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Fig. 1. A large-scale sandstorm animation (right) created by combining two input flows simulated in a small-scale area (left).

The computational cost for creating realistic fluid animations by numerical
simulation is generally expensive. In digital production environments, ex-
isting precomputed fluid animations are often reused for different scenes
in order to reduce the cost of creating scenes containing fluids. However,
applying the same animation to different scenes often produces unaccept-
able results, so the animation needs to be edited. In order to help animators
with the editing process, we develop a novel method for synthesizing the
desired fluid animations by combining existing flow data. Our system allows
the user to place flows at desired positions, and combine them. We do this
by interpolating velocities at the boundaries between the flows. The inter-
polation is formulated as a minimization problem of an energy function,
which is designed to take into account the inviscid, incompressible Navier-
Stokes equations. Our method focuses on smoke simulations defined on a
uniform grid. We demonstrate the potential of our method by showing a set
of examples, including a large-scale sandstorm created from a few flow data
simulated in a small-scale space.
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1 INTRODUCTION
Physically-based simulation of fluids has become an important ele-
ment in many computer graphics applications, such as movies and
computer games. However, one problem is the expensive compu-
tational cost, which makes it difficult to create the desired fluid
animation since the simulation must be repeated multiple times to
find an appropriate set of parameters that can produce a satisfactory
result.
In digital production environments, existing precomputed fluid

animations are often reused for different scenes. Although this
approach reduces the computational cost significantly, applying the
same animations to different scenes often produces unacceptable
results. Therefore, the animation usually needs to be edited. Several
methods have therefore been proposed for synthesizing new fluid
animations by reusing precomputed flow data [Raveendran et al.
2014; Sato et al. 2016, 2015; Thuerey 2016]. These methods allow us
to create plausible fluid animations different from input animations.
However, since the purpose of these methods is to perform simple
interpolation or deformation, the physical properties of the fluid are
not considered. Our goal is to obtain physicallymore plausible edited
results than these methods by considering the physical properties.

Cut-and-paste operations are common in editing images, videos,
and even documents. Although there are many methods for seam-
lessly combining multiple images/videos, no methods have been
proposed for fluid flow. We cannot simply apply the methods used
for images/videos to flows because they do not pay any attention to
the physical properties of the fluid. Our method addresses this prob-
lem and we present a novel mathematical framework that allows
cut-and-paste editing of multiple flows in a way that respects the
important physical properties. In our system, the user can crop the
desired regions from one flow and paste it onto another, and these
are seamlessly combined by interpolating the flow at the boundaries
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of the cropped regions. We formulate the interpolation as a mini-
mization problem of our energy function consisting of two terms:
the difference of the curl of the flow and the divergence of the flow.
These terms are designed to consider the inviscid, incompressible
Navier-Stokes equations. Our energy function is derived from the
Dirichlet energy to generate smooth and plausible velocity fields.

We demonstrate the potential of our method by showing several
examples. We can create different fluid animations from a single
input flow. We can also create very large-scale flow by repeatedly
combining a few sets of flow data. Fig. 1 shows such an example
where animation of a very large sandstorm is created.

2 RELATED WORK
Physically-based fluid simulation. Fluid simulations based on the

Navier-Stokes equations were firstly introduced to computer graph-
ics by Foster and Metaxas [1996], and later Stam [1999] developed
an unconditionally stable solver. Since these methods were intro-
duced, many methods have been proposed for simulating various
fluid phenomena, such as smoke [Fedkiw et al. 2001], water [Foster
and Fedkiw 2001], fire [Nguyen et al. 2002], explosion [Feldman
et al. 2003; Yngve et al. 2000], and cloud [Miyazaki et al. 2002].
Bridson published a great textbook that summarized various simula-
tion methods [Bridson 2015]. Although these methods can produce
realistic fluid animation, the user must repeatedly execute fluid simu-
lations with different parameter settings until the desired animation
is created.

Control methods. Some control methods have been proposed for
creating fluid animations with desired shapes. Treuille et al. [2003]
optimized the control forces such that smoke simulation is matched
to target density and velocity fields at specified keyframes. Fattal
et al. [2004] controlled smoke simulation by introducing additional
external forces calculated based on target density distributions. Mc-
Namara et al. [2004] developed a method for optimizing control
forces using the adjoint method. Thürey et al. [2006] controlled
liquid simulation while preserving the small-scale details by apply-
ing control forces to the coarse-scale components of the velocity
field. Nielsen et al. [2010; 2009] controlled a high resolution sim-
ulation based on a low resolution preview simulation by solving
a minimization problem. Huang et al. [2011] proposed a method
for guiding the high resolution simulation by locally adjusting the
velocity and density fields according to the low resolution preview
simulation. Bhattacharya et al. [2012] used the steady state Stokes
flow for controlling liquid simulations while capturing the rotational
components. Pan et al. [2013] interactively edited a low-resolution
fluid simulation and guided a high-resolution simulation according
to the edited simulation. However, with these control methods, the
full simulation must be executed and some control/physical param-
eters must be adjusted appropriately. Therefore, the full simulation
with different parameter settings must be repeated in order to create
the desired animation. Furthermore, these methods are not suitable
for our purpose since they are not designed to combine multiple
precomputed flows.

