiently preserve
fluid volumes and robustly and plausibly generate a variety
of viscoelastic behaviors, such as splitting and merging, large
deformations, and Barus effect.
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1 Introduction

Particle-based methods have been popular techniques to sim-
ulate fluids, rigid bodies, deformable objects, and their inter-
actions. These methods use a simple concept of particle inter-
actions, which can be easily extended to simulate various
types of objects, and were adopted for a versatile simulation
framework [16]. For conceptual simplicity and versatility, we
herein focus on particle-based methods.

Since viscoelastic materials play an important role in rep-
resenting common materials (e.g., egg white, gels, tooth-
paste, and slime) and producing visually attractive charac-
ters and effects, simulating viscoelastic materials has been
required for movies and video games. In such entertain-
ments, exaggerated representations which real materials do
not exhibit, e.g., very large deformations, are frequently
required to make characters and effects appear interesting
and impressive.

In computer graphics, particle-based methods for sim-
ulating viscoelastic fluids have been proposed. However,
previous particle-based, smoothed particle hydrodynamics
(SPH) methods which depend on physical-based viscoelas-
tic models [6, 17] cannot simulate highly deformable objects
because, at a particle position, physical contributions from
farther particles are likely to be smaller owing to the decreas-
ing property of finite support kernels, and consequently, vis-
coelastic materials fail to restore their original shapes when
they undergo significant deformations. This problem can be
addressed by combining SPH and a geometric method [7,28].
However, these hybrid methods have another problem that
they suffer from volume loss of materials, which leads to
unphysical fluid behaviors, because the geometric methods
adopted by Takamatsu and Kanai [28] and Clavet et al. [7]
make an incompressible fluid solver fail to preserve fluid
volumes.
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Fig. 1 Viscoelastic fluids simulated with our hybrid method. (Left) Merging spheres with different viscoelasticity values colliding with a static
solid dragon. (Middle) A viscoelastic ball colliding with a solid cube. (Right) Barus effect of a viscoelastic material (see Sect. 4.4)

To solve the two problems above simultaneously, we pro-
pose a particle-based hybrid method for simulating viscoelas-
tic fluids, which can preserve fluid volumes and enable large
deformations of the fluids. Our method uses a combina-
tion of SPH and position-based dynamics (PBD) [4,20].
While using SPH to preserve fluid volumes, we exploit PBD
for velocity corrections which achieve viscoelastic effects
involving large deformations without negatively influenc-
ing the volume preservation. To correct particle velocities,
we use a set of connections between particles, which are
adaptively updated based on the positional relations of the
particles. We incorporate solid boundary particles into our
algorithm to simulate adhesion of viscoelastic fluids to solid
objects.

Our key contribution lies in velocity corrections which
allow for combining a geometric method with SPH to simu-
late viscoelastic behavior with large deformations while pre-
serving fluid volumes, since the SPH-based methods [6,17]
cannot handle large deformations and the previously pro-
posed hybrid methods [7,28] cannot preserve the volume of
viscoelastic fluids. Figure 1 illustrates characteristic behav-
iors of viscoelastic materials simulated with our hybrid
method.

This paper is an extended version of our previous paper
[26]. In this paper, we focus on the position-based velocity
correction scheme. As new additional materials, we include
a comparison of our method with the SPH-based method
[17] and propose a boundary-handling method for fluid-solid
coupling.

2 Related work

Viscoelastic fluids Miller and Pearce [18] and Terzopou-
los et al. [30] proposed a spring-based model that computes
repulsion and attraction forces among particles to simulate
viscoelastic materials. Their method was adopted by Steele
et al. [25] and Tamura et al. [29]. Clavet et al. [7] combined
this spring-based method with SPH to simulate materials with
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elasticity, plasticity, and viscosity, adopting a prediction—
relaxation scheme. A similar spring-based method was also
proposed by Takahashi et al. [27], who used PBD to sim-
ulate fluids with viscosity and elasticity in a unified frame-
work. Takamatsu and Kanai [28] combined shape matching
(SM), which was originally proposed by Miiller et al. [21] to
simulate deformable objects, with SPH to fast and robustly
simulate viscoelastic fluids.

