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<Summary> The paper presents recent developments in global illumination techniques for producing photo-realistic images. 

In pursuit of the increasing requirement for photo-realism in various industries, research and development into global 

illumination techniques has received considerable attention within the graphics community from the early days. In this survey, 

we review various global illumination techniques, from the early attempts to recent advances in the two major categories of 

global illumination techniques: those based on the finite element method (FEM) and those based on the Monte Carlo method. 

Recently, in the field of the Monte Carlo based global illumination techniques, some advanced techniques incorporating photon 

density estimation or Markov chain Monte Carlo method is actively researched in the graphics community. We attempted to 

pave the way for the reader to understand such advanced topics by describing historical background and motivation behind 

these techniques. We hope this survey to help the readers to comprehend the overview of the field and the characteristics of 

these techniques, and to indicate the next direction of the research in the field of global illumination computation. 
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1. Introduction 

From the early days of computer graphics, rendering 

photo-realistic images has been one of the most important topics in 

the field. In order to achieve photo-realism, the rendering 

techniques categorized as global illumination techniques, which 

simulates the propagation of light energy taking into account 

inter-reflections of light between surfaces, has been researched and 

developed. Research into global illumination techniques started 

from the research on the Radiosity method, which is known to 

originate from Nishita and Nakamae’s technique1) (Fig. 1). In some 

literature, global illumination techniques are also known as the light 

transport techniques, since these techniques actually simulate the 

transportation of light emitted from light sources to the sensor. 

Global illumination techniques can drastically improve the 

appearance of the rendered images, so nowadays their application 

covers various industries including the movie production industry, 

the game production industry, and the medical industry. In order to 

pursue all of the possible demands from these industries and 

because of their increasing importance in the field of photo-realistic 

rendering, development and research into global illumination 

techniques will still be an important topic in future research of the 

field of computer graphics. 

 However it is a challenging problem to develop efficient 

global illumination techniques due to the underlying complexities 

of materials or the geometries in the rendered scenes. Various 

criteria can be assumed in order to define the efficiencies of global 

illumination techniques. For example, Robustness is one such 

criterion, and it defines the ability to render a scene properly 

irrespective of the scene configuration. For instance, a scene with 

inter-reflections between glossy surfaces or a scene containing 

complex occlusions are known to be difficult cases and even the 

latest techniques often show poor performance. Rendering speed is 

another important criterion, which indicates how fast the rendering 

process is completed. Accuracy and precision are also important 

criteria for numerical techniques. We note that some of these 

criteria are not always independent and global illumination 

techniques often compromise conflicting criterion in some way. 

 

 

Fig. 1 The scene illuminated with the Radiosity method by Nishita and 

Nakamae1) taking into account the diffuse inter-reflection between 

surfaces, which is known as an origin of the global illumination 

techniques5). 

 



The purpose of this survey is to review the various global 

illumination techniques from early attempts to recent developments, 

and to help the readers to comprehend an overview of the field and 

the characteristics of these techniques. In this survey, we mainly 

focus on the global illumination effects occurred on surfaces. 

Although the theory and techniques with participating media has 

been actively researched, we will not review these techniques in 

details. Moreover unfortunately due to the lack of space and time, 

we omit some types of global illumination techniques including 

pre-computation based techniques, virtual point light (VPL) based 

techniques, real-time global illumination techniques. The types of 

global illumination techniques handled in the survey is summarizes 

in Fig. 2. 

The organization of the paper is as follows. First in section 2, 

we will describe the theory of global illumination computation. In 

section 3, we review the finite element method (FEM) based 

techniques. In section 4, we review the Monte Carlo method based 

techniques. Finally, in section 5, we conclude the survey. 

2. Theory of Global Illumination 

In this section we will briefly describe the theoretical aspects 

of global illumination computations. Global illumination 

computation was initially formulated as rendering equation by 

Kajiya2), which is now known as the hemispherical formulation of 

global illumination. The concept of the rendering equation was 

derived from the literature of the radiative heat transfer. With the 

development of global illumination techniques, the theory of global 

illumination has become more sophisticated. Arvo3) precisely 

formulated radiometry and rendering equation using measure 

theory, and proposed the linear operator formulation of global 

illumination computation, which is useful for studying the 

properties of global illumination computation using techniques of 

functional analysis. Veach4) extended Arvo’s linear operator 

formulation, named the self-adjoint linear operator formulation, 

and unifies bidirectional light transports by self-adjoint operators to 

achieve unifying support for non-symmetric BSFDs. Veach also 

proposed the path integral formulation for global illumination 

computation, which simplifies the hemispherical form of the 

rendering equation such that measurements can be obtained from 

the direct solution rather than the solution of an integral equation. 

Some research has focused on the theory of 2D global illumination, 

which is useful for the detailed analysis of the global illumination 

techniques38). 

From among the above formulations, we review two major 

formulations: the hemispherical formulation and the path integral 

formulation. For simplicity, we define the useful terms beforehand 

in Table 1. 

2.1 Hemispherical formulation 

Among the available formulations, the so-called 

hemispherical formulation is one of the most common, and various 

literature have adopted this formulation as an introductory theory 

 Section 

Global illumination techniques  

 FEM based techniques 4 

  Discretization 4.2 
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  Markov chain Monte Carlo (MCMC) 5.5 

 

Fig. 2  Classification of global illumination techniques in the survey 

 

 

Table 1  Mathematical notations 

Notation Meaning 

𝑀 Number of pixels in the image 

ℳ Union of all surfaces in the scene 

𝒮2 Set of outward directions in the unit sphere 

𝐍(𝐱) Geometry normal at surface point 𝐱 

𝐱, 𝐱′, 𝐱′′ Points on ℳ 

𝐱0𝐱1 ⋯ 𝐱𝑛 Light path with vertices 𝐱0, 𝐱1, … , 𝐱𝑛 

𝑥 Light path in 𝒫 

𝑥𝑛 Light path in 𝒫𝑛 

𝜍 Solid angle measure 

𝜍𝐱
⊥ 

𝑑𝜍𝐱
⊥(𝜔) = |𝐍(𝐱) ⋅ 𝜔|𝑑𝜍(𝜔) 

Projected solid angle measure 

𝑊𝑒
(𝑗)