Re-simulation methods. Kim and Delaney [2013] presented an effi-
cient re-simulation method. This method generates basis functions

by applying principal component analysis (PCA) to a single set of
velocity fields, and then fluids with different parameter settings can
be efficiently re-simulated in the basis space. In this method, the
results are limited to those represented by a linear combination
of the basis functions. Furthermore, the memory consumption in
applying PCA is a bottleneck for a large database. Bojsen-Hansen
and Wojtan [2016] also proposed a fluid re-simulation method by in-
troducing non-reflecting boundary conditions with inflow/outflow
constraints. This method allows the user to locally re-simulate the
fluid as a post-process. However, this method cannot use the semi-
Lagrangian method and FLIP for the advection term, so the time
step must be small. Therefore, the computational cost is relatively
high. By contrast, our method uses the semi-Lagrangian method
for the advection term and computes flows only at the boundaries
between the input flows. Therefore, our system also allows to create
large-space flow at low cost, not only the local editing and, again,
these methods are not suitable for combining multiple precomputed
flows.

Reusing existing fluid animations. Several methods have been
proposed for efficiently creating new fluid animations by reusing
existing flow data. Raveendran et al. [2014] developed a method
for smoothly blending existing free surface liquid animations. This
method semi-automatically matches 3D triangular meshes from
existing liquid simulations to plausibly interpolate between the in-
put animations. Thuerey [2016] proposed an interpolation method
for smoke and liquid represented by grid-based signed-distance
functions. This method computes deformations between the input
signed-distance functions by using optical flow. Sato et al. [2015]
showed 3D velocity fields could be deformed while guaranteeing the
incompressibility of the flow using vector potentials. However, dras-
tic changes in flows are difficult to achieve using these deformation-
based methods. By contrast, our method achieves relatively large
changes by partially combining multiple flows. To combine existing
fluid animations, Sato et al. [2016] proposed an interpolation method
that respects incompressibility. This method generates new fluid
animations by interpolating the flow at the boundaries between the
input flows. However, the momentum equation in the Navier-Stokes
equations is not taken into account in this method. By contrast, our
method can take into account the momentum equation as well as
the incompressibility in interpolating the flow. Furthermore, we
can smoothly combine multiple flows temporally by finding the
best-matching frames between the inputs.

Image and Video Synthesis. Our method seamlessly combines
multiple flows by minimizing an energy function. Similar ideas
have been proposed for seamlessly editing and combining multiple
images. One of the most popular methods is the technique called
Poisson image editing [Perez et al. 2003]. In this method, multiple
images are seamlessly combined so that the gradients of the image
intensities are preserved. This is achieved by minimizing the differ-
ence of the gradient of pixel intensities. A graph-based approach is
also frequently used to seamlessly combine multiple images. Kwatra
et al. [2003] developed a method for synthesizing the texture from
multiple images using graph cuts. We can apply these techniques
to velocity fields of the fluid but they do not take into account the
physical properties. Our method can be considered as an extension
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Fig. 2. Overview of our method. pusr is a user specified position where Ωusr is placed in a target field, iof s indicates a temporal offset, and ∂Ω1 and ∂Ω2
are boundaries of Ω. For visual clarity, 3D velocity fields are shown as 2D velocity fields. The orange circles indicate obstacles.

of this technique to the velocity fields so that the important physical
properties are incorporated.

Geometry Processing. Determining vector fields by prescribing
the curl and divergence have previously been used in geometry
processing. Wang et al. [2006] introduced the prescribing curl and
divergence in designing vector fields, and Fisher et al. [2007] ex-
tended Wang’s method. Fisher’s method satisfies a sparse set of
user-provided constraints (sources, sinks and vortices and/or arbi-
trary vectors) over arbitrary triangle meshes. Then, by minimizing
the error between unknown vector fields and these constraints, the
smooth and desired vector fields can be obtained. Similarly, our
method interpolates flow by minimizing the error of the curl and
the magnitude of the divergence. However, our method is designed
to smoothly combine multiple dynamic 3D flows obtained by fluid
simulation.

3 OUR COMBINATION METHOD

3.1 Overview
Fig. 2 shows an overview of our method. First, the user prepares the
input velocity field sequences u obtained using a fluid simulation.
For the sake of clarity, we explain our method for the case in which
there are two input velocity fields, and these are denoted as u1 and
u2 as shown in Fig. 2. We use these two velocity fields throughout
the paper unless otherwise stated. Let us call the two fields, u1 and
u2, the source and target fields, respectively. The user specifies an
arbitrary region Ωusr (the region enclosed by the blue curve in
Fig. 2) in the source field, and specifies a position pusr in the target
field (the red point in Fig. 2), where the source field cropped by Ωusr
is copied. Simultaneously, the same region as Ωusr is defined in the
target field so that the center of Ωusr is at pusr (Fig. 2). Then, the
two velocity fields are combined.

The method consists of two processes: frame matching and flow
interpolation. In the frame matching process, we found the frames
where the distributions between two inputs are the most similar in
Ωusr . A correlation function between the two inputs is computed
based on the input density fields, and then we compute a temporal
offset iof s such that the correlation is maximized. This frame match-
ing process is executed only once as a preprocess and does not need

to be repeated as long as Ωusr or pusr are unchanged. Note that our
system allows the user to manually specify iof s , instead of using
our automatic frame matching method if the user is not satisfied
with the automatic result.