Miiller et al. [22] proposed an elasticity term which uses
moving least square (MLS) to simulate elastoplastic objects.
Solenthaler et al. [24] adopted the formulation of this elas-
ticity term and computed it using SPH instead of MLS to
allow for robustly simulating fluid with various properties
under the condition of collinear or coplanar particle distribu-
tions. The method of Solenthaler et al. [24] was extended to
handle rotational motions of elastic materials [2]. Mao and
Yang [17] introduced a viscoelastic force term, called non-
linear corotational Maxwell model, into the Navier—Stokes
equations to simulate viscoelastic fluids. A method similar
to the method of Mao and Yang [17] was proposed by Chang
et al. [6].

Gerszewski et al. [9] proposed a new formulation for sim-
ulating elastoplastic materials, which uses affine transforma-
tions to compute the gradient of deformations. This formula-
tion was solved by Zhou et al. [31] in an implicit manner to
efficiently and robustly perform simulations with larger time
steps. The method of Gerszewski et al. [9] was extended by
Jones et al. [14]. Jones et al. [14] used MLS to robustly sim-
ulate elastoplastic materials with spatially and temporally
varying masses.

Volume preservation In particle-based simulations, volume
preservation has been achieved by minimizing density fluc-
tuations from the fluid rest density by enforcing fluid incom-
pressibility [13] since meshes which are often used for vol-
ume preservation of deformable objects are inappropriate
because of frequent topology changes. After Miiller et al.
[19] presented the basic SPH method, which suffers from
unacceptable density fluctuations and volume loss because
of the dependence on an equation of state (EOS), Becker and
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Teschner [3] proposed weakly compressible SPH and allevi-
ated large density fluctuations by replacing the EOF in [19]
with a stiffer EOS called Tait equation, requiring exceed-
ingly smaller time steps for stable simulation. Solenthaler
et al. [23] proposed a predictive-corrective scheme, called
predictive-corrective incompressible SPH (PCISPH) to use
larger time steps while satisfying fluid incompressibility.
A similar predictive-corrective scheme called local Poisson
SPH was proposed by He et al. [10]. Bodin et al. [S] proposed
a system of velocity constraints to improve the accuracy of
PCISPH [23], while achieving incompressible flows. To fur-
ther accelerate enforcing fluid incompressibility by allow-
ing us to use larger time steps than those used in PCISPH
[23], Macklin and Miiller [15] adapted PBD for fluid simula-
tion, and Thmsen et al. [12] proposed implicit incompressible
SPH (IISPH), which computes pressure values using semi-
implicit integration. A method that enforces fluid incom-
pressibility using semi-implicit integration, called incom-
pressible SPH (ISPH) was also proposed by Cummins and
Rudman [8].

3 Proposed method

The key of our method is to separately achieve volume preser-
vation and large deformations of viscoelastic materials. We
rely on a particle-based incompressible fluid solver to pre-
serve fluid volumes while exploiting an idea of PBD [4,20]
to correct particle velocities for viscoelastic effects without
negatively affecting convergence of density fluctuations in
the fluid solver.

We briefly describe computational process and impor-
tant features of particle-based incompressible fluid solvers in
Sect. 3.1 and explain our velocity correction scheme, which
enables large deformations of viscoelastic materials while
preserving their volumes in Sect. 3.2. In Sect. 3.3, we sum-
marize our algorithm, giving a list of simulation procedures
and implementation details.

3.1 Particle-based incompressible fluid solvers

To preserve fluid volumes, we use a particle-based incom-
pressible fluid solver, such as ISPH [8], PCISPH [23], and
IISPH [12]. In these SPH-based incompressible fluid solvers,
fluids are discretized by particles (particle i has position x;,
velocity v;, and mass m;), and pressure p; is iteratively cor-
rected to obtain pressure force Ff which achieves small devi-
ations of density p; to the rest density pg less than a certain
criterion, e.g., 0.01 %. We briefly explain the flow of com-
putations for the solvers. For detailed simulation procedures
and discussions, refer to the papers of particle-based incom-
pressible fluid solvers [8,12,23].