(𝐱, 𝜔), 

𝑊𝑒
(𝑗)

(𝐱 ⟷ 𝐱′) 
Responsively function for 𝑗-th pixel at  𝐱 

𝐿𝑖(𝐱, 𝜔) Incident radiance function at 𝐱 and direction  𝜔 

𝐿𝑜(𝐱, 𝜔) 
Outgoing radiance function at 𝐱  

and direction  𝜔 

𝐱ℳ(𝐱, 𝜔𝑜) 
First point in ℳ from a point 𝐱  

to a direction 𝜔𝑜 (ray-casting function) 

𝑓𝑠(𝐱, 𝜔𝑖 → 𝜔𝑜) 
BSDF (bidirectional scattering distribution 

function) 

𝑓𝑠(𝐱 → 𝐱′ → 𝐱′′ ) Three-point form BSDF 

𝐵(𝐱) Radiosity at  𝐱 

𝐸(𝐱) Radiant exitance at  𝐱 

𝜌(𝐱) Diffuse reflectance at  𝐱 
 

 



for global illumination computation5), 6), 7). Due to a lack of the 

space, we will only describe a brief overview of the formulation, 

please refer to above-mentioned literature for details. 

The purpose of global illumination computation is to compute 

measurements of the light energy that contribute to each pixel. We 

let the measurements for 𝑗-th pixels be 𝐼𝑗  (𝑗 = 0, … , 𝑀). Then the 

measurement equation is defined as 

 𝐼𝑗 = ∫ 𝑊𝑒
(𝑗)

(𝐱, 𝜔)𝐿𝑖(𝐱, 𝜔)𝑑𝐴(𝐱)𝑑𝜍𝐱
⊥(𝜔)

ℳ×𝒮2

. (1)  

Then we define the light transport equation. This equation is 

defined as an integral equation with respect to the outgoing 

radiance function 𝐿𝑜(𝐱, 𝜔) , which is obtained from energy 

conservation between the incident and emitted and scattered 

radiance at a point, assuming that we observe the equilibrium 

radiance: 

 

𝐿𝑜(𝐱, 𝜔𝑜) = 𝐿𝑒(𝐱, 𝜔𝑜) 

+ ∫ 𝐿𝑜(𝐱ℳ(𝐱, 𝜔𝑜), −𝜔𝑖)𝑓𝑠(𝐱, 𝜔𝑖 → 𝜔𝑜)𝑑𝜍𝐱
⊥(𝜔𝑖)

𝒮2

. 
(2)  

Converting the projected solid angle measure 𝜍𝐱
⊥ to the area 

measure 𝐴, we obtain the three-point form of the light transport 

equation using three surface points 𝐱, 𝐱′, 𝐱′′ instead of angles: 

 

𝐿(𝐱′ → 𝐱′′) = 𝐿𝑒(𝐱′ → 𝐱′′) 

+ ∫ 𝐿(𝐱 → 𝐱′)𝑓𝑠(𝐱 → 𝐱′ → 𝐱′′)𝐺(𝐱 ↔ 𝐱′)𝑑𝐴(𝐱)
ℳ

, 
(3)  

where 𝐺(𝐱 ↔ 𝐱′) is the geometry term obtained as a result of the 

measure conversion (Jacobian), which is defined as 

 𝐺(𝐱 ↔ 𝐱′) = 𝑉(𝐱 ↔ 𝐱′)
|cos 𝜃0 cos 𝜃1|

‖𝐱 − 𝐱′‖2 , (4)  

where 𝜃0 and 𝜃1 are the angles between the surface normal at 𝐱′ 

and the outgoing vectors from 𝐱′ to 𝐱 and 𝐱′′  , respectively. 

𝑉(𝐱 ↔ 𝐱′) is the visibility term defined as 𝑉(𝐱 ↔ 𝐱′) = 1 if 𝐱 

and 𝐱′ are mutually visible, otherwise 𝑉(𝐱 ↔ 𝐱′) = 0. 

2.2 Path integral formulation 

The path integral formulation of global illumination 

computation was proposed by Veach4). Unlike the hemispherical 

formulation, the path integral formulation simplifies the 

measurement equation and the light transport equation to use direct 

integration rather than an integral equation. Some light path 

sampling based global illumination techniques, such as 

bidirectional path tracing7), can be well described by using this 

formulation. 

The measurement equation in the path integral formulation is 

obtained by recursively expanding Equation (3), which is defined 

as the integral on the light path space 𝒫 with the light path 

measure 𝜇 . The light path space is defined as 𝒫 = ⋃ 𝒫𝑛
∞
𝑛=1  

where 𝒫n = *𝐱0𝐱1 ⋯ 𝐱𝑛  | 𝐱0, 𝐱1 , … , 𝐱𝑛 ∈ ℳ+ is the set of light 

paths with n + 1 edges (or length). The light path measure is 

defined as 𝜇(𝐷) = ∑ 𝜇𝑘(𝐷 ∩ 𝒫𝑛)∞
𝑘=1  where 𝐷 ⊂ 𝒫 and 𝜇𝑘  is 

the area-product measure8) on 𝒫 defined as 

 𝜇𝑘(𝐷) = ∫ 𝑑𝐴(𝐱0) ⋯ 𝑑𝐴(𝐱𝑛)
𝐷

. Then the measurement equation 

is written as 

 𝐼𝑗 = ∫ 𝑓𝑗(𝑥)𝑑𝜇(𝑥)
𝒫

. (5)  

The function 𝑓𝑗  is the measurement contribution function and 

is defined for a light path with length 𝑛 as 

 

𝑓𝑗(𝑥𝑛) = 𝐿𝑒(𝐱0 → 𝐱1) 

⋅ ∏ 𝐺(𝐱𝑘−1 ⟷ 𝐱𝑘)𝑓𝑠(𝐱𝑘−1 → 𝐱𝑘 → 𝐱𝑘+1)

∞

𝑘=1

 

⋅ 𝐺(𝐱𝑛−1 ⟷ 𝐱𝑛)𝑊𝑒
(𝑗)

(𝐱𝑛−1 ⟷ 𝐱𝑛). 