Next, in the interpolation process, the flow in Ωusr in the source
field is copied into the target field. An interpolation region, Ω, with
a predefined width is automatically created around the boundary of
Ωusr as shown in Fig. 2. The width of the interpolation region is
specified by the user (we experimentally found that an appropriate
width is about 2 – 7% of the entire simulation space). We denote the
inner and outer regions of Ωusr as Ω1 and Ω2 respectively, except
Ω (Fig. 2). The boundaries between Ω and Ω1, Ω and Ω2 are denoted
by ∂Ω1, ∂Ω2 (green and red curves in Fig. 2), respectively. Then, our
system interpolates the velocities uΩ in Ω by minimizing an energy
function in a way that respects the important physical properties of
the fluids: the momentum equation and the incompressibility. We
develop the energy function through an L2 norm of the gradients
of the velocities (the definition of the energy function is given in
Sec. 3.4). Finally, we obtain the resultant velocity field uc : uc = uΩ
at Ω, uc = u1 at Ω1, and uc = u2 at Ω2 (Fig. 2). To visualize the flow,
smoke densities are advected by the resultant velocity field uc .

3.2 Input Velocity and Density Fields
One of the inputs to our system is a set of incompressible velocity
fields uk (i), where i = 1, 2, · · · , I represents the frame number, and
I is the number of frames in the input velocity field, k is an indicator;
k = 1 and k = 2 indicate source and target fields, respectively. These
velocity fields are obtained by numerically solving the following
inviscid, incompressible Navier-Stokes equations (or incompressible
Euler equations).

∂u
∂t
= −(u · ∇)u − 1

ρ
∇p + f , (1)

∇ · u = 0, (2)

where ρ is the fluid density, p is the fluid pressure, and f represents
the external forces. Eq. (1) is the momentum equation, and Eq. (2) is
the incompressibility condition. For smoke simulation, we compute
Eqs. (1) and (2) based on the stable fluid method developed by Stam
[1999]. The smoke densities Dk (i) are passively advected in line
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Fig. 3. Matching frames between the source field and the target field. This
figure shows the five cases with different iof s (−I1 + 1, ia, 0, ib, I2 − 1), and
for iof s = 0 the full length I1 is shown. White and black colors indicate
s = 1 (fluid) and s = −1 (not fluid), respectively. iof s is a temporal offset
(shown by green arrows). The blue rectangles indicate the user specified
region Ωusr , the red shaded regions indicate the range for computing a
correlation function. In the example of this figure, the correlation function
is maximized for iof s = ib (denoted as a red rectangle).

with uk (i). The sequences of the density field are also the inputs to
our system.

3.3 Frame Matching
We first find the best-matching frames so that the similarity between
the input flows in the user specified region Ωusr is maximized. In
addition, we want to maximize the number of temporally overlap-
ping frames in order to preferably increase the number of frames
for resulting animations. To achieve this, we compute a correlation
function between the input density fields and calculate a temporal
offset such that the correlation is maximized. In the following, we
first describe the frame matching algorithm for the case of two in-
put flows. The method for the case of three or more input flows is
explained later.
First, our method creates sequences of grid data sk (i) storing a

Boolean value representing the presence of smoke at each grid point,
computed from the density fields Dk (i). sk (i) is set to 1 for the grid
points satisfying Dk (i) > Dth , and set to −1 otherwise. Dth is a
threshold value for the density which is chosen so that the smoke
region is extracted.

We then compute the correlation between s1 and s2 with different
temporal offsets and find the optimal offset iof s by solving the
following maximization problem.

arg max
iof s

Ie∑
i=Is

∑
Ωusr

s1(i − iof s )s2(i). (3)

Algorithm 1 Single step of flow interpolation

û(i) ← AdvectVelocityField(uc (i − 1))
u1(i) ← LoadSourceVelocityField
u2(i) ← LoadTargetVelocityField
uc (i) ← InterpolateFlow(u1(i), u2(i), û(i))

The correlation between s1 and s2 is computed by using only the
frames that are temporally overlapping (see the red shaded frames in
Fig. 3). That is, the range of iof s is [−I1+1, I2−1], Is ismax(1, iof s+1),
Ie is min(I1 + iof s , I2) where I1 and I2 are the number of frames for
the source and target fields, respectively. Note that I1 and I2 can be
different. The final animation starts at i = 1 and ends at i = Ie . The
source fields that do not temporally overlap with target fields are
not used. We try all possible offsets to obtain the optimal iof s .

When n input flows are combined, the user specifies one of them
as the target field and the rest of them are treated as source fields.
Then, for each source field, the optimal offset frame is calculated by
maximizing the correlation function between each source density
field and the target density field. The number of frames for the final
animation is equal to the minimum of Ie for all the source fields.

The effectiveness of this process is shown in Sec. 4 (see Figs. 6 (c)
and (f)). If the user wants to combine the flows in a specific frame,
he/she can directly specify the offset frame. However, unless the
user carefully chooses the offset frame, visual artifacts might arise
as shown in Sec. 4.

3.4 Flow Interpolation
After determining the matching frames, we interpolate the velocity
field by solving a minimization problem. The velocities at Ωusr in
the source field are copied to the target field. Then, an interpolation
region Ω with a predefined width is created around the boundary
of Ωusr (see Fig. 2). The velocities uΩ(i) in Ω are computed such
that our energy function is minimized. In the following, we define
our energy function.

To obtain a smooth velocity field uΩ(i), we want to minimize the
spatial change in the velocities. This can be achieved by minimizing
the following L2 norm of the gradient of the velocity [Perez et al.
2003].

Etmp (uΩ(i)) =
∑
Ω

| |∇uΩ(i)| |2, (4)

where ∇ is the gradient operator and we set the boundary conditions
uΩ(i) = u1(i − iof s ) at ∂Ω1 and uΩ(i) = u2(i) at ∂Ω2. Eq. (4) can
be considered the Dirichlet energy of the velocity. The derivative
of Etmp (uΩ(i)) with respect to uΩ(i) should satisfy the following
equation in order to minimize Etmp (uΩ(i)).