We first compute intermediate velocity v for particle i by

other

vi=vi4+ At ;n , (1)
1

where ¢ denotes time, Ar time step, and Fother 411 forces

except pressure and viscoelastic ones. Next, we use an incom-
pressible fluid solver to obtain pressure p;, which is clamped
as p; = 0if p; < Onotto cause attraction forces between par-
ticles, through iterative corrections with intermediate veloc-
ity v and compute pressure force Ff’ by

-
F’ = _mizm,(%jtp—;)vwij, 2)
; /

i J

where j denotes a neighboring fluid particle and W;; a kernel
with a kernel radius h. Then, we compute velocity v; for
incompressible flows:

FP

vith = vr ¢ At;. (3)
1

Finally, we update particle position x;:
XIH—] = Xz{ + Atv;. 4

There are two important requirements to note; first, par-
ticle velocity v; needs to be updated with pressure force
Ff with Eq. (3) to integrate particle position x; with Eq.
(4), achieving incompressible flows. However, the method
of Takamatsu and Kanai [28] does not satisfy this require-
ment because their method mixes velocities derived from
SM, which does not ensure incompressible flows, and SPH,
and thus resulting velocities cannot achieve incompressible
flows. Second, particle position x; must be fixed after neigh-
bor search steps until pressure force Ff’ is computed with Eq.
(2). As explained in [12,23], neglecting changes of particle
positions causes erroneous sets of neighboring particles and
their interparticle distances and leads to inaccurate estimates
of physical quantities, which can make the fluid solver fail
to converge or delay the convergence of the iterations. Since
the method of Clavet et al. [7] uses a prediction-relaxation
scheme, which change particle positions, this requirement is
not satisfied.

3.2 Velocity correction scheme

Satisfying the two requirements mentioned above, we cor-
rect particle velocities to achieve viscoelastic effects with
velocity correction vector Av; (see Sect. 3.2.1). We obtain
intermediate velocity v} by modifying Eq. (1):

other
vi=vi4+ At
mi

+ Av;. &)
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Fig. 2 A ball with different
viscoelasticity values dropped
onto the ground. Particles are

color coded based on their
velocity correction coefficients ¢
(low cyan and high dark cyan)

In [26], although three velocity correction schemes (shape
matching, spring-based, and position-based) were proposed
to compute velocity correction vector Av, we herein use
the position-based scheme because of the following advan-
tages over the other schemes; first, the position-based scheme
requires fewer neighbor particles than the shape matching
scheme and uses pairwise connections which can simplify
boundary conditions with other objects unlike the shape
matching scheme which needs to construct particle clus-
ters including farther particles. Second, the position-based
scheme inherits properties of PBD [4,20] and thus is robust
and easy to tune parameters as compared to the spring-based
scheme.

3.2.1 Position-based velocity correction

To compute velocity correction vector Av, we construct a
set of pairwise connections for neighboring particles when
an object is created, with their initial interparticle distance
rij, which is initialized as r;; = ||x;;|], where X;; = X; —X;.
Hereafter, we call particles connected with other particles as
connected particles. We correct velocities of connected par-
ticles only when their interparticle distance [|x;;|| is larger
than their initial interparticle distance r;; (fluid expansion),
namely r;; < ||x;;]|, because fluid compression, which gen-
erally occurs when [|x;;|| < r;ij, is resolved to preserve fluid
volumes with our fluid solver. To compute Av for those con-
nected particles such that r;; < ||x;;||, we define a distance
function D;; as

Djj = max(|[x;;|| —rij, 0).

