
Intuitive Path-based Camera Control for Dynamic Scenes

Aritoki Kawai*† Tsuneya Kurihara*‡ Tomoyuki Nishita*

*The University of Tokyo †Sony Computer Entertainment Inc. ‡Central Research Laboratory, Hitachi, Ltd.

Abstract
This paper presents an intuitive user interface for a

virtual camera controlled by a path and a set of constraints.
Here, the constraints mean where an object is to be
projected on the screen. In many cases, the camera position
plays a more important role than other settings such as the
orientation and the field of view angle of the camera.
Therefore, in this paper, the user sets the camera path and
the screen constraints, and then, both the orientation and
the field of view angle are computed automatically. Thanks
to the low computational cost in the presented method, real
time control is possible. We generate several sample
animations to confirm the effectiveness of this method.

1 Introduction
Positioning and controlling a virtual camera is important in
3D computer graphics. We cannot create a desired image
without an appropriate camera setting. Generally, it is hard
to understand how to control a camera for non-expert users
and it may be difficult to get the desired images and movies
in mind. This is caused by the camera control scheme that
requires the user to directly manipulate the camera
parameters relating with the camera position or orientation
in order to control the camera. In the camera control scheme
in which the camera parameters are directly manipulated, it
is required to recognize the position and orientation of the
camera, and the position of the objects that focused on in 3D
space. It is also difficult to predict the resulting image
accurately before generating it. We propose a camera
control interface by which even novice users can control the
camera readily and intuitively by setting camera path and
constraints on the screen.

This paper is composed as follows. In Section 2, the
research about camera control in computer graphics is
described. In Section 3, the overview of the camera system
proposed in this paper is described. In Section 4, first the
method to compute the camera parameters by a set of
constraints on the screen is explained. Next the algorithm to
deal with camera position independently and the actual
interface using the approach is described. In Section 5, the

effectiveness of the proposed approach is validated through
the resulting animation. Last, conclusion of this research is
described and future work is referred to in Section 6.

2 Related Work
The purpose of a camera control is to assist the users to set
the camera parameters. Early works in computer graphics
use a key frame method, where the users set camera
parameters at a set of points that compose the camera
trajectory; i.e. key frames and between key frames each
camera parameter is computed by interpolation [5].
However, computed paths are generally not realistic and far
from the users’ desired images. This is caused by the feature
of the key frame method, in which the object focused on at
that time cannot be kept being projected to the desired
position on the screen during the interpolation. The control
to keep a camera turning to a direction of a certain object is
possible, however, the object is only projected to the center
of the screen. Furthermore, we cannot control how to view
more than two objects at all.

Various techniques have been proposed in order to solve
this problem. Blinn proposed an approach by which the
projected position of two objects on the screen can be
controlled [4]. Because this method is based on vector
algebra, it can be calculated efficiently. However, only two
points can be controlled.

In order to solve the problem mentioned above, Gleicher
and Witkin [1] proposed a technique called through-the-lens
camera control (TTL) to control a camera intuitively by
directly controlling two-dimensional points on the screen on
which three-dimensional points are projected instead of
setting parameters of the camera directly. This approach
offers a user-friendly interface to control a camera by
manipulating points on the screen. This approach needs low
computational cost, thus this is suitable for the case where
the calculation must be done in real time. However, it is
difficult to predict behavior of the camera, especially the
camera position in three-dimensional space, due to
controlling the camera only by constraints on the screen.
Furthermore, this method cannot deal with an occlusion

Figure 1: The window for viewing the 3D scene

Figure 2: The window for the view from the camera

problem, because of regarding an object as one point.

In addition, many approaches have been proposed
regarding a camera control as a constraint satisfaction
problem [7, 8, 9]. This framework offers a declarative tool
for the camera planning to users. For example, a user sets a
condition that an object A is projected to the left side of the
screen and an object B is projected to the right side of the
screen during a certain duration time, then a system solves
these inputs as a constraint satisfaction problem. A common
problem of these techniques is high computational cost.
Classical constraint programming techniques such as
propagation cannot directly handle these problems within a
reasonable computational cost. Bares et al. propose a
heuristic-based complete search algorithm [6]. Jardillier and
Languénou propose a method to set a movement of a
camera by an intellectual method [9]. However, only simple
camera work can be generated by these methods. Christie et
al. propose an approach that limits the camera movement to
basic one which is established and used in cinematography,
and reduce the computational cost compared with the
previous works [2]. However, a computational cost remains
high, and it needs much time for preprocessing. In addition,
computation time increases as camera work becomes