∇2uΩ(i) = 0, (5)

where ∇2 is the Laplace operator and 0 is a zero vector. Since the left
hand side of Eq. (5) is a vector Laplacian operator, we can decom-
pose it into the following two components by applying a standard
identity:

− ∇ × (∇ × uΩ(i)) + ∇(∇ · uΩ(i)) = 0, (6)
where ∇× and ∇· are the curl and divergence operators, respectively.
This equation is equal to the derivative of the following energy
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function (see Appendix for the derivation):

Etmp (uΩ(i)) =
∑
Ω

| |∇ × uΩ(i)| |2 + (∇ · uΩ(i))2. (7)

Our energy function is derived from the above equation. This energy
function has a nice property in that it contains the divergence of
the velocity field as shown in the second term in Eq. (7). Thus, by
minimizing the above energy function, the divergence of uΩ(i) is
also minimized. In other words, using this energy function, we can
automatically take into account the incompressibility. This energy
function, however, does not deal with the other important physical
property, i.e., the momentum equation. In addition, minimizing this
energy produces too smooth flows because the magnitude of the
curl is minimized.
We extend the energy function to take the momentum equation

into account and avoid too smooth flows, by introducing a velocity
field û(i) which is obtained by advecting our result in the previous
frame. The first term of Etmp is then modified so that the difference
between uΩ(i) and û(i) is minimized. That is, our energy function
is expressed by the following equation.

EΩ(uΩ(i)) =
∑
Ω

| |∇ × uΩ(i) − ∇ × û(i)| |2 + (∇ · uΩ(i))2. (8)

The curl of û(i) is obtained from the vorticity formulation of the
Navier-Stokes equations (the curl of Eq. (1)); ∇ × û(i) = ∇ × uc (i −
1) −∆t∇× {(uc (i − 1) · ∇)uc (i − 1)}, where uc (i − 1) is the resultant
velocity field for the (i − 1)-th frame, and ∆t is the time step. Note
that, for i = 1, we assume û(1) = 0. Therefore, our energy function
for the 1-st frame is EΩ(uΩ(1)) =

∑
Ω | |∇ × uΩ(1)| |2 + (∇ · uΩ(1))2.

This is equivalent to minimizing Eq. (4).
Finally, to obtain uΩ(i), weminimize EΩ(uΩ(i)) (Eq. (8)). By taking

the derivative of Eq. (8) with respect to uΩ so that EΩ(uΩ(i)) is
minimized, we obtain:

− ∇ × (∇ × uΩ(i)) + ∇(∇ · uΩ(i)) = −∇ × (∇ × û(i)). (9)

We discretize the above equation using the finite difference approx-
imation, and use the conjugate gradient (CG) method to solve it
numerically. Since the left hand side of Eq. (9) is converted back to
the usual vector Laplacian form using the identity applied between
Eqs. (5) and (6), the above equation is solved individually for the
velocity components. The steps of this flow interpolation process
are shown in Algorithm 1.

We extended the Dirichlet energy of the velocity (Eq. (4)) to incor-
porate the momentum equation as shown in Eq. (8). With our new
energy function, when the magnitude of the curl of û(i) is very large,
any theoretical claims related to the smoothness or other properties
of the Dirichlet energy might be discarded. However, the following
experiments demonstrate that our extended energy function can
produce even more plausible flows than those obtained using the
Dirichlet energy (Eq. (4)). This is because our energy function takes
into account the incompressibility and the momentum equation.
Fig. 4 shows the temporal change in the absolute value of the

divergence of two combined results. The red curves indicate the
results obtained by only copying the source field to the target field
while the blue curves indicate the results obtained using our method.
The vertical axes indicate the maximum value of the divergence
(upper image) and the spatial average of the divergence (lower one),
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Fig. 4. A temporal change in the divergence for combined velocity fields.
The maximum divergence indicates the maximum value of |∇ · uc (i) | for
over the simulation space. The average divergence is computed

∑
Ωsim |∇ ·

uc (i) |/Nsim , where Ωsim is the entire simulation space and Nsim in-
dicates the number of grid points for Ωsim . The red curve indicates the
transition of the divergence for a result generated by importing the velocity
fields from the source field to the target field. The blue curve indicates it for
our combined result.

and the horizontal axis is the frame number. The vertical axes are
normalized so that the maximum value of the red curve is one in
each graph. In the red curve, the divergence is a long way from
zero. This is because the flow obtained just by copying the inputs
has discontinuities at the boundaries of the interpolation region. By
contrast, our result (shown by the blue curve) takes into account
the incompressibility and hence the divergence is closer to zero.
Especially, the maximum divergence is much smaller than that ob-
tained by copying the input flow only. However, we still have small
divergence even in our method and this leads to some artifacts that
could be observed. Nonetheless, our method can produce smooth
and plausible flow overall, as demonstrated by several examples in
Sec. 4.