Then, we compute Av; with a velocity correction coeffi-
cient ¢c; (0 <l; < ¢;), where [; is the lower limit of ¢;:

s/

1 ! i +c; . X;:
Avi=—-—>" ey Dij——, (6)
At 2 mi—l—mj ||Xij||

where Sl:f denotes the number of connected fluid particles to
particle i. To derive Eq. (6), we adopted an idea of position
correction used in PBD [4,20], where position correction
vector is defined as
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—— SPH-based method
Our method

Influence for viscoelastic effects

”xij”

Fig. 3 Comparison of the influence for viscoelastic effects between an
SPH-based method and our method

/
Si

Xl'j

mj _Xij
i [1x;;1]

Ax; = = > —L—(|Ixijl| = 1))
i

mi +m;

Our velocity correction vector is basically obtained by
dividing Ax; by Atr. Using D;;, the velocity correction vec-
tor becomes zero when [|x;;|| < r;;. We additionally intro-
duce velocity correction coefficients ¢; and ¢; to control the
stiffness of viscoelastic materials; lower (higher) ¢; leads to
softer (stiffer) materials (see Fig. 2).

Our velocity corrections enable large deformations that
cannot be generated with SPH-based methods, e.g., [6,17],
because the influence of the SPH-based methods for vis-
coelastic effects decreases as interparticle distances get larger
and finally becomes zero owing to finite support kernels when
h < ||x;;|| while the influence of our method increases when
rij < |Ixij|| (see Fig. 3).

3.2.2 Coefficient relaxation

When large stress is applied to viscoelastic materials, they
cannot completely return to their original shapes (this is
known as plastic deformation). To simulate this behavior, we
weaken the effect of ¢; if /; < ¢;, taking into account the fact
that connected particles do not restore their positional rela-
tion when their connection is extended larger than a certain
distance. Specifically, we update c; by
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S:f
1

41 _ ' z:wi+wf

Ci = max ¢ — At Tgl]s ll s (7)
J

{1 if 250 < Du
ij =

0 otherwise

where w; (0 < w;) controls the weakening speed of c;, and
yi (0 < y;) is ayield criterion. o;; works so that the weaken-
ing happens only when normalized extension D;;/ h is larger

than HT)/’

3.2.3 Connection control

We adaptively generate and delete particle connections
depending on the positional relations of particles to allow
viscoelastic fluids to merge with others and split into several
lumps. For merging, we generate a new connection between
two particles with ; (0 < ;) if [|x;;]]/h < ai;aj , and if
there is no connection between them. For splitting, on the

other hand, we remove particle connections with g; (0 < 8;)
lf ﬂi +/3 j
2

< ||x;j |/ h. We show our connection control algo-
rithm in Algorithm 1 for clarity. Merging and splitting of
viscoelastic materials are demonstrated in Fig. 4.

Algorithm 1 Connection control algorithm

1: for all fluid particle i do
2:  for all neighboring particle j do
if [1xi;11/ 7 < 5% then
if there is no connection then
generate a new connection between i and j
for all connected particle j do
if 20 < |1x;;1|/h then
delete the connection between i and j

PR ANHEW

Fig. 4 (Top) Two merging
viscoelastic balls. (Bottom) A
viscoelastic ball thrown toward
a column, splitting into three
lumps

3.2.4 Boundary-handling for solids

We simulate interactions of viscoelastic fluids and solids by
incorporating solid boundary particles into our algorithm.
Connections between fluid and solid particles are updated
following Algorithm 1. We compute Av; by extending Eq.
(6) with solid particles:

s/
1 ci+cej mj X;j
J J ij
AV,‘:——Z D,’j
At “— 2 m;+m; 111
:V
I Coetoa m Xik

®)

- Dij ;
Are= 2 mi+me Xl
where k denotes a neighboring solid particle and S} the num-
ber of connected solid particles to particle i. Since force-
based rigid body simulators are often adopted, we compute
viscoelastic force F;} to exert the antisymmetric effect of fluid
particles to solid particle i, preserving their momentum:

