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Incompressibility-Preserving Deformation for Fluid Flows
Using Vector Potentials
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Abstract Physically-based fluid simulations usually re-
quire expensive computation cost for creating realistic

animations. We present a technique that allows the user
to create various fluid animations from an input fluid
animation sequence, without the need for repeatedly

performing simulations. Our system allows the user to
deform the flow field in order to edit the overall fluid
behavior. In order to maintain plausible physical be-

havior, we ensure the incompressibility to guarantee the
mass conservation. We use a vector potential for repre-
senting the flow fields to realize such incompressibility-

preserving deformations. Our method first computes
(time-varying) vector potentials from the input veloc-
ity field sequence. Then, the user deforms the vector po-

tential, and the system computes the deformed velocity
field by taking the curl operator on the vector potential.
The incompressibility is thus obtained by construction.
We show various examples to demonstrate the useful-

ness of our method.
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1 Introduction

Physically-based simulations are ubiquitous for creating
realistic fluid animations. Their expensive computation
cost is, however, usually a common drawback. Because

a number of simulations with different parameters have
to be tested before the desired animations are obtained,
the total simulation time could be too long.

In the production environment, artists often create
various fluid animations by deforming the simulated
flow fields or density fields. For example, one may use
procedural methods to deform the flow fields [8,14], or

may directly deform the density fields. Although these
approaches allow for generating various stylized anima-
tions without the need for repeatedly running the simu-

lations, the results are typically not guaranteed to sat-
isfy the physical conservation laws; violating the mass
conservation can easily lead to noticeable visible arti-

facts such as increasing/decreasing fluid mass.
We present a method for deforming existing fluid

flow fields while preserving incompressibility (i.e., mass

conservation), by using vector potentials. Our method
first computes a (time-varying) vector potential Ψ from
the input velocity field sequence. Then, the user de-

forms the vector potential, and the system computes
the deformed velocity field by taking its curl. Because
we have the identity ∇·∇×Ψ = 0 for any vector poten-

tial Ψ, our technique guarantees the incompressibility
by construction. By using our method, the user can
deform existing flow fields to efficiently create various

fluid animations.

2 Related Work

Solving the Navier-Stokes equations. Since Stam

had introduced an unconditionally stable solver [21] for
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the Navier-Stokes equations, many methods have been

proposed for simulating various fluid phenomena [2,5–
7,10,15]. Usually, parameters need to be adjusted to
obtain a desired animation; a näıve adjustment would

require repeatedly performing simulations with differ-
ent parameter sets, possibly leading to an unacceptable
workload.

Fluid control. Several control methods have been pre-

sented for creating fluid animations with the desired
shapes (e.g. characters, logos) [4,20,24], or for enabling
the fluids to move along user specified 3D curves (paths)

[13]. These methods control fluid motions by adding ex-
ternal forces to guide the fluids. Using these methods,
the user needs to typically wait for multiple simulations

to finish, in order to create various fluid animations.
Our method offers an alternative way to create various
fluid animations, without the need for re-running any
simulation.

Model reduction. Model reduction methods [23,25]

prepare many sets of velocity fields obtained by sim-
ulating fluids with various parameters and initial con-
ditions. Then, principal component analysis (PCA) is

applied to the velocity fields to generate basis functions.
At the cost of expensive precomputation, the flow field
can be updated efficiently by computing the Navier-

Stokes equations in this basis space. Kim et al. [12]
presented a method for efficient re-simulation with dif-
ferent parameter settings, by applying PCA to a single

set of velocity fields to generate the basis functions. In
these methods, the user is limited to creating flow fields
that are represented by a linear combination of the basis

functions. In addition, memory consumption for solving
PCA can be a bottleneck for a large database.

Procedural methods. Procedural methods can be
used to generate various flows with relatively low com-

putation cost. For example, for editing fire animations,
methods (e.g., [8,14]) have been presented to enable
the user to deform the fire via a curve representing its

route. Pighin et al. [17] proposed a method for editing
simulated flow fields via advected radial basis functions.
Since these procedural methods typically do not take

into account physical constraints like the incompress-
ibility, unrealistic results can be produced.

Flow deformation. By using scalar stream functions,
we have previously shown that 2D flow fields can be

deformed while guaranteeing the incompressibility [18].
In this paper, we show that 3D flow fields can be de-
formed in an incompressible way as well, by using vector

potentials.

Fig. 1 Overview of our method. For the sake of visual clarity,
each 3D vector field is illustrated as a 2D vector field.

