
Deformation of 2D Flow Fields Using Stream Functions

Syuhei Sato∗

UEI Research
Yoshinori Dobashi

Hokkaido University / JST CREST
Kei Iwasaki

Wakayama University / UEI Research

Tsuyoshi Yamamoto
Hokkaido University

Tomoyuki Nishita
UEI Research / Hiroshima Shudo University

Abstract

Recently, visual simulation of fluids has become an important el-
ement in many applications, such as movies and computer games.
These fluid animations are usually created by physically-based fluid
simulation. However, the simulation often requires very expensive
computational cost for creating realistic fluid animations. There-
fore, when the user tries to create various fluid animations, he or
she must execute fluid simulation repeatedly, which requires a pro-
hibitive computational time. To address this problem, this paper
proposes a method for deforming velocity fields of fluids while
preserving the divergence-free condition. In this paper, we focus
on grid-based 2D fluid simulations. Our system allows the user
to interactively create various fluid animations from a single set of
velocity fields generated by the fluid simulation. In a preprocess,
our method converts the input velocity fields into scalar fields rep-
resenting the stream functions. At run-time, the user deforms the
grid representing the scalar stream functions and the deformed ve-
locity fields are then obtained by applying a curl operator to the de-
formed scalar stream functions. The velocity fields obtained by this
process naturally perseveres the divergence-free condition. For the
deformation of the grid, we use a method based on Moving Least
Squares. The usefulness of our method is demonstrated by several
examples.

CR Categories: I.3.7 [Computer Graphics]: Animation; I.3.6
[Computer Graphics]: Methodology and Techniques;

Keywords: fluid simulation, flow field deformation, stream func-
tion, moving least squares

1 Introduction

Visual simulation of natural phenomena has become one of the
most important research topics in computer graphics. Many meth-
ods have been proposed for simulating various phenomena, such as
smoke, water, fire, etc [Stam 1999; Bridson 2008]. Most of the re-
cent methods are based on computational fluid dynamics to create
realistic animations and these are used in many applications such
as movies and computer games to enhance the realism of synthetic
scenes. However, one of the problems is the expensive computa-
tional cost of the physically-based fluid simulations. The expensive
computational cost makes it difficult to create desired animations
of fluids, since many simulation parameters have to be adjusted by
executing the fluid simulation repeatedly.

Model reduction methods for fluid simulations have been proposed

∗e-mail:syuhei.sato@uei.co.jp

(a) original flow (b) deformed flow

Figure 1: Example created by our method.

to address this problem [Treuille et al. 2006; Wicke et al. 2009].
These methods accelerate runtime computation by using precom-
puted database of fluid velocity fields. However, the user cannot
create flow fields other than those that can be represented by a lin-
ear combination of precomputed database. In order to create var-
ious flow fields, huge data of velocity fields are needed. In ad-
dition, precomputation time for creating the database is extremely
expensive. Based on the model reduction methods, a method for
re-simulating fluids has been proposed [Kim and Delaney 2013].
This method can re-simulate flow fields very efficiently even when
the simulation parameters are modified. However, this method uses
only a single set of velocity fields in constructing the precomputed
database. Therefore, the method cannot generate a result that is
completely different from the original simulated data used for con-
structing the database. Furthermore, even when using these fast
simulation method, it is still difficult to create desired fluid flow.

In the production environment, artists often create desired fluid an-
imations by deforming the simulated flow fields. Some procedural
methods have also been proposed for creating various animations
by deforming the flow fields [Lamorlette and Foster 2002; Fuller
et al. 2007]. Although these methods can create desired animations
efficiently, the resulting flow field is not physically-correct, making
the animations less realistic than those created using physically-
based simulation.

In this paper, we propose a method for deforming fluid flow fields
in a physically-plausible way. Our method preserves the impor-
tant physical law for the fluid flow, i.e., the divergence-free condi-
tion. In our method, the divergence-free condition is always sat-
isfied even when the significant deformation is applied. The key
concept behind our method is to convert fluid velocity fields into a
scalar stream function. The deformation operator is applied to the
stream functions and the deformed velocity fields are obtained by
applying a curl operator to the deformed stream function. The resul-
tant velocity fields naturally satisfies the divergence-free condition.
Our method uses a deformation method based on Moving Least
Squares [Schaefer et al. 2006]. Although we apply our deformation
method to 2D smoke simulations in this paper, we demonstrate its
usefulness by showing several examples. In this paper, our method

focuses on grid-based fluid simulation.