Sf

mi i C'+C' m. X"
F'=——- L I p;i—L. 9
! Aﬂ; 2 mi+mj x| ©

Computing velocity correction vector Av; for one-way
solid-to-fluid coupling is straightforward. Assuming mj =
oo in Eq. (8) for a solid particle k, which is fixed or moves
along a determined path, we obtain

st
1l <~ci+c¢; m; Xjj
AV,’ = ——z ! J J Dij Y
At 2 mi+m;j [1%;71]
1 Lo + ¢k Xk
- l ik ——. (10)
AT T ]
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Fig. 5 A cube thrown toward a
wall without (left)/with (right)

fluid-solid coupling

Extending Eq. (7) with solid particles, we weaken the
effect of ¢; as

s/ sy
C§+1 = max Cf — At Zwijdij + Zwikaik i,
j k
(11)
where w;; = wi;wj.

Figure 5 illustrates the effects of the fluid-solid coupling
with an example of a cube thrown toward a wall.

3.3 Simulation algorithm and implementation

We give an outline of our procedures in Algorithm 2. In
our implementation, we use IISPH [12] as an incompress-
ible fluid solver and set a convergence criterion as 0.01 %.
For fluid-solid coupling of pressure and viscosity, we employ
the method of Akinci et al. [1]. We use finite support kernels
as proposed by Miiller et al. [19]. To accelerate neighbor
search steps, we used a variant of the z-index sort algo-
rithm presented in [11]. There are six adjustable parame-
ters ¢, [, w, y, «, and B that we introduced to cover various
phenomena of viscoelastic fluids, and we basically use val-
ues similar to ¢ = 0.001,/ = 0.0001, w = 0.001,y =
1.01,¢ = 1.0, and B = 2.0, adjusting them according to
scenarios.

Algorithm 2 Simulation algorithm

1: for all particle i do
2:  find neighboring particles
3: for all particle i do
4:  update particle connections following Algorithm 1
5. if particle i is a fluid particle then
6: obtain v} with Egs. (5), (8), and (10)
7. relax ¢; with Eq. (11)
8: compute particle pressure p using IISPH
9: for all fluid particle i do
10:  compute F/ with Eq. (2)
update solids with Eq. (9)
11: for all fluid particle i do
12:  integrate v; with Eq. (3)
13:  integrate x; with Eq. (4)

@ Springer

Table 1 Simulation conditions and performance

Figure # NI /N3 rtoral (g)
2 (left) 24.5k/38.6k 3.02
2 (middle) 24.5k/38.6k 3.83
2 (right) 24.5k/38.6k 4.06
4 (top) 45.2k/60.3k 9.57
4 (bottom) 22.6k/67.4k 5.36
5 (left) 13.8k/27.0k 2.40
5 (right) 13.8k/27.0k 2.43
6 (top) 7.1k/21.8k 0.39
6 (bottom) 7.1k/21.8k 0.64
7 (middle) 8.2k/19.2k 5.75
7 (right) 8.2k/19.2k 2.47
9 (middle) 14.0k/27.5k 3.35
9 (right) 14.0k/27.5k 3.13
11 Up to 195.1k/168.1k 125.2
12 33.4k/65.7k 6.82
13 73.5k/108.8k 29.01

N/ and N* denote the number of fluid and solid particles, respectively.
'l js total simulation time per frame

4 Results

We implemented our method in C*" and parallelized it
using OpenMP 2.0. All the simulations were performed
on a PC with a 4-core Intel Core i7 3.40 GHz CPU
and RAM 16.0 GB. We used a physical-based renderer
Mitsuba to render all the scenarios. Our velocity correc-
tions generally occupy only 1.3 % of whole simulation
time. Simulation conditions and performance are listed in
Table 1.

4.1 Large deformation

We compare results generated with our method and the
SPH-based method using a non-linear corotational Maxwell
model proposed by Mao and Yang [17] to show that our
hybrid method can handle large deformations of a viscoelas-
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Fig. 6 Comparison for large
deformation. (7op) the method

of Mao and Yang [17]. (Bottom)
our method

Fig. 7 Comparison for volume
preservation. (Left) initial state. 1
(Middle) the method of

%0 il

Takamatsu and Kanai [28].
(Right) our method

tic material, which cannot be simulated with the SPH-based
method [17]. Though the method of Mao and Yang [17]
resampled particles to solve an issue of particle disorder, we
did not do that in our experiment to show that our method
can generate large deformations without the need of special
treatments.