Computing vector potentials. The computation of
vector potentials from velocity fields appears in com-

putational fluid dynamics as well. For example, in the
vortex methods (e.g., [3,9,16,26,27]), one needs to con-
vert the vorticity field ω = ∇×v back to the velocity

field v, which can be regarded as the vector potential of
ω. To our knowledge, our method is the first that uses
vector potentials for fluid editing. We discuss boundary

conditions and equations that are appropriate for our
problem.

3 Input and Assumptions

Our input is a set of incompressible velocity fields v(t)
(i.e., ∇ · v(t) = 0), where t = 0, 1, · · · , T − 1 represents

the frame count, and T is the number of frames of the
input velocity field. We assume that v(t) is sufficiently
smooth and is defined in a simply connected closed do-

main Ω ⊂ R3 (i.e., Ω is genus 0). In addition, we can
naturally assume v(t) is tangential to ∂Ω:

(v(t)) · n = 0 at the boundary ∂Ω, (1)

where n is normal to the boundary.
In addition, we assume the fluid, represented as a

density field, is advected along v(t). Our method gen-
erates various animations by replacing the velocity field,
and then advecting the fluid along the new velocity

field. Henceforth, we omit the notation t for brevity.

4 Overview

Instead of manipulating the velocity or density fields

directly, we deal with the vector potential to guarantee
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the incompressibility of the deformed flow. In a simple

connected closed domain, the Helmholtz-Hodge decom-
position theory [1,22] states that a sufficiently smooth
vector field v can be decomposed as

v = ∇×Ψ+∇p, (2)

where Ψ is a vector potential, p is a scalar field. ∇×Ψ
is tangential to the boundary of the domain:

(∇×Ψ) · n = 0 at the boundary, (3)

and ∇p is perpendicular to the boundary.

Since our input velocity field v is incompressible, we
have ∇p = 0 (as in Appendix A), and hence

v = ∇×Ψ. (4)

Because the identity ∇ · (∇×Ψ) = 0 is satisfied for an
arbitrary vector field Ψ, the curl of the vector poten-
tial is always incompressible. Therefore, if we manipu-

late the fluid via the vector potential, and then convert
the vector potential back to the velocity field, we can
guarantee the incompressibility of the deformed flow by

construction.

Fig. 1 shows an overview of our method. In the pre-
process, the velocity field v at each time step is con-
verted into the vector potential Ψ. At runtime, the user

deforms the spatial domain to obtain the deformed vec-
tor potentials Ψ̃. Then, the curl operator is applied to
Ψ̃ to generate the deformed velocity field ṽ. Finally, the

density fields are advected along ṽ.

5 Computing Vector Potentials

Although the input incompressible vector field v can
be related to a vector potential Ψ via v = ∇×Ψ, as

in Eq.(4), Ψ is usually not unique. Suppose that Ψ
satisfies v = ∇×Ψ, then any vector potential Ψ′ =
Ψ + ∇q also satisfies v = ∇×Ψ′ because ∇×∇q = 0

for an arbitrary scalar field q. We discuss how we pin
down this freedom in a way suitable for deforming a
time-varying vector field.

First, we observe that according to Eq.(2), the vec-

tor potential itself can be decomposed as Ψ = ∇×
Φ + ∇s, where Φ is a vector field and s is a scalar
field. Now, suppose that Ψ is deformed via a map F ,

which, for example, maps each position X to a new
position x. Under this deformation, a vector valued
function g(X) will be transformed to g̃(x) = g(X)1,

which we write F (g) = g̃. For vector valued functions

1 Or, we could consider g̃(x) = ∂x
∂X

g(X) if we want to apply
local rotation, stretch and shear to reorient the vector valued
function.

Fig. 2 Deformation using a control path.

g and h, we have F (g + h) = g̃ + h̃ = F (g) + F (h).
Then, the deformed vector potential will have the form

F (Ψ) = F (∇×Φ + ∇s) = F (∇×Φ) + F (∇s). For an
arbitrary deformation, ∇×F (∇s) is generally non-zero,
because F (∇s) might no longer be a curl free field. We

wish to pin down ∇s such that ∇×F (∇s) is coherent
in time so that it does not cause a fluctuation in the
resulting velocity field. Specifically, we enforce ∇s = 0,

by setting

Ψ · n = 0 at the boundary, and (5)

∇ ·Ψ = 0 for the entire domain. (6)

To compute the desired vector potential Ψ from the
velocity field v, we first apply ∇× to the both sides of

Eq.(4) and obtain

∇×(∇×Ψ) = ∇×v. (7)

Under our setting, the solution to Eq.(7) satisfies Eq.(4)
as in Appendix B. Then, from the identity

∇×(∇×Ψ) = ∇(∇ ·Ψ)−∇2Ψ, (8)

we have

∇(∇ ·Ψ)−∇2Ψ = ∇×v. (9)