(6)  

3. FEM Based Techniques 

In this section we review the major global illumination 

techniques according to our classifications. The first section in this 

classification considers finite element method (FEM) based 

techniques, which achieves global illumination computation by 

using FEM. These techniques were originally derived from the 

Radiosity method 1), 10), 11). Through the development of the Radiosity 

method, various techniques have been proposed. These techniques 

can be separated into groups according to the focus of the execution 

process used in the method: discretization, form factor computation, 

and linear system computation. In this survey, we adopted these 

focuses as a way of classifying the sub-techniques in the Radiosity 

method. Although other focuses such as rendering are still 

important, they are omitted due to a lack of space. 

3.1 Theory of FEM based technique  

In the ordinary Radiosity method, all surfaces are assumed to 

be Lambertian diffuse surfaces. From this assumption, we obtain 

the radiosity equation from Equation (3): 

 𝐵(𝐱) = 𝐸(𝐱) +  𝜌(𝐱) ∫ 𝐵(𝐱′)𝐺′(𝐱 ↔ 𝐱′)𝑑𝐴(𝐱′)
ℳ

, (7)  

where 𝐺′(𝐱 ↔ 𝐱′) = 𝐺(𝐱 ↔ 𝐱′) 𝜋⁄ . 

In order to approximate 𝐵(𝐱) following the standard FEM 

setup, the domain of 𝐵(𝐱) , that is, the surface mesh ℳ  is 

subdivided into small elements and some nodes are assigned on 

those elements. Then 𝐵(𝐱) is approximated by a linear sum of the 

basis functions: 



 𝐵(𝐱) ≈ �̂�(𝐱) = ∑ 𝐵𝑖𝑁𝑖(𝐱)

𝑛𝑏

𝑖=1

, (8)  

where 𝑛𝑏 is the number of basis functions and 𝑁𝑖(𝐱) is the 𝑖-th 

basis function. Various selections for the basis function are possible, 

and this has influence on the final result. The simplest of these is 

the constant basis function and is defined as 𝑁𝑖(𝐱) = 1 if 𝐱 is 

within the element and otherwise 𝑁𝑖(𝐱) = 0 . Although many 

techniques adopt the constant basis function, some research has 

investigated the possibility of using non-constant basis functions 26). 

By applying a weighted residual method such as the point 

collocation or the Galerkin method, we obtain a way to fit �̂�(𝐱) to 

𝐵(𝐱) by solving a linear equation. Specifically, when the constant 

basis function and the Galerkin method are used, we obtain5) a form 

of the radiosity equation that can be seen various literatures: 

 𝐵𝑖 = 𝐸𝑖 + 𝜌𝑖 ∑ 𝐵𝑗𝐹𝑖𝑗

𝑛𝑒

𝑗=1

, (9)  

where 𝑛𝑒  is the number of elements and 𝜌𝑖  is the diffuse 

reflectance associated with the 𝑖-th element, and 𝐹𝑖𝑗 is the form 

factor defined as 

 𝐹𝑖𝑗 =
1

𝐴𝑖
∫ ∫ 𝐺′(𝐱 ↔ 𝐱′)𝑑𝐴 (𝐱′)𝑑𝐴(𝐱)

ℳℳ

, (10)  

where 𝐴𝑖 is the area of the 𝑖-th element. 

Some techniques uses the hemispherical form of the Equation 

(10), which converts the area measure of the inner integral into 

solid angle measure: 

 𝐹𝑖𝑗 =
1

𝐴𝑖
∫ ∫ 𝐺′′(𝐱, 𝜔)𝑑𝜍(𝜔)𝑑𝐴(𝐱),

𝒮2ℳ

 (11)  

where 𝐺′′(𝐱, 𝜔) = 𝜋−1 ⋅ cos 𝜃𝑁𝐱,𝜔 ⋅ 𝑉(𝐱, 𝐱ℳ(𝐱, 𝜔)). 

3.2 Discretization 

The first classification involves in discretization of the 

radiosity equation with FEM. We now review some techniques 

related to this classification. 

First we focus on the discretization of the mesh. It is known 

that various conditions that are introduced in the discretization step 

on a mesh, such as mesh density or continuity, have a bad influence 

on the accuracy of the rendered images5). Various techniques have 

been investigated in an attempt to alleviate this inaccuracy. 

Lischinski et al.15) and Heckbert17) proposed a mesh subdivision 

technique for discontinuities introduces by change of illumination. 

Campbell and Fussell16) proposed an adaptive mesh generation 

scheme utilizing a binary space partitioning (BSP) tree. Smits et 

al.21) utilize the idea of importance transport, which is a dual 

concept of the radiance concept for adaptive mesh subdivision. 

More recently, Dobashi et al.12) proposed a Radiosity method for 

point-sampled geometries which does not need explicit mesh 

subdivision (Fig. 3). 

Another important concept related to discretization is to 

employ a hierarchical structure. Cohen et al.18) introduced a 

two-level hierarchical mesh structure and proposed a modified 

version of the form factor computation. Hanrahan et al.19) extended 

and generalized Cohen’s two-level hierarchical radiosity technique 

to multi-level. By introducing multi-level hierarchy, the 

computational complexity is drastically reduced to linear time. 

Smits et al.22) utilize clustering to accelerate the hierarchical 

radiosity. Some methods focus on the hierarchical structure of the 

basis functions used in the FEM formulation. Gortler et al20). 

Propose wavelet radiosity which utilizes hierarchical structure for 

wavelet basis functions converted from the normal finite element 

basis functions, and which also allows us to construct a linear time 

technique. 

3.3 Form factor computation 

One way to compute the form factor is to use an analytical 

solution. Goral et al.10) utilized the contour integral form of 

Equation (10) to compute the form factor between rectangular 

elements without occlusions. Nishita and Nakame1) resolved the 

restriction on occlusions by adding an extra visibility handling 

scheme. Baum et al.23) partially used an analytical approach to 

solve the inner part of Equation (10). 

Another way is to use numerical solution techniques. This 

approach was initially attempted by Cohen et al.11) and is known as 

the hemi-cube technique. This technique utilizes the hemispherical 

form of the form factor (Equation (11)) under the assumption that 

each element has a constant inner integral across the element, 

which means the form factor for an element can be evaluated as a 

single integral. The inner integral is computed numerically by 

projecting scene surfaces into hemi-cube, which is defined as a 

 

  

Fig. 3  Scenes with diffuse inter-reflection by Dobashi et al.12)  

      with Radiosity method with point-sampled geometry. 