Figure 6 illustrates a viscoelastic sphere dropped onto the
ground. The viscoelastic ball simulated with the method of
Mao and Yang [17] exhibits slight elastic deformations. After
the degree of the deformations exceeds a certain threshold,
the ball fails to restore their original shape and breaks into
many lumps which consist of fairly close particles because
particles close to others exert strong forces to preserve their
positional relations (see Fig. 3). The method of Mao and
Yang [17] needs to use strong viscoelastic forces to make
the viscoelastic ball exhibit slight elastic deformations at
the expense of numerical stability. On the other hand, our
method can handle large deformations, restoring its original
shape without resampling particles nor introducing numeri-
cal instability.

4.2 Volume preservation
We compare our method and the existing hybrid methods

[7,28], using a scenario of a viscoelastic ball compressed by
a moving board along a vertical path.

0.095 -
0.085 A
0.075 A
0.065 -
0.055 A
0.045 -
0.035 A
0.025 A

0.015 T T T
0 50 100 150 200
Frames

Takamatsu and Kanai
Our method
Reference

Volume V (m?)

Fig. 8 Profiles of the volume V occupied by a ball for Fig. 7

Comparison to [28] First, we illustrate the difference
between our method and the method of Takamatsu and Kanai
[28], who combined SPH and SM. Since the basic SPH [19]
adopted by Takamatsu and Kanai [28] as their underlying
fluid solver cannot preserve fluid volumes, we use IISPH
[12] instead of the basic SPH [19] and consider the method
of [28] as a hybrid of IISPH and SM. In this comparison,
we use 100 pressure iterations in IISPH for both methods
because the method of [28] is likely to fail to preserve fluid
volumes even if more pressure iterations are applied.
Figure 7 shows the comparison, where the left is the initial
state, and the middle (right) is the result of the method [28]
(our method), and Fig. 8 illustrates the volume V (which is
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Fig. 9 Comparison for volume
preservation. (Left) initial state.
(Middle) the method of Clavet et

al. [7] (Right) our method

estimated by summing up the volume of all fluid particles
as V.= >, V; = > .m;/p;) occupied by the ball for the
method of Takamatsu and Kanai [28], our method, and refer-
ence (initial volume). The volume of the ball on the middle
decreases and increases depending on the moving board. By
contrast, the ball on the right preserves its volume, which is
fairly close to the reference. Additionally, when being com-
pressed, the ball on the right exhibits horizontally spread-
ing motions, which cannot be generated with the method
of [28].

Moreover, our method is advantageous over the method
of [28] in terms of performance (see Table 1), and there
are two main factors; first, the method of Takamatsu and
Kanai [28] needs more neighboring particles to stabilize sim-
ulations than our method, and processing these particles is
an additional cost. Second, their method [28] uses Singular
Value Decomposition, which is time consuming, to obtain
rotational matrices in SM while our velocity corrections need
simple computations only.

Comparison to [7] Second, we compare our method and the
method of Clavet et al. [7], who combined SPH with spring
systems using a prediction-relaxation scheme. Similar to the
above previous method, since Clavet et al. [7] used the basic
SPH [19], we use IISPH as their fluid solver for the same
reason.