Finally, substituting Eq.(6) into Eq.(9), we obtain

−∇2Ψ = ∇×v. (10)

We solve this Poisson equation with the boundary con-

ditions Ψ · n = 0 (5), (∇×Ψ) · n = 0 (3) and ∇ ·Ψ = 0
(6) to obtain the vector potential Ψ. As in Appendix C,
we show that Eq.(10) is equivalent to Eq.(7) under our

setting. Hence the solution to Eq.(10) together with the
boundary conditions satisfies Eq.(7) and in turn Eq.(4).
To obtain numerical solution to Eq.(10), we used the

biconjugate gradient stabilized method (BiCGSTAB).

6 Generation of Deformed Velocity Field

In our method, we assume the input velocity fields are
given as a sequence of voxel data. We represent the vec-
tor potentials using a grid as well. The deformation is

applied to the grid directly. We can in general use any
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Fig. 3 The importance of divergence-free aware deformation. The top left insets show the underlying grid of the domain. The
top right insets show the divergence of the velocity field in the region marked by the red dashed rectangular: blue, green, red
colors indicate negative, zero, positive divergence, respectively. The deviation of the total mass is computed as (mt/m0 − 1),
where the total mass m is computed by integrating the density over the entire simulation domain.

deformation method developed for images or meshes for

this purpose. However, if deformations that cause fold-
overs are applied, large velocities might be generated
because the fold-overs cause discontinuities in the vec-

tor fields. In addition, unintentional drastic changes in
the velocity values might occur if the degrees of defor-
mations are too large, because the deformed grid in the

largely deformed region could be under resolved.
To compute the new deformed vector potential Ψ̃,

defined in the world coordinates, we first resample Ψ

stored in the deformed grid to the cartesian grid storing
Ψ̃, and then apply the local rotation corresponding to
the deformation, in order to get the correct orientations

for the vector potentials. Next, the deformed velocity
field ṽ is obtained by applying the curl operator to Ψ̃:
ṽ = ∇×Ψ̃. The resulting velocity field always satisfies

the divergence-free condition since ∇ · (∇×Ψ̃) = 0.

7 Results

We used a desktop PC with an Intel Core i7 3930K
CPU, 32GB memory to compute all the examples. To
render 3D results shown in Figs. 5, 6 and the right image

in Fig. 7, we used the physically-based renderer “Mit-
suba” [11]. We used control-points or control-paths to
specify the deformation in our system (Fig. 2 shows an

example of using a control-path). The grid is deformed
according to the control-points or control-paths using
a method based on moving least squares [19]. In addi-

tion, the deformation is executed on a 2D plane, and
this deformation is then applied to each plane perpen-
dicular to the y direction of the 3D grid (Fig. 2). Videos

corresponding to the following examples can be found
in the supplementary material (Online Resource 1).

The importance of divergence-free aware defor-
mation. The ability to preserve the incompressibility
of the velocity fields is important to conserve the total

mass. We see this importance in Fig. 3. For the sake

of visual clarity, we used a 2D flow field as demonstra-

tion. The 2D analog of the 3D vector potential is a
scalar function called stream function, computed from
the 2D velocity field using our previous work [18].

In this example, a non-zero density field is advected
along a time-varying velocity field generated using a

2D fluid simulation, where constant upward velocities
are set at the center bottom of the simulation space to
drive the flow. No density is added or removed at run-

time. If we use the moving least squares to deform the
velocity field directly without using the stream func-
tion (denoted as “without divergence-free aware”), the

resulting deformed velocity field will have non-zero di-
vergence, which can in turn cause the total mass to
deviate largely from its initial value. In contrast, by

working with the potential, it is possible to guarantee
the incompressibility all the time, which significantly
reduces the mass deviation. We observed the same ten-

dency in deforming 3D flow fields.

Comparing the edited results against simulated

results in 3D. Fig. 4 shows a comparison of results
created by our method and fluid simulations. Fig. 4(a)
shows the original input smoke animation. Figs. 4(b’)

through (d’) are created by the fluid simulations, where
uniform external forces are applied at the left boundary
of the simulation space to make the smoke flow to the

right. Figs. 4(b) through (d) are the deformed results
obtained using our method, showing that we can mimic
such flows by using our deformation, and the results

are fairly close under small deformations. Moreover, we
see that the deformed animation is still plausible for a
relatively large deformation in this setting.

3D fluid editing. Next, we show applications of our

flow deformation to 3D fluid editing. The timing in-
formation is summarized in Table 1. The computation
time of our method at runtime is about 50.0 times faster

than the simulation, while the precomputation is only
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(a) (b) (c) (d) (b’) (c’) (d’)

input flow deformed flows simulated flows

Fig. 4 Comparison of results generated by our method and a fluid simulation.