Fig. 5 shows the temporal changes in the energy of the curl and di-
vergence terms for two synthesized results. This figure demonstrates
how our modified equation Eq. (8) can minimize the difference of
the curl and the magnitude of the divergence compared with Eq. (7).
The vertical axes indicate the squared L2 norm of the difference
of the curl (upper image) and the squared value of the divergence
(lower one) for the combined velocity fields, and the horizontal axis
is the frame number. The vertical axes are normalized so that the
maximum value of the red curve becomes one in each graph. In this
experiment, we use a single velocity field ue as an input and delete a
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Figure grid size size of interpolation region Tmatch Tinterp Tsim
input final width total

Fig. 6 192 × 192 × 256 192 × 192 × 256 12 128 × 104 968 11 210
Fig. 7 (d) 192 × 192 × 256 192 × 192 × 320 4 (192 × 192 × 4) × 16 – 7.5 280
Fig. 7 (g) 192 × 192 × 256 240 × 192 × 256 4 (4 × 192 × 256) × 12 – 8.5 310
Fig. 8 (b) 256 × 256 × 64 256 × 256 × 64 12 21 × 104 90 1.4 65
Fig. 8 (d) 256 × 256 × 64 256 × 256 × 64 12 38 × 104 221 2.5 65
Fig. 8 (f) 256 × 256 × 64 256 × 256 × 64 12 41 × 104 257 3.0 65
Fig. 9 256 × 256 × 64 256 × 256 × 64 12 44 × 104 – 3.1 65
Fig. 10 384 × 384 × 512 384 × 384 × 640 8 (384 × 384 × 8) × 16 – 100 3500
Fig. 1 768 × 256 × 192 768 × 764 × 192 8 (768 × 8 × 192) × 2 – 15 6300

Table 1. Simulation statistics. Tmatch and Tinterp are computation times corresponding to the frame matching and flow interpolation, respectively. Tsim is
measured by running a fluid simulation with the grid size same as the final results. Tmatch is measured in seconds, and Tinterp and Tsim are measured in
seconds per frame.

sq
u
ar

ed
 v

al
u
e 

o
f

d
iv

er
g
en

ce

100 2001
frame number

0.0

1.0

sq
u
ar

ed
 L

2
 n

o
rm

 o
f

cu
rl

 d
if

fe
re

n
ce

100 2001
frame number

0.0

1.0

using Eq.(7)

using Eq.(8)

using Eq.(7)

using Eq.(8)

Fig. 5. A temporal change in the curl and divergence term for synthesized
results. In this experiment, we use a single velocity field ue (i) as an input
and delete a part of it to use as an interpolation region. The squared L2
norm of curl difference and squared value of divergence are computed as∑

Ω | |∇ × uΩ(i) − ∇ × ue (i) | |2 and
∑

Ω(∇ · uΩ(i))2, respectively.

part of it. Then the velocities in the deleted region are reconstructed
by interpolation using either Eq. (8) or Eq. (7). The blue and red
curves correspond to Eq. (8) and Eq. (7), respectively. Each value of
the upper and lower figure is computed as

∑
Ω | |∇ × uΩ − ∇ × ue | |2

and
∑

Ω(∇ · uΩ)2, respectively. When using Eq. (7), the velocities
are interpolated so that the magnitudes of their curls are minimized.
Thus, the curl of the resulting velocity field is different from the curl
of the original velocity field, ue . By contrast, our modified equation
Eq. (8) takes into account the momentum equation by trying to

preserve the curl computed from the velocity field at the previous
time step. Consequently, the difference between the curls of the re-
constructed field and the original field becomes much smaller than
that obtained using Eq. (7) (see the upper figure). Furthermore, the
divergence also becomes smaller when using our modified energy
function (see the lower figure). This experiment implies that the
energy function is better minimized by using the difference from
the velocity field obtained by advecting the incompressible velocity
fields (inputs) than by using the magnitude of the curl.
By introducing a relative weighting coefficient to either term in

Eq. (8), the influence of the curl or divergence terms can be con-
trolled. That is, by using a large coefficient for the divergence term,
our method would minimize the divergence term more preferen-
tially than the curl term. However, using too big/small coefficient
could lead to unnatural and implausible velocities in the results.
Furthermore, we cannot set the coefficient to zero or ∞. The curl
and divergence components of a velocity field are orthogonal, and
one component lies in a non-trivial null space of the other com-
ponent [Ando et al. 2015]. Therefore, an infinite number of vector
fields could have the same curl or divergence, thus Eq. (9) cannot
be solved uniquely with only one term.

4 RESULTS
Figs. 6 - 10 and 1 show the results created using our method. We
used a desktop PC with an Intel Core i7-6700K CPU and NVIDIA
GeForce GTX 1080 and 32GB of memory to compute all the exam-
ples. The grid sizes, the parameters, and the computation times are
summarized in Table 1. Our method is much faster than the full
simulation with a grid size same as our final result (see Tinterp and
Tsim ). The orange spheres indicate obstacles in Figs. 6 and 8. To ren-
der the 3D results shown in Figs. 6 - 9, we used the physically-based
renderer "Mitsuba" [Jakob 2010]. The videos corresponding to these
examples can be found in the supplementary material.