Figure 9 demonstrates the comparison, where the left is
the initial state, and the middle (right) is the result of the
method [7] (our method). Since errors introduced by posi-
tion changes during the iteration are relatively small and it
is difficult to clarify visual or volume differences between
the previous method [7] and our method, we compare these
methods in terms of the number of iterations required to sat-
isfy the convergence criterion of 0.01 %, as shown in Fig.
10, where profiles of iteration numbers for Clavet et al. [7]
nP" and our method nP°, and their difference n%P" — nP° are
illustrated. Although our method and the method of Clavet
et al. [7] can generate similar results, the method of Clavet
et al. [7] is likely to require more iterations to enforce fluid
incompressibility than our method. This is noticeable espe-
cially when the ball is compressed and significantly deformed
by the board because large deformations cause strong attrac-
tion forces and introduce larger positional errors (see “Dif-
ference” in Fig. 10). The extra iterations of the method of

@ Springer

135 | Clavet et al.
Our method
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2
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Fig. 10 Profiles of iteration number required to satisfy the convergence
criterion of 0.01 % for Fig. 9

Clavet et al. [7] lead to slightly higher computational cost
than our method (see Table 1).

4.3 Interactions

Figure 11 illustrates several spheres with different viscoelas-
ticity values successively thrown toward a static solid dragon.
Similar to Figs. 4 (top) and 5 (right), our method can easily
handle merging of fluids and adhesion of fluids to a solid by
updating pairwise interparticle connections.

Figure 12 demonstrates two-way interactions of a vis-
coelastic material and a solid. The solid cube is gradually
pulled toward a wall by the viscoelastic material that con-
nects to both of the solid cube and the wall. This effect cannot
be simulated only with the previously proposed boundary-
handling scheme for pressure and viscosity [1].

4.4 Barus effect

Figure 13 demonstrates Barus effect of a viscoelastic ball.
Barus effect (also known as die swell, exclude swell, and
Merrington effect) is a phenomenon that a stream of vis-
coelastic fluid swells wider than the diameter of an opening
when the stream goes through the opening because of vis-
coelastic forces which restore fluid’s original shape after the
deformations at the opening. Although our velocity correct-
ing method is based on approximated dynamics of viscoelas-
tic fluid, we can plausibly generate Barus effect.
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Fig. 11 Spheres with different [ '

viscoelasticity values
successively thrown toward a

solid dragon. Particles are color
coded based on their velocity

correction coefficients ¢ (low
coefficient cyan and high
coefficient dark cyan)

Fig. 12 A viscoelastic ball
thrown toward a solid cube

_iH*_m

Fig. 13 Barus effect of a |
viscoelastic material r

m..2
D

5 Discussions and limitations

Our method combines PBD with SPH to take advantage of
geometric methods, such as numerical stability and capability
of handling large deformations. Additionally, unlike SPH-
based methods, our method has another benefit that time
steps are not generally restricted by viscoelasticity values,
namely velocity correction coefficient ¢ in our method; and
thus our method can use larger time steps and be faster than
SPH-based methods. In contrast to positive aspects, however,
there are a few negative issues on the adaptation of PBD. First,
our method exploits PBD to approximate viscoelastic behav-
iors instead of using physical-based models. Because of this
approximation, our simulation results are less accurate than
SPH-based methods which use a physical-based model for
viscoelastic effects. Second, we introduce several parame-
ters which lack physical meanings into our method to cover
various effects of viscoelastic fluids. These parameters need
to be adjusted depending on each scenario through exper-
iments to generate desirable behaviors of materials. Third,
since results of our position-based velocity correction can be
affected by time steps similar to other geometric methods,
our method would produce different behavior of viscoelastic
fluids depending on time steps.

When materials are driven to extreme situations (e.g., a
ball forcibly and significantly deformed by a heavy object),

'

|
|

- -

particle penetrations can be observed because of interparticle
connections which exert larger velocity changes for farther
connected particles to enable large deformations. Although
this can be addressed by adjusting the influence of veloc-
ity corrections, such an adjustment could make viscoelas-
tic materials fail to restore their original shapes from highly
deformed shapes.

Most viscoelastic materials undergo phase and property
changes, e.g., turning into a stiff solid, as time passes. To
simulate stiff materials, strengthening the influence of veloc-
ity corrections would cause instability in simulations. Thus,
investigating how to simulate soft and hard materials with
phase and property changes in a unified framework is our
important future work.
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