2 Related Work

Stam [1999] addressed the stability problem in solving the Navier-
Stokes equations and made fluid simulation practical. Following
this work, many methods were proposed for simulating various
fluid phenomena. The details of these simulation methods are sum-
marized in [Bridson 2008]. One of the problems with fluid simu-
lation, however, is the expensive computational cost. Creating de-
sired fluid animations by using these simulation methods is a time-
consuming task.

In order to address this problem, model reduction methods for fluid
simulations have been proposed [Treuille et al. 2006; Wicke et al.
2009]. These methods prepare many set of velocity fields obtained
by simulating fluids with various parameters and initial conditions.
Principal Component Analysis (PCA) are applied to these veloc-
ity field data, and obtained principal components are used as ba-
sis functions. By calculating Navier-Stokes equations in the ba-
sis space, fluid flow is simulated very efficiently. A re-simulation
method based on the model reduction approach has also been devel-
oped [Kim and Delaney 2013]. This method calculates basis func-
tions by applying PCA to a single set of velocity fields generated by
fluid simulation. Flow fields with a different parameter setting can
be re-simulated very efficiently by computing Navier-Stokes equa-
tions in the basis space. However, since these methods create basis
functions using PCA, the user cannot create flow fields other than
those represented by a linear combination of precomputed database.

Procedural methods can generate desired flows with relatively low
computational cost. For example, curve-based methods for creating
various fire animations have been proposed [Lamorlette and Foster
2002; Fuller et al. 2007]. These methods generate user-designed
fire animations by deforming a curve representing the route of the
fire. However, since these procedural methods do not take into ac-
count physical accuracy, unrealistic results could be produced. The
incompressibility of the flow is not assured, too.

3 Fluid Simulation

In this paper, we use incompressible Navier-Stokes equations for
simulating fluids. Motions of fluids are calculated by solving the
following Navier-Stokes equations.

∂v

∂t
= −(v · ∇)v − 1

ρ
∇p+ ν∇2v + f , (1)

∇ · v = 0, (2)

wherev is velocity,ρ is density,p is pressure,ν is kinematic vis-
cosity coefficient, andf is external forces such as gravity and wind.
∇ is a gradient operator,∇· is a divergence operator, and∇2 is
a Laplacian operator. Eq.(1) represents temporal evolution of the
velocity field. Each term on the right-hand side from left to right
are called advection, pressure, diffusion, and external force terms,
respectively. This equation is very important for creating plausible
flow fields. When we simulate incompressible fluids, Eq.(2) has to
be considered.

Smoke is simulated by using the velocity field calculated by ad-
vecting smoke densities according to the velocity field obtained by
solving Navier-Stokes equations, that is,

∂D

∂t
= −(v · ∇)D +Ds, (3)

whereD is smoke density,Ds is the density added from smoke
sources.

velocity field data v scalar stream function ψ

initial grid deformed grid

deformed stream function ψ

deformed velocity field v

deformation

~

~

preprocess

runtime process

Figure 2: Overview of our method.

The velocity field used as input to our method is obtained by solving
Eqs.(1) and (2) . Our method deforms the velocity field and smoke
densities are advected according to the deformed velocity field.

4 Deformation of Flow Field

This section describes our method for deforming a flow field. Fig.2
shows an overview of our method. Our method consists of two pro-
cesses: a preprocess and a run-time process. Firstly, in the prepro-
cess, the dynamic velocity fieldv is generated by using the fluid
simulation described in the previous section. Then, the velocity
field at each time step,v(t), is converted into a scalar stream func-
tion ψ(t), wheret(= 0, 1, · · · , T − 1) represents a frame num-
ber, andT is a number of frames of the prepared dynamic velocity
field. Next, at the runtime process, a deformation grid for deform-
ing the stream function is prepared. Note that the deformation grid
is much coarser than the grid used for solving the Navier-Stokes
equations. The user deforms the grid interactively and a deformed
scalar stream functioñψ(t) is obtained. In this paper, we use a de-
formation method based on Moving Least Squares [Schaefer et al.
2006] to deform the stream function. Finally, we apply a curl oper-
ator (∇×) to the deformed stream functioñψ(t), and the deformed
velocity field ṽ(t) is generated. Smoke densities are advected ac-
cording to the deformed velocity field̃v(t) to visualize the flow. In
the following subsections, we describe the details of each process.