complicated.
Although the camera parameters can be computed to

satisfy constraints on the screen by using the technique of
Gleicher and Witkin [1], it is difficult to predict the behavior
of the camera in world coordinate system. In many cases,
however, the camera position is wanted to move along the
path the user specifies. For example, in the case of marathon
broadcast, the field of view angle and the orientation of the
camera have no constraints. On the other hand, the position
of the camera is always the position of the broadcast van
because the camera is fixed on it. To realize the camera
work in such cases, it is desirable that the field of view angle
and the orientation of the camera is automatically computed
to satisfy constraints on the screen, however, the position of
the camera is independently controlled in order to move
along the path that the user specifies.

3 Overview
In the camera system used in this paper, a camera has seven
degrees of freedom as parameters; i.e. one is field of view
angle, three is position in 3D space and residual three is
rotations. Because all of the position and the orientation of
the camera in the 3D space and the scene viewed through
the camera had better be able to be viewed concurrently for
usability, thus two windows are used in the system. One is
the window through which whole 3D scene, where all
objects exist, can be viewed. In this window, we set the
camera path (see Figure 1). The camera frustum volume can
also be viewed in this window. The other is the window
through which we view the 2D projected scene (Figure 2).
In Figure 2, some control points (small squares) used as
constraints can also be viewed. We manipulate these control
points on the screen to control the camera, not directly set
camera parameters.

Steps of a camera control procedure are as follows
(Figure 3).

1. Camera path setting

Set a camera path using spline curve or sketch interface
[3]. In Figure 3, the camera path is drawn with a bold
line.

2. Segmentation of the camera path
Subdivide the camera path to some segments. In each
segment, different screen-space constraints are used. In
Figure 3, the camera path is subdivided into three

segments.

3. Setting screen-space constraints in each segment

Specify the projected positions of objects in each
segment, through manipulation of control points on the
screen. For example, the control points are set in such a
way that the Stanford Bunny is projected to the left side
of the screen at the segment (1) (Figure 3 right top).

For making an animation, both the field of view angle

and the orientation of the camera are calculated
automatically in order to satisfy the set of constraints, while
the camera moves along the path in each segment.

 (a) (b)

Figure 3: An input example:
(a) An example of camera path setting
(b) An example of setting constraints on the screen

4 Algorithm
To realize the proposed system, we apply the TTL scheme
[1] and extend it in order to control the camera position
independently from constraints on the screen.

4.1 Camera Control on the Screen
Let x be the world-space point that projects to image-space
point p, and V(q) be the function of the camera parameter q,
h be a function that converts homogeneous coordinates into
2D image coordinates, defined by

(1)
where xi is the component of homogeneous point x. Thus,
we obtain the following equation:

(2)
Assuming that the world-space point x is fixed, the image

point p is a function of the camera parameters q. Because h
and generally V(q) are nonlinear, Equation (2) is nonlinear.
We consider indirectly solving this nonlinear equation. By
applying the chain rule, we obtain the expression for the
image velocity p& :

(3)

where (x)h′ is the matrix representing the derivative of
h(x), given by

,q
q

(Vx)
(Vx)hp && ⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
′=

.
00

10

01

2
4

2
2
4

1

4

4

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
x
x

x
x

x

x
 =′(x)h

(4)

Here, is the time derivative of q, and q& q(Vx) ∂∂ / is
the matrix representing the derivative of the transformed
point Vx with respect to q.

①

②

③

②

③

①

Bunny

Buddha

Dragon Bunny

Here, we define the matrix

,)
q

(Vx)
(Vx)(hJ

∂

∂
′= (5)

so that

(6) .qJp && =

We obtain Equation (6) giving p& as a linear function of q& ,
even though p is a nonlinear function of q.
Even if p& is given, however, Equation (6) cannot be

solved simply. This means that the camera parameters
cannot be determined by using only an image-space
point velocity. Here we set a criterion , and
then

0q&
q& which minimizes the difference of 0 is selected.