Fig. 6 shows a comparison of the results obtained using different
interpolation schemes. Figs. 6 (a) and (b) are the input flows, (a) is
rising smoke with a spherically shaped obstacle, and (b) is rising
smoke only. The grid size of these two inputs is the same. The blue
curves indicate the user specified region and the copied region, the
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(b) target field

(a) source field (c) without frame matching (d) graph cut (f) our method(e) NS solver

Fig. 6. A comparison of results with our method. In (c), distributions of input flows are not matched, so visual artifacts are visible. In (d), we apply graph cut
for obtaining the interpolation region in order to realize smoother synthesis. However, velocity fields are only copied in graph cut, so discontinuities occur. (e)
is created by solving the Navier-Stokes equations in the interpolation region with the boundary velocities pinned to the input velocity fields, but the smoke
stays around there. By contrast, our results (f) can be smoothly combined and such artifacts are not visible.

same as in Fig. 2. The synthesis region is specified by a 2D curve,
and the region in the depth direction is the same as the grid size
for the input. For comparison, the yellow curves are calculated by
applying a graph cut [Kwatra et al. 2003] to the difference between
the two input velocity fields, used for the result (d). To apply the
graph cut, grid points on the boundary of the user specified region
(on the blue curve) are connected to an edge with infinite value.
Figs. 6 (c) - (e) are created using different schemes, and Fig. 6 (f) is
our result.
Fig. 6 (c) is created using our method, but the frame matching

process is not applied. Therefore, there are velocities from the source
field in the user specified region before the smoke reaches there,
and the smoke is stretched inside the red dotted curve. By contrast,
in Fig. 6 (f), because the distributions of the velocities in the user
specified region become similar by using the frame matching, such
problems do not occur. The temporal offset in our result is iof s = 36.

Fig. 6 (d) is generated by copying the velocity fields from (a) to (b)
inside the yellow curve calculated using a graph cut. Although the
graph cut algorithm finds the interpolation region by minimizing
the difference in flow at the boundaries, artifacts clearly appear.

That is, since the physical properties are not guaranteed near the
boundary of the synthesis region, the smoke density disappears in
the region within the red dotted curve. Furthermore, since the tem-
poral similarity between the input flows is not taken into account,
the smoke is stretched inside red dotted curve in the upper image
of (d). However, such problems do not occur with our method; this
demonstrates that taking the physical properties into account is
important.

Fig. 6 (e) is created by solving the Navier-Stokes equations [Stam
1999] in the interpolation region, with the boundary velocities
pinned to the input velocity fields, and frame matching is applied.
In this example, visual artifacts arise in the region within the red
dotted curve, because the velocities around the boundary of the
interpolation region are not smooth. Since the projection term in
the Navier-Stokes equations is solved for a velocity field with such
discontinuities, implausible velocities are generated around the in-
terpolation region. As a result, the smoke remains around there.
This result indicates that solving the Navier-Stokes equations is not
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(g) our result

(b) interpolation

regions

(a) input flow (d) our result

(e) interpolation

regions

(f) NS solver

(c) NS solver

Fig. 7. Partially extending smoke animations using our method. We can
realize the velocity field retargeting.

suitable for interpolating velocity fields. Our method can success-
fully combine the input flows smoothly and naturally (Figs. 6 (f)).
Our method is much more effective for interpolating velocity fields.

In Fig. 7, we create a flow extended from a single input flow. Fig. 7
(a) is the input flow. Figs. 7 (b) and (e) are the input flow and inter-
polation regions, shown by white rectangles. Figs. 7 (c) and (f) are
results created by applying a Navier-Stokes solver [Stam 1999] to
compute the flow in the white regions. Figs. 7 (d) and (g) are our
results. We create a taller smoke plume in (b), (c) and (d), and wider
smoke in (e), (f) and (g). In Figs. 7 (c) and (f), visual artifacts are ob-
served around the interpolation regions. Although the interpolation
regions are quite small, the advected velocities and velocities at the
boundary of the interpolation region are certainly different. The NS
solver needs several time steps to smoothly connect these differ-
ent velocities. Until that time step, the velocities are discontinuous
at the boundary, resulting in the artifacts. As shown in Figs. 7 (d)
and (g), we can achieve velocity field retargeting [Rubinstein et al.
2008]. Especially, since the flow is extended without the center of
the simulation space in (g), we can preserve the shape of the smoke
around the source of the input flow. However, the smoke plume in
Fig. 7 (d) slightly speeds up in the interpolation regions (see the
accompanying video) because the frame matching process is not
applied in this example. That is, the same problem as in Fig. 6 (c)
actually occurs in this case.

Fig. 8 shows the various results edited from a single flow by using
a part of itself. Left images in Fig. 8 show the user’s operations and
right ones show the corresponding results. The temporal offset in

our resultsinput flow and user operations

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 8. Synthesizing various flows from a single input flow using a part of
itself.

(b) target field

(a) source field

(c) our result

Fig. 9. Combining two input flows with different turbulent motions.

these results is iof s = (b) 4, (d) −6, (f) 0. In the top images (a) and
(b), the user copies the region around the obstacle to the region
indicated by the red arrow. In this case, only the flow around the
obstacle is smoothly combined but the obstacle removes the density
at the copied region, resulting in a natural density distribution even
behind the obstacle. In the center images (c) and (d), the user copies
the obstacle together with the flow behind it. Then, the flow behind
the obstacle is smoothly combined too, resulting in a more natural
flow. Next, in the bottom images (e) and (f), the user uses our method
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(b) interpolation regions(a) input flow (c) our result

Fig. 10. A partially extended tornado animation (right) created by interpolating white regions (center) from a single input animation (left).

to remove the obstacle. The obstacle is successfully removed and a
plausible flow is created.

In Fig. 9, we combine two flows with different turbulent motions.
Figs. 9 (a) and (b) show the input flows: the flow in (a) is turbulent
but the flow in (b) does not have small-scale turbulent motion. (c) is
the combined result created using these two inputs. This example
demonstrates that our method has the ability to combine flows even
when input flows have largely different turbulent motions.

