
A Combining Method of Fluid Animations by Interpolating Flow Fields

Syuhei Sato∗

UEI Research
Yoshinori Dobashi

Hokkaido University / UEI Research
Tomoyuki Nishita

UEI Research / Hiroshima Shudo University

Abstract

The computational cost for creating realistic fluid animations by
simulation is generally very expensive. In digital production en-
vironment, existing precomputed fluid animations are often reused
for different scenes in order to reduce the cost for creating scenes
containing fluids. However, applying same animations to different
scenes produces unacceptable results, so the animation needs to be
edited. In order to do this, we develop a method for synthesizing
desired flow fields by combining existing flow fields. Our system
allows the user to place existing flow fields at arbitrary positions,
and combine them by interpolating the regions between these flow
fields, to synthesize a new flow field. The interpolation of the flow
fields is realized by solving a minimization problem. Our mini-
mization problem consists of two energy functions for smoothly in-
terpolating the velocities and satisfying the incompressibility. Our
method can create the desired incompressible flow fields by reusing
existing flow fields.

Keywords: fluid simulation, reusing existing fluid animations, in-
compressibility, interpolating velocity fields

Concepts: •Computing methodologies→ Animation; Physical
simulation;

1 Introduction

Physically-based simulation of fluids has become an important ele-
ment in many computer graphics applications, such as movies and
computer games. However, one problem is its expensive computa-
tional cost, which makes it difficult to create the desired fluid ani-
mation since the simulation must be repeated multiple times to find
an appropriate set of parameters that can produce a satisfactory re-
sult. We can avoid the costly simulation by reusing precomputed,
existing fluid animations. However, the same simulation results
cannot be used for different scenarios; we need to modify/edit the
existing fluid animations so that they fit the different scenes, such
as when adding obstacles and changing the flow directions. How-
ever, such drastic modifications require re-simulation of the fluids,
which is time-consuming.

In this paper, we develop a method for synthesizing new flow fields
by combining existing flow fields. Our method provides a tool for
seamless editing and cloning of selected regions of existing flows.
The user can crop arbitrary regions from the existing flow fields and
paste them at arbitrary positions in the synthesis region where the
new flow field is to be created. The multiple flow fields cropped
from the existing flow fields are then seamlessly combined by in-
terpolating the flows at the boundaries of the cropped regions. For
this interpolation, we solve a minimization problem at the boundary
regions. We minimize an energy function consisting of two terms;
one is a sum of gradients of velocities across the boundary regions
and the other is defined as L2 norm of a divergence of velocities.
The second term is used for satisfying the incompressibility of the
flow, which is an important physical property of fluids.

We focus on grid-based fluid simulations. Our method can com-
bine existing flow fields, so new desired flow fields can be created
efficiently and easily.

∗e-mail:syuhei sato@dwango.co.jp

2 Related Work

Stam developed an unconditionally stable solver [Stam 1999] for
the Navier-Stokes equations. Since this method was introduced,
many methods have been proposed for simulating various fluid phe-
nomena [Bridson 2008; Fedkiw et al. 2001; Feldman et al. 2003;
Foster and Fedkiw 2001; Miyazaki et al. 2002; Nguyen et al. 2002;
Yngve et al. 2000]. Although these methods can produce realistic
fluid animation, the user must repeatedly execute fluid simulations
with different parameter settings until the desired fluid animation is
created.

Several procedural methods have been proposed for efficiently cre-
ating fluid-like animations. For example, some methods for editing
fire animations were presented that create the desired fire anima-
tions at low cost [Fuller et al. 2007; Lamorlette and Foster 2002].
Pighin et al. [Pighin et al. 2004] proposed a method for editing sim-
ulated flow fields by introducing advected radial basis functions.
Since these methods do not take into account physical laws such
as the incompressibility of the fluid, unrealistic results can be pro-
duced.