For example,
q&

00 =q& means that camera parameters
which change minimally are selected. This is
represented as the following equation,

．
2

)qq)(qq(00 &&&& −−
=E minimize (7)

We have described a method to control one point on the
screen. Next, we refer to controlling multiple points.
Because J is determined by x, Equation (6) is prepared for
each point to control. By solving the simultaneous
equation, we can control multiple points.
 When world-space point x itself moves by the time,
image-space point p also changes. Therefore we can
control the moving point by solving Equation (8) where an
additional term is added to Equation (3).

,,
4

2

4

1 ⎥
⎦

⎤
⎢
⎣

⎡
=

x
x

x
xh(x)

 .)(x)qh(Vp =

.)(xVVxhq
q

(Vx)
(Vx)hp &&& ′+

∂

∂
′= ⎟

⎠

⎞
⎜
⎝

⎛
(8)

4.2 Independent Camera Position Control
Now we will extend the original TTL scheme [1] to be able
to deal with the camera position independently. Equation (6)
means that the velocity of the image-space point is
determined by the linear sum of a set of differential of
camera parameters. The camera has seven degrees of
freedom; position, orientation and field of view angle. The
camera position of the next time is known because a user
sets the camera path, which means that differential of the
camera position is also known.

The constraints on the screen are automatically adjusted
with the precomputed effect of differential of the camera
position. The residual four degrees of the freedom of the
camera parameters are computed by the method in Section
4.1 based on the new constraints that incorporates the effect
of the differential of the camera position, which enables to
manipulate the camera position independently without
interrupting satisfying constraints on the orientation and
field of view angle of the camera on the screen.

4.3 Camera Path Setting
We can set the camera path by manipulating control points
of a curved line or using sketch interface.

Using control points setting method, we adopt the
Catmull-Rom Spline curve [10] because it interpolates the
control points therefore the path shape is predictable
intuitively.

As the sketch interface, we adopt the approach [3] in
which we control not only the curve itself but the shadow
projected on the ground perpendicularly in order to specify
the curve shape clearly.

The reason why we set the camera path interactively is
that setting a camera path roughly is easy and the occlusion
problem that many camera systems suffer from can be
avoided thanks to the merit that we set the path while
looking at the scene.

4.4 Control Points Setting
Control points given as constraints are set on the local
coordinate of the objects. By picking a displayed vertex of
each object, we set it as a control point. Moreover, utilizing
the information of the bounding box, an arbitrary position of
each object on the local coordinate can be set as a control
point. Control points shown in Figure 2 are set by the latter
method.

When we set a control point on multiple-joint structure
such as a human body, additional care must be taken. For

(a)

(b)

Figure 4: An example of the dynamically transformed objects
(a)The root position of the front character is represented as square.

(b)While the character turns catherine wheels, even the root which changes

the least in height changes the position to the top of the arrows end. Thus if

fix the height of the root position on the screen, the camera cannot avoid

shaking

example, there is a problem that a camera might shake in
correspondence with the vertical motion of the waist up and
down if we fix a control point on the route (the waist) of a
character (Figure 4). For solving this problem, an option is
prepared in which the height of control points can be fixed.

4.5 User Interface
We explain the user interface of the camera system with
Figure 3. At first we set a camera path (Figure 3 (a)). Next
we manipulate a control point on the screen so that Bunny is
projected in segment (1) to the left side of the screen (Figure
3 (b) top). The other control points are set likewise. These
control points are fixed at the positions on the screen in each
segment. Even if each object (Buddha, Bunny and Dragon)
moves along the arrow, the constraints have been satisfied.
During this operation manipulating constraints on the screen,
the system warns the user if the field of view angle of the
camera becomes wider than that used by actual
cinematographers.
At the boundary of two segments, we have two options to

deal with the camera parameter. Each camera parameter can
be interpolated in arbitrary time. In addition, it is possible

that the camera parameters change immediately at the
boundary.