In Fig. 10, we create a tornado animation extended from a sin-
gle input animation. Fig. 10 (a) is the input flow. Fig. 10 (b) is the
extended flow and interpolation regions are shown by white rectan-
gles. Fig. 10 (c) is our result; we create taller tornado. As shown in
this result, we can also achieve the retargeting for such large-scale
flow.
In Fig. 1, we create a large-scale sandstorm animation from two

input flows simulated in a small-scale area. Fig. 1 (a) shows the two
input flows. Fig. 1 (c) shows the result created by placing the input
flows at multiple positions and interpolating the white regions as
shown in Fig. 1 (b). This example demonstrates that our method can
be used to create a large-scale flow by combining multiple small-
scale flows. Since Poisson’s equation is solved within only a small
fraction of the total area, the memory consumption is much smaller
than a full simulation.

5 APPLICABILITY AND LIMITATIONS
Currently, our method has some limitations. We discuss these in
this section.

Our method is the most effective for combining velocity fields in
which the velocities have similar directions and magnitudes. Even
if largely different velocity fields are to be combined, our method
can compute a smooth flow, but the divergence may not be small
enough, and visual artifacts might occur. As it is difficult to explicitly
define the region of applicability, we present some tests shown in
Figs. 11 - 13 to illustrate cases in which our method fails to yield
good results. The animations corresponding to these experimental
examples can be found in the supplemental video.

(a) target field (b) 30 degrees (c) 45 degrees

(d) 60 degrees (f) 90 degrees(e) 75 degrees

Fig. 11. Experimental results combined two velocity fields which have the
different direction of velocities. (a) shows the target field. (b) through (f)
show the results of the combined flows; the inset images in each result are
the source field (the top right corner) and the divergence of each combined
velocity field (the bottom left corner). The divergence is visualized using a
pseudo color. The difference of directions between target and source flow is
indicated by the caption of each figure.

Fig. 11 shows the experimental results where the velocities in
two combined velocity fields are in different directions. Fig. 11 (a) is
the target field: a fixed boundary condition with an upward vertical
velocity is applied to the velocity field at the bottom of the simulation
space. A certain amount of smoke density is added at the bottom
center of each frame for visualizing the flow. The blue rectangle
indicates the user specified region. Figs. 11 (b) - (f) are the results of
the combined flows; the inset images in each result are the source
field (the top right corner) and the divergence of each combined
velocity field (the bottom left corner) visualized using a pseudo color
(blue, green, and red indicate the minimum, zero, and the maximum
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(a) target field (b) 0.75× slower (c) 1.5× faster

(d) 2.0× faster (f) combine
0.75× and 3.0×

(e) 3.0× faster

Fig. 12. Experimental results combined two velocity fields which have the
different magnitude of velocities. (a) shows the target field. (b) through (e)
are the combined results; the inset images in each result are the source field
(the top right corner) and the divergence of each combined velocity field
(the bottom left corner). The caption of each result indicates a difference of
the speed of the source field from the target field. (f) is the result created by
combining the very slow flow (source for (b)) and the very fast flow (source
for (e)).

values of the divergence). Each source field is obtained by rotating
the target field (a) around its center, and the angle of rotation is
shown in the caption of each figure. As shown in these results, we
found that the divergence of the interpolated flow is sufficiently
small as long as the difference in the direction of the overall flow
is smaller than about 45 degrees. Otherwise, the divergence is not
small, so the smoke disappears around the interpolation region,
even though the resulting velocity field is continuous.

Fig. 12 shows the experimental results where two velocity fields
with two different speeds are combined. Fig. 12 (a) is the target field:
an upward vertical velocity is added at the bottom of the simulation
space. The blue rectangle indicates the user specified region. Figs. 12
(b) - (e) are the combined results; the inset images in each result are
the source field (the top right corner) and the divergence of each
combined velocity field (the bottom left corner). The caption of each
result indicates a difference between the magnitudes of the target
(a) and source (b) - (e) fields. Fig. 12 (f) is created by combining the
source field for (b) (very slow flow) and (e) (very fast flow). When
the difference in speed is relatively small as in Figs. 12 (b) and (c),
the divergence is small enough to produce natural and plausible
flow. In Figs. 12 (d) and (e), unnatural flow is observed around the
interpolation regions due to the large difference in the flow speeds.
Serious artifacts appear when we try to combine velocity fields with
significant speed differences (see Fig. 12 (f)).

Next, Fig. 13 shows the experimental results obtained by combin-
ing a velocity field and a stationary field. Fig. 13 (a) is an input flow
where the smoke flows vertically. Figs. 13 (b) - (d) are our results
combined the input flow and the stationary fields indicated by the

(a) input flow (b) circle

(c) trapezoid (d) rectangle

Fig. 13. Experimental results combined the velocity field and the stationary
field. The orange curves indicate regions for the stationary fields.

orange curves. The interpolation regions are around the outside
of the orange curve, and their widths are 20, 16, and 16 for (b),
(c), and (d), respectively. Our method can generate nice-looking
velocity fields flowing smoothly along the boundaries of the shapes
of the stationary field when the direction of the input flow is not
perpendicular to the stationary field, as shown in Figs. 13 (b) and (c).
However, since the velocity field is not perfectly divergence-free,
the smoke density might decrease. The situation is worse when the
input flow is perpendicular to the stationary field as shown in Fig. 13
(d); the interpolated velocity field does not flow along the boundary
of the stationary field and, as a result, the smoke density disappears
at the boundary. From this experiment, we found that plausible flow
cannot be interpolated if there are obstacles with many surfaces
perpendicular to the flow. Otherwise, plausible flow seems to be
generated by our interpolation method. One solution to this prob-
lem is to specify some additional constraints, such as the direction
and magnitude, for interpolating the flow. This is a challenging but
interesting problem; we leave this task for our future work.
The user specified width of the interpolation region has a big

effect in our method. If the width is very small, the divergence
becomes larger and visual artifacts could appear. By contrast, if the
width is very large, the divergence is close to zero but the difference
of the curl becomes larger. The width of the interpolation region
needs to be chosen appropriately; we currently determine it by a
trial-and-error process. However, in our experiments, we found that
such problems do not occur if the width is set to about 2 – 7% of the
entire simulation space.
Our combined velocity fields might have discontinuities at the

boundaries of the interpolation regions if the input velocity fields
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have large differences, e.g., combining wide smoke with thin smoke.
In this case, visual artifacts are found because unexpected velocities
are generated in the interpolated regions in order to minimize the
magnitude of the divergence. This problem could be addressed by
applying a deformation method for fluid animations (e.g., [Sato
et al. 2015; Thuerey 2016]) in order to stitch the gap between the
distributions around the interpolation region.
Our method focuses on smoke simulations calculated on a uni-

form grid. In our results (Sec.4), we combined velocity fields which
have the same grid interval. Our method can be applied to velocity
fields with different grid intervals, or even on a non-uniform grid, by
resampling the flow on a uniform grid with the same grid interval.
However, we might have to carefully choose the resampling scheme
in order to avoid over-smoothing artifacts.

In Sec. 4, we showed that our method can combine multiple flows
and our method is faster than full simulations. Furthermore, since
multiple synthesis regions can be computed independently, the
method is suitable for parallel computing. However, the time for
loading input velocity fields is taken at every frame. For our results
(Sec. 4), about 0.35 – 1.0 seconds per frame were needed to load
the single 3D velocity field. If we can pre-load all the input data,
this loading time can be shortened but a huge memory capacity is
required for storage.

Our approach is quite efficient for synthesizing a large-scale flow
as shown in Fig. 10 and 1. As described in Sec. 4, even if we synthesize
such a large-scale flow, the memory consumption is low for our
interpolation process because we need only the velocities around
the interpolation region. However, unfortunately, for the advection
of the density, we need two huge volumes (velocity and density) to
visualize the flow. To reduce such memory cost, we need to break
up the domain, or perform it out-of-core in stages.

We tried different ways of measuring the similarity in the frame
matching process, such as the simple density difference or the one
used for the alpha mask in the LazyFluids method [Jamriska et al.
2015]. However, failures are sometimes observed: minimizing the
density differences might reduce the number of overlapping frames.
Therefore, we count similar grids and maximize the sum of the total
number of such grids so that the number of overlapping frames is
increased. However, our frame matching method sometimes fails to
find good matching frames, for example, when the smoke regions in
Ωusr are quite small. We believe that our current approach works
better than using simple density differences but it is not perfect;
the method is heuristically derived and there might be better solu-
tions. We need further investigation to find the best solution to this
problem.

6 CONCLUSIONS
We have proposed a method for combining existing fluid anima-
tions while considering the physical laws of the fluid. Our method
smoothly combines multiple flows by solving a minimization prob-
lem. For the interpolated flow, our framework can take into account
the inviscid, incompressible Navier-Stokes equations. Using our
method, natural and plausible flows can be efficiently and easily
created by combining existing flow data.

For futurework, we are planning to extend ourmethod to combine
velocity fields with large differences, as described in Sec. 5. This
might be achieved by partially deforming the velocity fields. We
are also planning to extend our method to other types of fluid
simulations such as liquid and fire simulations. In addition, we will
reduce the computation and storage costs by extending our method
to adaptive grids.
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APPENDIX

Derivation of Eq. (6), (9) from Eq. (7), (8).
Let E = | |∇ × u| |2 + (∇ · u)2. Substituting u + δu into E instead of u,
we put E to be E + δE;

δE = | |∇ × (u + δu)| |2 + (∇ · (u + δu))2 − E
= | |∇ × u + ∇ × δu| |2 + (∇ · u + ∇ · δu)2 − E
= 2⟨∇ × δu,∇ × u⟩ + 2(∇ · δu)(∇ · u)
+| |∇ × δu| |2 + (∇ · δu)2.

Then, we use the following formulas of vector calculus;

⟨∇ × δu,∇ × u⟩ − ⟨δu,∇ × (∇ × u)⟩ = ∇ · (δu × (∇ × u)),
(∇ · δu)(∇ · u) + ⟨δu,∇(∇ · u)⟩ = ∇ · (δu(∇ · u)).

Since δu is sufficiently small, we interpret divergent terms (right
hand side) in both above equations equal 0 from the Gauss diver-
gence theorem. Then, δE can be rewritten as

δE = 2⟨δu,∇ × (∇ × u)⟩ − 2⟨δu,∇(∇ · u)⟩
+| |∇ × δu| |2 + (∇ · δu)2

= −2⟨δu,−∇ × (∇ × u) + ∇(∇ · u)⟩
+| |∇ × δu| |2 + (∇ · δu)2.

Hence, the first variation of E with respect to δu is

− ∇ × (∇ × u) + ∇(∇ · u).
From the above proof, the derivative of Eq. (7) with respect to uΩ(i)
so that Eq. (7) is minimized is expressed by Eq. (6). Similarly, when
we put ∇ × u to be ∇ × u − ∇ × û, we have the derivative of Eq. (8)
equals Eq. (9).
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