 



half-cube structure whose faces are separated into different 

elements. Projection onto the hemi-cube can be achieved using 

standard rasterization techniques such as the Z-buffer algorithm, or 

even with graphics hardware. Various techniques that stem from 

this approach have been proposed. Max24) proposed an optimal 

sampling scheme for the hemi-cube based on some observations on 

the arrangement of the sample directions. Some methods utilize 

other shapes that are different from the hemi-cube. Sillon and 

Puech25) proposed an alternative technique to the hemi-cube 

technique that utilizes a plane parallel to the surface of the element 

with the observation that the angular contribution of the geometry 

term is relatively small in the area that is nearly-tangential to the 

surface.  

Some numerical solution techniques for the form factor 

computation utilize the Monte Carlo method. Sbert27), 28) makes use 

of knowledge of integral geometry (or geometric probability) to 

compute the form factor by using the Monte Carlo method. 

3.4 Linear system computation 

In the Radiosity method, iterative methods known as 

relaxation methods, such as the Jacobi, Gauss-Seidel or Southwell 

methods are often used for linear system computation. However in 

order to facilitate the potential of these techniques, the execution 

steps in these methods are often rearranged and interleaved. For 

instance, the progressive refinement radiosity method proposed by 

Cohen et al.29) relaxes the execution flow of classical linear system 

solution methods to achieve progressive rendering.  In this 

technique, the form factor computation and the linear system 

computation are partially interleaved. 

The stochastic relaxation radiosity30) - 32) technique makes use 

of the Monte Carlo method to solve the linear system of the 

radiosity equation. This technique alleviated the intermediate step 

of the Jacobi iteration to converge in probability by replacing the 

matrix-to-vector multiplication with an unbiased Monte Carlo 

estimator, which significantly reduces the evaluation cost of 

handling large form factor matrix directly. 

The discrete random walk radiosity33) - 35) technique is another 

way of employing the Monte Carlo method to a linear system 

solution. This technique utilizes the discrete random walk process 

to estimate the solution of the linear system. In this technique, 

several counting strategies are considered to obtain an estimated 

value of the solution with low variance. 

4. Monte Carlo Method Based Techniques 

Monte Carlo method based techniques is another major way 

to achieve global illumination computation, which utilizes the 

Monte Carlo method to numerically solve the rendering equation. 

Although various techniques have been developed and researched, 

and classification criteria are vast, we adopted the classification 

with 4 categories: path sampling based techniques, irradiance 

caching based techniques, photon density estimation based 

techniques, and MCMC (Markov chain Monte Carlo) based 

techniques. Unfortunately, due to a lack of space and time we 

omitted some important categories of techniques: Pre-computation 

based techniques (e.g. see Fig. 4) or VPL based techniques. Also, 

we will not delve into the topics like participating media (e.g. see 

Fig. 5) or adaptive sampling and reconstruction (a.k.a. filtering), 

although they are very fascinating field and have been actively 

researched in the latest research. For techniques in these categories, 

please refer to other literature. 

4.1 Theory of Monte Carlo method 

In this section we briefly introduce some selected theoretical 

concepts related to the Monte Carlo method. 

1) Monte Carlo integration 

In global illumination computation with the Monte Carlo 

method, the central tool is the Monte Carlo integration, which is a 

techniques for numerically integrating arbitrary functions. We let 

the target integral we want to estimate be 

 𝐼 = ∫ 𝑓(𝑥)𝑑𝜇(𝑥)
Ω

, (12)  

where 𝑓 is a real-valued function defined on Ω, and 𝜇 is some 

measure on Ω. We let a probability density function (PDF) be 

𝑝 = 𝑑𝑃 𝑑𝜇⁄  on Ω with some probability space (Ω, ℱ, 𝑃) where 

𝜇 ≪ 𝑃  ( 𝜇  is absolutely continuous to 𝑃 ) and supp(𝑓) ⊆

supp(𝑝) (non-zero region of 𝑝 contains non-zero region of 𝑓). 

We consider to estimate the integral 𝐼  with 𝑁  number of 

independent and identically distributed (i.i.d.) random variables 

𝑋𝑖  (𝑖 = 1, … , 𝑁)  generated from the distribution 𝑝.  Then an 

estimator 〈𝐼〉𝑁 for the integral 𝐼 can be defined as 

 〈𝐼〉𝑁 =
1

𝑁
∑

𝑓(𝑋𝑖)

𝑝(𝑋𝑖)

𝑁

𝑖=1

 . (13)  

We note that 〈𝐼〉𝑁 converges to 𝔼𝑝,〈𝐼〉𝑁- = 𝐼 almost surely 

as N → ∞ by the strong law of large number (SLLN), where 

𝔼𝑝,𝑌- denotes the expected value of Y = 𝑓(𝑋) where 𝑋 ∼ 𝑝, 

which is defined as 

 𝔼𝑝,𝑌- = ∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝜇(𝑥)
Ω

. (14)  

The variance of 𝑌  is another important quantity which 

indicates how 𝑌 is dispersed around 𝔼𝑝,𝑌- : 



 

𝑉𝑎𝑟𝑝,𝑌- = 𝔼𝑝 [(𝑌 − 𝔼𝑝,𝑌-)
2

] 

= ∫ (𝑓(𝑥) − 𝔼𝑝,𝑋-)
2

𝑝(𝑥)𝑑𝜇(𝑥).
Ω

 

(15)  

In Monte Carlo based techniques, the variance is one of the 

most important quantity because the error convergence speed is 

closely related to the variance. The asymptotic result of this relation 

can be easily confirmed by the central limit theorem (CLT). 

According to the theorem, 𝑁−1 2⁄ ⋅ (〈𝐼〉𝑁 − 𝐼)  is converged in 

distribution to a normal distribution 𝒩(0, 𝑉𝑎𝑟𝑝,〈𝐼〉𝑁-). 