To efficiently simulate fluids, model reduction methods [Treuille
et al. 2006; Wicke et al. 2009] were developed. These methods
prepare many sets of velocity fields obtained by simulating fluids
with various parameter settings and initial conditions. Then basis
functions are generated by applying principal component analysis
(PCA) to the precomputed set of velocity fields. At the cost of ex-
pensive precomputation, the flow field can be updated efficiently by
computing the Navier-Stokes equations in the basis space. Kim and
Delaney [Kim and Delaney 2013] presented a method for efficient
re-simulation with different parameter settings. This method gen-
erates basis functions by applying PCA to a single set of velocity
fields, and then fluids with different parameter settings can be effi-
ciently re-simulated in the basis space. In these methods, the flow
fields that can be created are limited to those represented by a linear
combination of the basis functions. Furthermore, the memory con-
sumption in applying PCA can be a bottleneck for a large database.
Bojsen-Hansen and Wojtan [Bojsen-Hansen and Wojtan 2016] in-
troduced non-reflecting boundary conditions with inflow/outflow
constraints for fluid re-simulation. By using this method, the user
can locally re-simulate a fluid animation as a post-process. How-
ever, as shown in the results of [Bojsen-Hansen and Wojtan 2016],
only rectangular domains are used for the re-simulation. In contrast,
since the user can specify an arbitrary shape for synthesis regions,
our method can edit fluid animations with a higher degree of free-
dom. In addition, fluid simulations do not have to be executed to
create new flow fields, because we use existing precomputed fluid
animations.

Several methods have been proposed for efficiently creating new
flow fields by reusing existing fluid animations. Raveendran et al.
developed a method for smoothly blending existing fluid anima-
tions [Raveendran et al. 2014]. This method semi-automatically
matches two existing liquid animations to plausibly interpolate the
input animations. By using stream functions and vector potentials,
Sato et al. showed that 2D and 3D flow fields could be deformed
while guaranteeing the incompressibility of the flow [Sato et al.
2014; Sato et al. 2015]. Using these methods, the desired flow fields
can be created efficiently by reusing existing flow fields. However,
drastic changes in flow fields are difficult to achieve using these

input velocity fields

source field u1

user specified region

target field u2 target field u2source field u1 resultant velocity field ucom

p
com

Ω1

Ω1

Ω2

∂Ω1

∂Ω2

margin Ω interpolated velocities uΩ

Figure 1: Overview of our method. For the sake of visual clarity, each 3D velocity field is illustrated as a 2D velocity field. pcom is a user
specified position where Ω1 is placed in target field, ∂Ω1 and ∂Ω2 are boundaries of Ω.

deformation methods. In contrast, our method achieves relatively
greater changes in flow by partially combining multiple flow fields.

3 Our Method

Fig. 1 shows an overview of our method. First, input velocity fields
u(t) are prepared by solving incompressible Navier-Stokes equa-
tions, where t = 0, 1, · · · , T −1 represents the frame count, and T
is the number of frames of the input velocity field. For the sake of
clarity, we describe our method by using two input velocity fields
u1(t) and u2(t) (see Fig. 1). These two flow fields are combined
in the following way. Let us call the two fields, u1(t) and u2(t),
the source and target fields, respectively. In the source field, the
user specifies an arbitrary region Ω1 (the region surrounded by the
blue curve in Fig. 1). Then, the user specifies a position pcom in
the target field (the red point in Fig. 1), and the flow in Ω1 in the
source field is copied into the target field so that the center of Ω1

coincides with pcom. A margin, Ω, with a predefined width is au-
tomatically created around the boundary of Ω1 as shown in Fig. 1.
The region in the target-field without Ω1 and Ω is denoted by Ω2

(Fig. 1), and the boundaries between Ω and Ω1, Ω and Ω2 are de-
noted by ∂Ω1, ∂Ω2 (blue and red curves Fig. 1), respectively. In
order to generate a smooth and continuous flow field, the veloci-
ties uΩ(t) in the region Ω are calculated by minimizing an energy
function EΩ(t). Our energy function EΩ(t) comprises two ele-
ments: one for smoothly interpolating the velocities and the other
for satisfying the incompressibility. The definition of the energy
function is given in Sec. 4. Finally, we obtain the resultant velocity
field ucom(t): ucom(t) = uΩ(t) at Ω, ucom(t) = u1(t) at Ω1,
and ucom(t) = u2(t) at Ω2. To visualize the flow, smoke densities
are advected by the resultant velocity field ucom(t).

4 Definition of Energy Functions

In this section, we define the energy function used in the minimiza-
tion problem. Our energy function EΩ(t) consists of two elements,
Egrd(t) and Ediv(t). Egrd(t) is an energy function for smoothly
interpolating the velocities in the margin Ω, and is given by the
following equation.

Egrd(t) =
∑
Ω

||∇uΩ(t)||2, (1)

where ