.2. Subdivision Methods 521
A

T

N D,

Fig. 12.11. Convex hulls (left) and small convex hulls (right)
for quadratic and cubic curves.

It is still faster to construct min-max boxes defined directly from the
yrner Bézier points. However, to assure that this box entirely encloses the
bject, we have to enlarge it appropriately. [Fil 86a] discusses how to find a
agnification factor using second derivatives. [Gol 86] gives estimates using
le maximal deviation of the curve from the convex hull of its control points.

A rectangular strip can be defined as the smallest rectangle containing
Je convex hull of the Bézier points with one edge parallel to the line byby,
e [Bal 81] and Fig. 12.13. In the quadratic and cubic cases, it is possible to
nd still smaller rectangular strips with a small amount of additional effort,
e [Sed 89, 90], [Wan 91a], without losing the property that it is an enclosing
eighborhood, see Fig. 12.14.

Fig. 12.12. Min-max box Fig. 12.13. Rectangular strip
for a. Bézier curve. for a Bézier curve.

Strips of thickness & (fat lines) were investigated for Bézier curves in
Sed 90]. This leads to a very efficient algorithm for finding intersections of
curves, where first the Bézier curve X(t) is split into pieces using the strip
around the second Bézier curve X5(7). Then a new strip is constructed for
the middle subsegment of X(t), and the clipping process is then applied to
the second curve X, etc. In Bézier clipping, subsets of the parameter domain
are constructed where it is guaranteed that X and X, do not intersect, e.g.,



522 12. Intersections of Curves and Surface

A ¥
V4
y 4
VA
ol
1}

N\
o|&
1)

fe—— Q “’

"

;I

|

I

|

|

|

|

|

1

|

|

|

|

|

|

_J

V.
ol&
o

Fig. 12.14b. Reduced rectangular strip for a cubic Bézier curve.

because X lies outside of the strip around X,. This can be accomplished as
follows: Suppose b; = (z;,y;) denote the Bézier points of X (¢), and that B; =
(X:,Y;) are those of X5(7). Let L be the line joining BoB,, see Fig. 12.15a:

ax+by+c=0, with a2+ =1.

Then the distance d(t) of a point on the curve X;(t) from L is given by
d(t) = d:iB}(t),  with  d;=az;+byi+c.
i=0

The d; are the distances of the b; from L. The function d(t) can be interpreted
as a function-valued Bézier curve. To display it graphically, we associate the
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Bézier ordinates d; with the abscissae i/n, see Sect. 4.1 and Fig. 12.15b. The
ger0s of d(t) = 0 correspond to the points where X 1(t) intersects the straight
line L. At #’s where d(t) > dmaz or d(t) < dpin, X, (t) lies outside of the
strip around X>(7), and therefore cannot be a point of intersection with the
rve X5(7), see Fig. 12.15a. The Points t,,;, and t,,,, where the convex hull
of d(t) intersects the Strp dmin < d < dppys produces a set in the parameter
space which is guaranteed not to contain any intersection points of X 1(t) and
X,(7). The Bézier clipping process then uses the de Casteljau algorithm to
split X (¢) into three pieces, using t = t,,;,, and ¢ = tmaz. Only the middle
subsegment of X 1(t) is retained, and its strip is used to split X (7).

Fig. 12.15a. Bézier curves Fig. 12.15b. Function-valued
X1, X3 and strip for X,. Bézier curve d(t).

Fig. 12.15. Sederberg-Nishita Bézier clipping algorithm.

- When two curves intersect at more than one point, then we must sub-
(divide the curves so that any pair of subsegments has at most one point of

A

intersection. Then we can apply the above algorithm to find each intersection
point separately.

A divide-and-conquer algorithm based on fat planes of thickness § was
presented in [Car 82] for Bézier siirfarac