2) Error and bias 

We let 𝐼 be a target quantity to be estimated and its estimator 

be 〈𝐼〉𝑁 . Then the error of the estimator 〈𝐼〉𝑁  is defined by 

〈𝐼〉𝑁 − 𝐼. The bias of the estimator 〈𝐼〉𝑁 is defined as the expected 

value of the error: 

 𝐵,〈𝐼〉𝑁- = 𝔼𝑝,〈𝐼〉𝑁 − 𝐼-. (16)  

The estimator 〈𝐼〉𝑁 is called unbiased if 𝐵,〈𝐼〉𝑁- = 0 for all 

𝑁 , i.e., 𝔼𝑝,〈𝐼〉𝑁- = 𝐼  for all 𝑁 . The estimator 〈𝐼〉𝑁  is called 

consistent if 〈𝐼〉𝑁  is converged to 𝐼 in probability as 𝑁 → ∞, 

that is, for all 𝜀 > 0 

 lim
𝑁→∞

𝑃*|〈𝐼〉𝑁 − 𝐼| > 𝜀+ = 0. (17)  

We note that unbiasedness and consistency is orthogonal 

concepts, although it is often confused, so we can assume a 

unbiased and inconsistent estimator, for instance. In global 

illumination computation, a techniques is called unbiased or 

consistent according to unbiasedness or consistency of the 

underlying estimator in the technique. 

3) Variance reduction 

As we described above, in order to increase the efficiency of 

the Monte Carlo estimator, it is important to reduce variance of the 

estimator. In this part of the section, we briefly introduce some 

variance reduction techniques which is often used in the global 

illumination computation. Stratified sampling is one of variance 

reduction techniques. In this technique the sample space Ω is 

subdivided into 𝑚  disjoint sub-spaces Ω𝑖  (𝑖 = 1, … , 𝑚)  called 

stratum, and for each Ω𝑖  random sample 𝑋𝑖,𝑗  is generated. 

However, stratified sampling is not effective on a high dimensional 

space because the number of stratum and the number of samples 

required for each stratum are increased exponentially. Latin 

hypercube sampling addresses the problem by generating samples 

so that only one sample is assigned for each row and each column. 

Quasi-Monte Carlo (QMC) utilizes a low discrepancy sequence 

instead of a sequence of random numbers for estimating an integral. 

A low discrepancy sequence is deterministically chosen so that the 

samples are uniformly distributed over the sample space. An 

advantage of QMC over standard Monte Carlo is faster 

convergence ratio. Although there is little application in global 

illumination computation, variance reduction techniques such as 

control variate or Rao-Blackwellization is also known and widely 

used in the other fields. 

4) Importance sampling  

Selection of the distribution 𝑝  in Equation (13) has 

considerable influence on the variance of the estimator. A 

techniques of improving the estimator by choosing good 

distribution 𝑝 is called the importance sampling. Although it is 

one of the variance reduction techniques, due its importance and 

effectiveness in global illumination computation we separate the 

technique in an independent part. A known result for the 

importance sampling improve efficiency if the distribution 𝑝 is 

chosen so that 𝑝 is similar to the integrant 𝑓. More specifically, 

the optimal choice of the distribution 𝑝∗  that minimizes the 

variance is known to be 

 𝑝∗(𝑥) =
|𝑓(𝑥)|

|∫ 𝑓(𝑥)𝑑𝜇(𝑥)
Ω

|
 . (18)  

We note that in global illumination computation the integrant is 

always positive, so the optimal 𝑝∗ simply becomes the normalized 

version of 𝑓, and in this case the variance is always zero. 

Multiple importance sampling proposed by Veach4), 40) is an 

importance sampling technique which combines multiple samples 

from different distributions (or techniques). These samples are 

combined with weights associated with distributions. The technique 

is useful for an integrant that is difficult to sample with a single 

importance distribution. We let the distributions be 𝑝𝑖  (𝑖 =

1, … , 𝑁) and the weighing function associated with the distribution 

𝑝𝑖 be  𝑤𝑖. Then the estimator for multiple importance sampling is 

defined as 

 〈𝐼〉𝑀𝐼𝑆 = ∑
1

𝑁𝑖
∑ 𝑤𝑖(𝑋𝑖,𝑗)

𝑓(𝑋𝑖,𝑗)

𝑝𝑖(𝑋𝑖,𝑗)

𝑁𝑖

𝑗=1

𝑁

𝑖=1

, (19)  

where 𝑁𝑖 is a number of samples taken from the distribution 𝑝𝑖 

and 𝑋𝑖,𝑗 ∼ 𝑝𝑖 . The estimator is unbiased and consistent if 

following conditions on weights are satisfied: 1) for all 𝑥 ∈

supp(𝑓), ∑ 𝑤𝑖(𝑥) = 1𝑁
𝑖=1 , 2) supp(𝑤𝑖) ⊆ supp(𝑝𝑖). We note 

that these conditions imply that we do not need to sample whole 

domain of Ω for all techniques. More specifically, for all 𝑥 in 

non-zero part of 𝑓, at least one distribution generates 𝑥, that is, 



 supp(𝑓) ⊆ ⋃ supp(𝑝𝑖)

𝑁

𝑖=1

. (20)  

Another focus is selection of the weights. Veach proposed 

some simple but effective techniques based on heuristics. One 

technique is balance heuristics: 

 𝑤𝑖(𝑥) =
𝑁𝑖𝑝𝑖(𝑥)

∑ 𝑁𝑘𝑝𝑘(𝑥)𝑁
𝑘=1

, (21)  

which is proved to have good variance bound (Theorem 9.2 of 

Veach4)). 

5) Markov chain Monte Carlo (MCMC)  

Although importance sampling is effective for many 

configuration, sampling from the general path space is still 

challenging. In order to resolve the problem, some recent global 

illumination techniques begin to use Markov chain Monte Carlo 

(MCMC) method. In this part of the section, we briefly review the 

theoretical aspect of MCMC that is useful for understanding recent 

MCMC based global illumination techniques. 