4.1 Conversion to Stream Function

As described before, our method converts the velocity fieldv into
the scalar stream functionψ. In order to explain this process, let
us introduce the Helmholtz-Hodge Decomposition. In Helmholtz-
Hodge Decomposition, any vector fieldsw can be decomposed into
curl-free and divergence-free components as follows.

w = ∇ϕ+∇× ψ, (4)

whereϕ is a scalar potential function andψ is a scalar stream func-
tion. The first term on the right is the curl free component (i.e.
∇ × (∇ϕ) = 0) and the second term is the divergence-free com-
ponent (i.e.∇ · (∇ × ψ) = 0). In this paper, in order to obtain a
deformed divergence-free flow field, we represent the velocity field
by using the scalar stream function, that is,

v = ∇× ψ. (5)

In general, a vector field basically consists of both a curl-free and
a divergence-free components. Therefore, we cannot use Eq.5 for
arbitrary velocity fields. Fortunately, for the velocity field obtained
by solving the Navier-Stokes equations consists of the divergence-
free component only. This is because the pressure term in Eq.(1) is
calculated using Helmholtz-Hodge Decomposition. We explain the
reason for this in the following.

In solving the Navier-Stokes equations, we first compute an inter-
mediate velocity fieldwtmp by using Eq.1 except for the pressure
term. Next, to compute the pressure term (Eq.(1)), the velocity
fieldwtmp is decomposed using Helmholtz-Hodge Decomposition
as shown in the following equation.

wtmp = ∇p+ v, (6)

First term on the right-hand side (∇p) is the curl-free compo-
nent of the temporal velocity field and the second term represents
divergence-free components. The pressure term is then computed
computed by using the continuity equation (Eq.2), and the veloc-
ity field is obtained fromwtmp andp (see [Stam 1999] for more
details). That is,

v = wtmp −∇p, (7)

As indicated by the above equations, the velocity field obtained by
solving the Navier-Stokes equations consists of the divergence-free
component only. Thus, we can safely represent the velocity fieldv
by using the stream function,∇× ψ.

Next, we describe a method for calculating the scalar stream func-
tion ψ from the velocity field.ψ is calculated by using the Green
functionG (see [Li et al. 2006] for details) :

ψ(x, t) =
∑
y∈Ω

(∇×G(x− y)) · v(y, t), (8)

wherex andy are grid points on the grid used for representing the
velocity field (not the grid for deformation),Ω is the entire domain
of the simulation space,· represents an inner product between two
vectors. In this paper, we define the Green functionG by the fol-
lowing equation :

G(x− y) = exp(
−||x− y||

σ
), (9)

whereσ is a user-specified coefficient. The above equations indi-
cate that the stream function is obtained by convolving the input
velocity field v with a vector field represented as the curl of the
Gaussian function.

4.2 Deformation of Flow Fields

In this subsection, we explain the deformation method. As de-
scribed before, we prepare a deformation grid for deforming the
stream function. We use the method based on the Moving Least
Squares [Schaefer et al. 2006] for deforming the grid. The user
places a set of control pointspi (the red points in Fig. 3) and
the user moves these control points interactively to desired target
positionsqi. Then, the grid is deformed by using a deformation
functionfr, which is obtained by minimizing the following energy
functionE.

E =

Np−1∑
i=0

wi||fr(pi)− qi||, (10)

wherer is a grid point on the deformation grid (Fig.3), pi is the
initial position of thei-th control point, andqi is its target position.

initial grid deformed grid

r

pi

fr(r)

qi

Figure 3: Deformation grid.

Np is the number of control points placed by the user. The weight
wi is defined by the following equation.

wi =
1

||pi − r||α ,

whereα is a user-specified coefficient. For the details on solving
the minimization problem, please see [Schaefer et al. 2006].

The scalar stream function is deformed by using the deformation
function obtained by the above method. The deformation function
is defined by using the deformation grid that is coarser than the
simulation grid used for storing the stream function. The deforma-
tion function at each grid point of the simulation grid is therefore
computed by the bilinear interpolation using the neighboring de-
formation grid points. This deformation is easily implemented by
using the hardware texture mapping functions.