5 Results
We have generated animations to show the effectiveness of
the proposed camera control interface. Figures 5 and 6 are
the captured images of the animation. Each object and a
camera move on the paths that are specified by the user (top
to bottom, from 1st to 7th steps). In Figure 5, we specify the
camera parameter so that the whole body of Buddha is
projected to the right side of the screen until the camera
overtakes the Buddha (1st and 2nd steps), and after the
overtaking, the upper part of the body of Buddha is
projected to the center of the screen (3rd to 7th steps). Figure
6 shows the following example: The camera moves on a
specified path, focusing on the screen so that the whole
body of the Bunny is projected to the left side of the screen
in the first segment (1st to 4th steps), and in the last segment,
Bunny is set to be projected to the left side of the screen and
Dragon is set to be projected to the right side of the screen
(5th to 7th steps). In these examples, three control points are
specified on each object by using the bounding-box
information. In these examples, three control points are
specified on each object; high, middle and low height.
These examples show that with few operations we can set a
path, orientation and field of view angle of a camera easily.

6 Conclusion and Future Work
In this paper, we have proposed an intuitive camera control
interface to automatically compute the orientation and field
of view angle of the camera satisfying the constraints. The
constraints are set by the position of each object by
manipulating control points on the screen. Then, the camera
moves along a user-determined path and the orientation and
the field of view angle are computed automatically. We
showed a method to deal with the camera position
separately from the constraints about the orientation and the
field of view angle given by manipulating control points on
the screen. We showed a method to deal with the camera
position separately from the constraints about the orientation
and the field of view angle given by manipulating control
points on the screen. Because the proposed method uses the
differential calculation in order to solve the constraints, the
process needs low computational cost thus can be carried
out in real time. Therefore, the camera setting process in the

proposed system can be done intuitively and interactively.
In the presented approach, however, there remain many

interactions the user should do, such as camera path setting
or manipulation of control points. As future works, we
consider development of a method to calculate a detailed
camera path from roughly sketched one automatically. In
addition, we consider development of a method to generate
appropriate camera work by giving a size and projected
position of each object so that a user does not need to
control a control point directly as a set method of constraints
on the screen.

References
[1] Gleicher M. and Witkin A., Through-the-Lens Camera Control,
In Proc. of SIGGRAPH’92, pp. 331-340, 1992.
[2] Christie M., Languénou E. and Granvilliers L., Modeling
Camera Control with Constrained Hypertubes, In Proc. of CP
2002, pp. 618-632, 2002.
[3] Cohen J., Markosian L., Zeleznik R., Hughes J. and Barzel R.,
An interface for sketching 3D curves, ACM Symposium on
Interactive 3D Graphics, pp. 17-21, 1999.
[4] Blinn J, Where am I ? What am I looking at ?, IEEE Computer
Graphics & Applications, pp. 76-81, 1988.
[5] Foley J., Dam A., Feiner S., and Hughes J., Computer
Graphics: Principles and Practice, Addison-Wesley Publishing
Co., 1990.
[6] Bares W., Gregoire J., Lester J., Realtime Constraint-Based
Cinematography for Complex Interactive 3D Worlds, In Proc. of
AAAI-98/IAAI-98, pp. 1101-1106, 1998.
[7] Halper N., Helbing R., Strothotte T., A Camera Engine for
Computer Games, Managing theTrade-Off Between Constraint
Satisfaction and Frame Coherence, In Proc. of the
Eurographics’2001 Conference, pp. 174-183, 2001.
[8] Bares W., Mcdermott S., Boudreaux C., Thainimit S., Virtual
3D Camera Composition from Frame Constraints, In Proc. of the
eighth ACM international conference on Multimedia, pp. 177-186,
2000.
[9] Jardillier F., Languénou E., Screen-Space Constraints for
Camera Movements: the Virtual Cameraman, In Proc. of EURO-
GRAPHICS-98, pp. 175-186, 1998.
[10] Catmull E., Rom R., A Class of Local Interpolating Splines, in
R. E. Barnhill, R. F. Riesenfeld (ed.), Computer Aided Geometric
Design, Academic Press, NewYork, pp.317-326, 1974.

-1-

-2-

-3-

-4-

-5-

-6-

-7-

(a) View through camera (b) Camera state (a) View through camera (b) Camera state

Figure 5: Resulting images 1 Figure 6: Resulting images 2
Each point in circle means constraint. Each point is on the top, middle and bottom of the central axis of each object.

In Figure 5, constraint setting is changed at third step. In Figure 6, that is change at 5th step.
By no changes of the circle positions, resulting images show that constraints are satisfied.