(a) (b) (c) (d)

deformed flowsinput flow

Fig. 5 Various stylized animations (b) to (d) from a single
input flow (a). The insets show the underlying grid of the
domain.

2.0 times longer than the simulation for generating the
input flow. Hence the trial-and-error process for creat-
ing various animations with our method is much more

efficient than re-running simulations.

From a single input flow (Fig. 5(a)), we can create

stylized animations, namely “slender” (Fig. 5(b)), “fat”
(Fig. 5(c)) or “tall” smokes (Fig. 5(d)), by squashing
the grid horizontally, vertically, or by vertically stretch-

ing the grid, respectively.

In Fig. 6, we created a scene with rising smokes from

multiple chimneys, by using the results from Figs. 4(b)
through (d). With our method, we can efficiently create
synthetic scenes with multiple varied fluid animations

from a single simulated dataset.

Fig. 7 shows a stylized smoke from a magic lamp.

The input flow is a vertically rising smoke (Fig. 7(a)),
generated by using a fluid simulation. The source of the
smoke is located at the center-bottom of the simulation

space. By deforming the flow using our method, we can
create a swirling smoke motion as in Fig. 7(b), which
can be in turn used to generate the image on the right

in Fig. 7, for an interesting smoke motion.

Limitations. Since we deform the vector potential in-
stead of the velocity field, the resulting deformation in
the velocity field can be non-intuitive. For example, be-

cause the x−, y− and z− components of the vector po-

Fig. 6 Examples of smoke animations rising from multiple
chimneys using the results from Figs. 4(b) through (d).

Table 1 Computation times per frame measured in seconds.
Tns is for the fluid simulation. Tp and Tr are for preprocess
and runtime in our method, respectively.

Fig. grid resolution Tns Tp Tr

4 256× 128× 384 146 298 2.9
5, 7 192× 192× 512 234 407 4.4

tential are coupled through the expression v = ∇×Ψ,

deforming the vector potential in a plane will usually
also result in a change in the velocity field in the direc-
tion perpendicular to the plane. In addition, too large

deformation can result in a non-intuitive flow as well.
We wish to quantify the satisfaction of the deformation
with respect to the degree and type of the deformation

in the future.

8 Conclusions and Future Work

We have presented a method for deforming fluid flow
fields while preserving the incompressibility. The di-
vergence free condition is satisfied by construction: by

working with the vector potentials and converting them
back to the velocity fields, we can automatically obtain
the incompressibility. In addition, we have presented

a method for pinning down the freedom in the vector
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(a) input flow

(b) deformed flow

Fig. 7 Example of a smoke animation rising from a magic
lamp.

potentials, such that it does not contain any curl free

component.

As future work, we wish to identify an intuitive
range of deformation. In addition, we are planning to

develop a method that can deform fluid flow fields while
conserving the momentum as well.
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A ∇p = 0 for an Incompressible Vector Field v

Taking the divergence of both sides of Eq.(2), we have 0 =
∇ ·v = ∇2p. Because v and ∇×Ψ are both tangential to the
boundary, we have (∇p) · n = 0 at the boundary. Therefore,
the solution to p is p = const., hence ∇p = 0.

B Equivalence Between Eq.(4) and Eq.(7)

Eq.(7) can be rewritten as ∇× (∇×Ψ − v) = 0. Let A =
∇×Ψ−v. Since ∇ ·∇×Ψ = ∇ · v = 0, we have ∇ ·A = 0. In
addition, since (∇×Ψ) ·n = 0 and v ·n = 0, we have A ·n = 0.
From ∇×A = 0, ∇ · A = 0, and A · n = 0, we have A = 0,
which gives Eq.(4).

C Equivalence Between Eq.(7) and Eq.(10)

First, we show ∇·Ψ = 0 given Eq.(10) and the corresponding
boundary conditions. From Eq.(10), we have ∇ · (−∇2Ψ) =
∇ · ∇×v = 0. Since Ψ is sufficiently smooth, ∇ · (−∇2Ψ) =
−∇2(∇·Ψ). Hence we have∇2(∇·Ψ) = 0. Writing G = ∇·Ψ,
we have ∇2G = 0. Since ∇ ·Ψ = 0 at the boundary, we have
G = 0 at the boundary. Therefore, the solution to G is G = 0
for the entire domain, which yields ∇ · Ψ = 0. Next, from
∇ ·Ψ = 0, Eq.(8) and Eq.(10), we obtain Eq.(7).