The basic idea of MCMC is to use a correlated sequence of 

random variables called a Markov chain, which is a sequence of 

random variable whose samples depend only on samples one 

before. Specifically, a Markov chain is defined as a sequence of 

random variables 𝑋1, 𝑋2, ⋯ such that 𝑋𝑖+1 depends only on 𝑋𝑖 

(𝑖 = 1, 2, ⋯), that is, 𝑋𝑖+1 ∼ 𝐾(𝑋𝑖 → 𝑋𝑖+1) where 𝐾(𝑥 → 𝑦) is 

a conditional probability density function called the transition 

kernel. The algorithm which generates stationary Markov chain 

according to some distribution is called Markov chain Monte Carlo 

(MCMC). A Markov chain is called stationary if there exists a 

distribution π such that 

 𝜋(𝑥) = ∫ 𝐾(𝑦 → 𝑥)𝜋(𝑦)𝑑𝜇(𝑦)
Ω

. (22)  

In order to obtain a stationary Markov chain, many MCMC 

techniques utilize a stronger condition called detailed balance 

condition. A transition kernel 𝐾  satisfied the detailed balance 

condition if there exists a distribution 𝜋 for all 𝑥, 𝑦 ∈ Ω, 

 𝐾(𝑥 → 𝑦)𝜋(𝑥) = 𝐾(𝑦 → 𝑥)𝜋(𝑦). (23)  

A Markov chain which satisfies this condition is called a reversible 

Markov chain, and it can be shown that in this case the distribution 

π is stationary. 

In order to numerically compute Equation (12) by using 

Monte Carlo integration with MCMC, we want to generate samples 

according to some distribution proportional to 𝑓 . In order to 

achieve the goal, now we review one of the most famous 

techniques: the Metropolis-Hastings (MH) algorithm. The 

transition kernel for the algorithm, a.k.a., Metropolis-Hastings 

update, is defined as follows. Given the current sample 𝑋𝑖, we 

choose a tentative sample 𝑋′𝑖 ∼ 𝑇(𝑋𝑖 → 𝑋′𝑖), where 𝑇(𝑥 → 𝑦) 

is transition function. Then the next sample 𝑋𝑖+1 is define as 

 𝑋𝑖+1 = {
𝑋𝑖   

𝑋′𝑖  

with probability 𝑎(𝑋𝑖 → 𝑋′𝑖),

otherwise,
 (24)  

where 𝑎(𝑋 → 𝑋′) is acceptance probability defined as 

 𝑎(𝑋 → 𝑋′) = min (1,
𝑓(𝑋′)𝑇(𝑋′ → 𝑋)

𝑓(𝑋)𝑇(𝑋 → 𝑋′)
). (25)  

We note that Equation (25) implies 𝑓 need not to be normalized, 

and we can observe the transition kernel associated with the 

algorithm: 

 

𝐾(𝑥 → 𝑦) = 𝑎(𝑥 → 𝑦)𝑇(𝑥 → 𝑦) 

+ (1 − ∫ 𝑎(𝑥 → 𝑦)𝑇(𝑥 → 𝑦)𝑑𝜇(𝑦)
Ω

) 𝛿𝑥(𝑦) 
(26)  

preserves Equation (23) with 𝑓 as the stationary distribution. 

As for the convergence property of a Markov chain, we can 

show that if a Markov chain satisfied the following two conditions: 

1) 𝑓-irreducible which means that any part of the state space can 

be reached from the selection of the initial state, and 2) apediodic 

which means the Markov chain does not contain cycles, a sequence 

of samples is converged to follow the stationary distribution. And 

similar to SLLN for i.i.d. random number case (see Equation (13)), 

the expected value of the estimator 〈𝐼〉𝑁  converges to 𝐼  even 

when a Markov chain satisfying above conditions is used as a 

sequence of samples, which is known as Ergodic Theorem. We also 

note that MH update satisfies these conditions with a loose 

conditions with 𝑓  and the transition function75).  Convergence 

property of Markov chain is important topic but we will not handle 

more it in the survey, for details please refer to Meyn and Tweedy74), 

Robert and Casella75) etc. 

4.2 Local sampling based techniques 

In this section, we introduce local sampling based techniques, 

which focus on solving the rendering equation by Monte Carlo 

method with sampling light paths with a sequence of local 

sampling on scene surfaces. Here we call the techniques in this 

section are local because all sampling processes are based on the 

distributions that is defined on a surface point. It implies a light 

path is generated by sequentially sampling next surface points 

according to some distribution associated with the points. 

Specifically, we focus on the global illumination techniques with 

Monte Carlo method in which the techniques sample the light paths 

with i.i.d. random variables. This type of the techniques does not 

facilitate the correlation of samples like techniques described in 



section 4.5, and many of them are statistically unbiased, so analysis 

and implementation of the techniques is relatively simple. 

An idea of sampling light path is originated from the 

Whitted’s ray tracing36) which handles global illumination 

restricted to perfect specular surfaces. While the techniques itself is 

deterministic, he mentioned the possibility of using random 

sampling to simulate specular or glossy surfaces. Initial attempt to 

utilize the Monte Carlo method for global illumination computation 

is the distributed ray tracing proposed by Cook et al.37) which can 

handle graphics effects such as depth-of-filed or motion-blur in the 

framework of the ray tracing. As we describes in section 2, first 

comprehensive framework for global illumination computation is 

developed by Kajiya2), whose technique is now known as the path 

tracing. Similar to the ray tracing, the path tracing samples a light 

path by tracing a ray from a camera, and when the ray intersects 

with the scene surface, next ray direction is sampled from the 

distribution associated with the BSDF on the intersected point, and 

the next ray is propagated to the direction until the ray hits to a light 

source. Along with the propagation, the radiance carried along the 

sampled path is computed according to the equations describes in 

section 2.1. Following Kajiya’s path tracing, various techniques 

have been proposed. As an reverse approach of the path tracing, 

Arvo and Kirk39) proposed the inverse path tracing (a.k.a. the light 

tracing, or the particle tracing). The bidirectional path tracing41), 42) 

combines both light paths traced from a camera and a light source, 

which can efficiently generate a light path which is difficult to 

sample by path tracing or light tracing, e.g., sampling from the 

scene that a camera and a light source are placed in different rooms 

connected by a small window. According to the combination of the 

vertex connection between sampled light paths, some light paths 

with same lengths sampled from different densities are obtained. 

These light paths are combined by the multiple importance 

sampling (MIS) described in section 4.1. 

4.3 Irradiance / radiance caching based techniques 

From this section to section 5.4, we will introduce the 

techniques based on caching, which stores intermediate data into 

some data structure and utilize them for rendering. In this section 

we introduce the techniques based of the caching of irradiance or 

radiance, which is the radiometric quantity handled in the light 

transport. 