After the deformed stream functioñψ is calculated, the deformed
velocity fieldṽ is obtained by applying curl operator tõψ.

ṽ(t) = ∇× ψ̃(t). (11)

The resultant velocity field of course satisfies divergence-free con-
dition since∇ · ∇ × ψ̃(t) is always zero by definition.

5 Results

This section shows some examples created by using our method.
We used a desktop PC with an Intel Core i7 2600K CPU, 16GB
memory to compute all the examples shown in this section. For
all examples, the number of grid points for the simulation grid and
the deformation grid was128× 128 and64× 64, respectively. The
videos corresponding to the following examples can be found in the
supplementary material.

Fig. 1 shows an example of rising smoke from a cartoon lamp. The
rising smoke animation is generated by using the fluid simulation.
The source of the smoke is located at the tip of lamp. Fig.1(a)
shows the original input smoke animation. Fig.1(b) shows a result
obtained by deforming the original flow field by using our method.
In Fig.1(a), smoke rises vertically. In Fig.1(b), We deform the flow
field to create a swirling smoke motion. By using our method, we
can easily generate such interesting smoke motions

Fig. 4 shows a comparison of results with and without using the
stream function for deforming the velocity field. Fig.4(a) shows
the original input flow field, and (b) shows the divergence of the ve-
locity field at red rectangular domain in (a). Figs.4(c) and (d) show
results created by deforming the flow field by our method using the
stream function. Figs.4(e) and (f) are created by directly deforming
the velocity fields by using Moving Least Squares, without using

(a)

(c)

(e)

(b)

(d)

(f)

Figure 4: Comparison of results.

the stream function. In Figs.4(b)(d)(f), the blue and red color in-
dicate negative and positive values of divergence, respectively. The
images shown at the left-upper corners in Figs.4(a)(c)(e) show the
deformation grid. In Figs.4(c) and (e) , we deform the original flow
field so that the width of the smoke becomes narrower. However,
in Fig. (e), the width of smoke does not become narrow. This is
due to the influence of high positive divergence shown in Fig. (f).
In contrast, since the flow field generated by our method satisfies
divergence-free condition, our method successfully generates the
flow field satisfying the user’s intention.

6 Conclusion

In this paper, we have proposed a method for deforming fluid flow
while preserving the divergence-free condition. The divergence-
free condition is enforced by converting the input flow field into
the scalar stream function. The deformation is done by using the
method based on the Moving Least Squares. We demonstrated the
capabilities of our method with a set of examples.

As for future work, we are planning to extend our method to 3D
flow fields. However, a stream function can not be defined other
than axisymmetry flows in 3D fluid flow fields. Therefore, we can-
not easily extend our method to 3D flow fields. We are planning

to develop a method that approximates a 3D flow field by a set of
scalar functions.

References

BRIDSON, R. 2008.Fluid Simulation for Computer Graphics. AK
Peters.

FULLER, A. R., KRISHNAN, H., MAHROUS, K., HAMANN , B.,
AND JOY, K. I. 2007. Real-time procedural volumetric fire. In
Proceeding of the 2007 symposium on Interactive 3D graphics
and games, 175–180.

K IM , T., AND DELANEY, J. 2013. Subspace fluid re-simulation.
ACM Transactions on Graphics 32, 4, Article 62.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling
of flames for a production environment.ACM Transactions on
Graphics 21, 3, 729–735.

L I , H., CHEN, W., AND SHEN, I.-F. 2006. Segmentation of
discrete vector fields.IEEE Transactions on Visualization and
Computer Graphics 12, 3, 289–300.

SCHAEFER, S., MCPHAIL , T., AND WARREN, J. 2006. Image
deformation using moving least squares.ACM Transactions on
Graphics 25, 3, 533–540.

STAM , J. 1999. Stable fluids. InProceedings of ACM SIGGRAPH
1999, Annual Conference Series, 121–128.

TREUILLE, A., LEWIS, A., AND POPOVIC, Z. 2006. Model re-
duction for real-time fluids.ACM Transactions on Graphics 25,
3, 826–834.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics.ACM Transaction on Graphics 28, 3,
Article 39.

