30.4. RAY-TRACING

Methods to ray-trace freeform geometry directly by the numerical evaluation of roots or
zero-sets are already known. The demand for extreme robustness and stability (for exam-
ple, the failure of one pixel in a million would be unacceptable) puts severe restrictions
on the possible methods one can use. Some approaches support only special classes of
surfaces such as surfaces of revolution, extrusion surfaces and sweep surfaces, or combina-
tions of these. In one such development [4], sweep surfaces are rendered directly, utilizing
the generating curves of the sweep surface as the basis for the coverage.

Here, we will examine two approaches that support or emulate direct ray-tracing meth-
ods for freeform geometry. In Section 30.4.1, we will consider a method that is known as
Bézier clipping, which is a robust yet efficient numerical method to derive Ray-Surface
Intersections (RSI). In Section 30.4.2, we examine an extension to the AIC-based coverage
that supports ray-tracing and is called Ruled Tracing.

30.4.1. Bezier clipping

In general, finding the roots of polynomial functions of arbitrary degree is a difficult
problem. However, where polynomials represent geometry, the Bézier form may yield
some benefits. It should be noted that a B-spline surface can easily be converted to a
piecewise Bézier form and hence the method presented here will be equally valid in the
domain of B-spline surfaces.



Consider the parametric Bézier curve C(t) = (z(t),y(t)) of degree d. We seek the
intersection points of C(t) with the line L : Az + By + C = 0 (see Figure 30.7 (a)).
Substituting C(t) into L, we are left with an implicit equation in one variable whose
zero-set corresponds to the desired intersection points, f(t) = Axz(t) + By(t) + C = 0.
Clearly, f(t) is a scalar Bézier function of the same degree as C(t),
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where B, 4(t) are Bézier basis functions of degree d. Since the fun(tion is scalar, one could
replace the coefficients ¢; by (¢;, %), in the zy-plane, because 7 iB;a(t) =t. Let us
denote the Bézier curve with coefficients P; = (¢;, 4) as fol).

The curve fy(t) is contained in the convex hull CH(fo) formed by its control points,
{P;}. Moreover, the zeros of f(u) correspond to the intersection points of fo(t) with the
z-axis. Consider the first control point, Py of fo(t) (see Figure 30.7 (b)). If P, is below
the z-axis, as seen in Figure 30.7 (b), then the curve fo(t) is guaranteed to be below
the z-axis, as long as CH(f,) is also below the z-axis. Similar arguments hold if Fy is
above the z-axis. Moreover, the same line of reasoning holds for the last control point,
P;. Hence, one can clip fo( t) from t = 0 up to ¢; (see Figure 30.7 (c¢)), where CH(fo)
intersects the z-axis for the first time, and from ¢ = 1 back down to t,, where CH(fp)
intersects the z-axis for the last time, creating fl( ). The clipped curve fi(t) contains
exactly the same zeros as fg() This numerical process can be allowed to iterate until
the zero-set solution is located with sufficient precision.

The extension of this Bézier clipping process to surfaces requires several intermediate
representations, although it follows the general direction of the approach we have taken
for curves. Consider the tensor product Bézier surface:
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The ray 1ntorsecting S(u,v) is defined as the intersection of two orthogonal planes, Az +
Byy + Crz + D, = 0, k = 1,2. Nishita et al. [20] employ the scan plane and the plane



containing the ray and the y-axis are for primary rays. Substitute the control points
Py = (xij,y4j, zi;) of S(u,v) into the planes, and let a’ = Agxij + Bryij + Cyzij + Dy
Assuming A} + Bf + C} = 1, df; equals the distance flom P;; to the kth plane. We now
define a new pldnar surface as:

(u,v) ZZ d)],dz i do (4) Bja, (V).

Surface (:lipping will be conducted over D(u,v), which is merely an orthographic projec-
tion of S(u,v) along the ray, if S(u,v) is a polynomial surface. Even if S(u,v) is rational,
D(u,v) remains a polynomial.

The solution of D(u,v) = 0 corresponding to the intersection between the ray and the
original surface S(u,v) is obtained by performing Bézier clipping steps over D(u,v) with
respect to some line in the plane. Nishita et al. [20] give more details and also discuss
efficiency and timing considerations. They describe how trimmed surfaces are supported
by the manipulation of Bézier trimming curves. Computations of the inclusion/exclusion
decisions in both the untrimmed and trimmed domains of the surface are also derived
through Bézier clipping. These authors discuss efficiency and timing considerations.

30.4.2. Ruled tracing
At the core of every ray-tracing technique is the need to compute the intersection between
a ray I and some surface S, the Ray-Surface Intersection (RSI) problem.

Primary rays are rays from the viewer or the eye through each pixel into the scene;
they are typically evaluated in scan-line order, exploiting Z-buffer coherence to solve the
RSI problem efficiently. Now consider the problem of casting rays from the points found
in primary RSI towards the light sources in the scene, in order to detect regions that are
in shadow.

Suppose we have in our scene a horizontal triangular polygon, 7, at depth z = 1,
positioned above a horizontal rectangular polygon P at depth z = 0 (see Figure 30.8 (a)).
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Figure 30.7. In (a), a cubic parametric Bézier curve is to be intersected with line L. The
substitution of C(t) into L is shown in (b) as an explicit function fy(t). Clipping the
convex hull domain of fy(t) to be between #; and ¢, results in f;(t), which is shown in (c).

:

Figure 30.8. In (a), the shadowed regions of P due to 7 are sought. These regions are
then separated from the illuminated domains along the current scan-line, L,,. In (b), a
ruled surface R*(u,v) is constructed between £ and Lp, so that R*(u,v) NT represents
the portion of U that is in shadow.