1) Basics 

The irradiance caching proposed by Ward et al.43) is the first 

technique of this kind, and the techniques is applicable to scenes 

with diffuse surfaces like classical radiosity method. A key 

observation is that on diffuse surfaces the indirect illumination due 

to the diffuse inter-reflection has relatively low variation or 

frequency. For those scene with diffuse surfaces, as we described in 

section 3.1, the rendering equation can be rewritten with irradiance, 

which means the transported quantity can be represented as 

irradiance. Irradiance values are associated with positions on 

surface. Although the technique is biased due to the interpolation of 

irradiance values, using the technique, a rendered image without 

high frequency noise can be obtained in relatively small running 

time. Execution steps of this techniques is as follows. If a ray 

emitted from a camera is intersected with scene surface, the 

technique collects cached irradiance values from the octree storage. 

Only the values which can be well interpolated at the position using 

a metric with the error estimation based on the split-sphere 

heuristics are collected. Reciprocals of estimated error values are 

also used as weights for interpolation. If at least a cached value is 

collected, the interpolation using the samples are dispatched. 

Otherwise if no cached value is found, a new irradiance value is 

computed with ordinary techniques like path tracing, and computed 

irradiance value is stored into the octree storage. 

2) Radiance caching 

Some recent techniques attempt to alleviate the restriction that 

the irradiance caching is only applicable to scenes with diffuse 

surfaces, and to support the material like glossy surfaces. Krivanek 

et al.44) proposed a technique called the radiance caching which 

extends the irradiance caching to support glossy surfaces by 

precomputing all scene BSDFs as spherical harmonics (SH) 

representation. In the octree storage, radiance is recorded instead of 

irradiance. Extending their technique, Scherzer et al.46) utilizes 

improved the efficiency of the radiance caching by alleviating the 

evaluation cost of SHs by introducing pre-filtered MIP maps. Some 

techniques attempt to support glossy surfaces without SHs. The 

radiance-cache splatting proposed by Gautron et al.45) improved 

the rendering part of the irradiance / radiance caching by 

eliminating nearest-neighbor queries to the data structure. In this 

technique, all stored values are splatted to the image plane and 

interpolation is computed with the information. The technique can 

be implemented in GPUs except for irradiance / radiance cache 

recording parts. The anisotropic radiance-cache splatting proposed 

 

  

Fig. 4 Scenes with precomputed radiance transfer (PRT) taking 

into account inter-reflection of light by Iwasaki et al12). 

 

  



by Herzog et al.46) extended the idea to utilize the orientation of 

splatted cache items in order to reduce errors along illumination 

gradient. 

3) Improving error estimation 

An important focus on the irradiance / radiance caching 

techniques is how to design the error estimation scheme. Ward et 

al.48) proposed a new interpolation scheme utilizing the irradiance 

gradient, which improves the accuracy of error estimation utilizing 

first order gradient of irradiance. In this technique, additional 

information for gradient computation is stored in the octree storage 

as well as irradiance values, and later in the interpolation step these 

information is used for gradient computation. Tabellion and 

Lamorlette49) proposed an interpolation technique utilizing the 

coherency of the caching which is effective for the surfaces with 

highly geometric details such as bump-mapped surfaces. More 

recently, Schwarzhaupt et al.50) proposed sophisticated error metric 

utilizing Hessians (a.k.a. second order gradients). This technique 

utilizes extended version of an analysis of irradiance Hessian in 2D 

global illumination38). They also utilizes occlusion information in 

order to improves the accuracy of the Hessian computation. 

4.4 Photon density estimation based techniques 

Next, we review second caching based techniques: photon 

density estimation based techniques. This type of techniques is 

originated from the photon mapping proposed by Jensen51). 

1) Basics 

The photon mapping is executed by two steps: 1) photon 

tracing step and 2) photon density estimation step. In the first step, 

light particles a.k.a. photons are traced from the light sources. In the 

propagation of a photon, intermediate radiance value is computed. 

When a photon is intersected with scene surface, the photon is 

stored into the kd-tree storage called the photon map. In the second 

step, the image is reconstructed by ray tracing with photon density 

estimation. When a ray is intersected with diffuse surface through 

propagation, the photons near the intersected point is gathered by 

nearest-neighbor query to the photon map and used for the density 

estimation. Various techniques originated from the photon mapping 

is proposed. Havran et al.52) proposed the reverse photon mapping 

which utilizes the ray tracing for the initial step, and the photon 

tracing in the second step. A new kd-tree structure called reverse 

photon map is introduced for preserving information of the ray 

tracing step, and in the second step nearest-neighbor query is issued 

on the reverse photon map. 

2) Improving structure  

Some techniques introduces a new structure as a replacement 

of the photon map to improve the efficiency. Havran et al.53) 

proposed a technique with a new structure that stores photon ray 

paths instead of photons, which is effective for eliminating bias on 

density estimation due to topology of the geometry. Herzog et al.54) 

extended the approach to utilize splatting, projection onto the image 

plane. Chen et al.55) utilizes clustering of photons according to the 

intersection history, which is used for generating the polygonal 

boundaries for expressing complex caustics. Spencer and Jones58) 

improve the final gathering by introducing hierarchical structure to 

the photon map. 

3) Improving photon distribution  

Another focus on improving the technique is improvement of 

photon distribution in the photon map. Some techniques attempt to 

achieve this goal by refinement of the photon map with 

redistribution of photons after photon tracing step. Spenser et al.56) 

proposed a technique called the photon relaxation that iteratively 

redistributes photons according to the blue noise distribution. They 

later extended57) the technique is to support complex illumination 

structure containing discontinuity by storing photons with their 

trajectory information into high-dimensional kd-tree. Another 

approach to improve photon distribution is to improve the photon 

tracing step itself. Peter and Pietrek62) improved photon distribution 

in photon tracing step by introducing the importance map. Suykens 

and Willems61) controlled photon density by a criterion based on 

importance.  Hachisuka and Jensen59) proposed a photon tracing 

technique utilizing Markov chain Monte Carlo (MCMC) sampling 

according to the visibility of photon paths. 

4) Improving density estimation kernels 

Another way to improve the photon mapping is to select 

appropriate density estimation kernels. An obvious idea for the 

kernel selection problem is to modify the bandwidth of kernels. The 

idea of bandwidth selection has been employed in the context of the 

photon density estimation. Jensen and Christensen60) initially 

attempt to control the bandwidth by the technique called differential 

checking, which limits the bandwidth by checking the difference in 

irradiance. Schregle63) proposed a bandwidth selection technique 

based on the bias estimation of the reconstructed illumination with 

binary search. Schjøth et al.64), 65) proposed a technique based on 

diffusion filtering, which is an density estimation technique with 

anisotropic kernel. Hey and Purgathor67) proposed a technique 

utilizing surface geometry information, which is effective for edge 

or corners. More recently, Kaplanyan and Dachsbacher66) proposed 

an technique with adaptive bandwidth selection for progressive 

photon mapping with plug-in bandwith selection. 

5) Progressive estimation  

Although Jensen’s photon mapping is consistent in the sense 

that if we can take infinite number of samples in the photon map. 



However it is virtually impossible due to memory restriction. In 

order to resolve the problem and to develop a consistent technique 

with realistic configuration, Hachisuka et al.68) proposed a 

technique called progressive photon mapping, which progressively 

diminishes kernel radius while increasing number of photons to be 

used for the estimation. The technique is extended69) to support 

some rendering effects such as depth-of-field or motion blur. Later 

Hachisuka et al.71) developed an error estimation framework for the 

technique which can be utilized as a criterion for termination of 

rendering. Knaus and Zwicker70) proposed a variant of the 

progressive photon mapping which is not dependent on local 

statistics and can be utilize arbitrary kernel with a probabilistic 

analysis of the technique. More recently, Georgiev et al.72) and 

Hachisuka et al.73) independently proposed a generalized 

framework for the progressive photon mapping, which combines 

photon density estimation and multiple importance sampling in 

bidirectional path tracing. 

4.5 MCMC based techniques 

In this section, we review the techniques based on Markov 

chain Monte Carlo (MCMC) method described in section 4.1.  

1) Basics 

MCMC is initially brought to the global illumination 

computation by Metropolis light transport (MLT) proposed by 

Veach and Guibas77). MLT utilizes the Metropolis-Hastings 

algorithm for sample generation and introduces some light path 

specific mutation strategies such as the bidirectional mutation or 

perturbations, which correspond to transition function in section 

4.1. In these strategies, light paths are modified directly in the light 

path space, for example by slightly changing the next ray directions 

or light path lengths, which enables the local exploration in the light 

path space. 

2) Changing sample space  

Some variants of MLT have been developed for changing the 

sampling space and the target distribution. Primary sample space 

MLT proposed by Kelemen et al.78) introduces the primary sample 

space, which is a space of high-dimensional unit cube of uniform 

random numbers used for sampling a light path, and 

Metropolis-Hastings algorithm is dispatched in the space. This 

technique simplifies the mutation strategy and reduces high energy 

region of the light path space thank to the importance sampling. 

More recently, Hachisuka et al.84) proposed a technique called the 

multiplexed MLT on Kelemen’s framework. In this technique, a 

primary sample space is extended to multiple spaces, and in each 

space corresponding light paths are sampled to follow the 

distributions associated with the sampling techniques used in the 

bidirectional path tracing. A sample is assigned one of the space 

and can move beyond the spaces, similarly to serial tempering 

which is one of MCMC technique with tempered distributions. 

Manifold exploration proposed by Jakob and Marschner 78), 82) 

introduces the specular manifold, which is the space defined in the 

local coordinates of the tangent spaces for each intersection points 

with the constraints of reflection or refraction vectors for specular 

surfaces. In the technique, a new mutation strategy is introduced to 

explore on the space with a iterative equation solving technique like 

Newton's method. Very recently, the technique is extended and 

improved by Kaplanyan et al.83) using a space of the projected half 

vector representation of light paths with constraints. 

Gradient-domain MLT proposed by Lehtinen et al.79) introduced 

image space gradient distribution of the energy contribution 

function of the light paths. Instead of directly sampling from energy 

distribution, the technique samples a light path in the gradient space. 

Metropolis-Hastings sampler driven by distribution on the gradient 

space enables for the samples to concentrate the on the portion of 

the light path space that energy is changed drastically, e.g., edges on 

the mesh. The final rendered image is reconstructed by Poisson 

solver from the gradient image. 

3) Utilizing advanced MCMC techniques  

Some technique attempts to use advanced MCMC techniques 

other than MH algorithm. Energy preserved path tracing (ERPT) 

proposed by Cline et al.80) alleviates the detailed balance and 

ergodicity condition to achieve the techniques which depends only 

on Veach's perturbations. Base on the path sampled from the 

 

 

Fig. 5 Scenes with participating media by Yue et al.14). In their technique, 

free path sampling for inhomogeneous participating media is 

improved by automatic space partitioning scheme. 

 



ordinary light path sample techniques, some short burns of the 

perturbations are dispatched followed by the scatter of the energy 

over the image plane without introducing any bias. Replica 

exchange light transport proposed by Kitaoka et al.85) applies 

replica exchange method to the global illumination computation. In 

the technique, a set of paths divided by the feature of the paths such 

as random paths or caustic paths, which preserves coherency of the 

samples in the same type of the paths. Lai et al.81) proposed a 

technique using the population Monte Carlo (PMC) method, which 

is a variant of MCMC technique. Unlike ordinary MCMC 

techniques like MH algorithm PMC utilizes a number of samples in 

a batch (a.k.a. population), which enables to exploit information 

collected from the samples. Their technique utilize D-kernel PMC, 

which adapts kernel function with populations per iteration. They 

apply D-kernel PMC to ERPT and iteratively adapts 

energy-redistributed region.  

 

5. Conclusion 

In this survey, we review various types of global illumination 

techniques as well as underlying theoretical concepts. As we review 

in the previous sections, there are various technique and topic on 

the global illumination computation and further researches are 

required to solve remaining difficulties. In that means, the research 

on the global illumination computation will certainly remain to be 

one of the central topics of the computer graphics.  We hope this 

survey to help the readers to comprehend the overview of the field 

and the characteristics of these techniques, and to indicate the next 

direction of the research in the field of global illumination 

computation. 
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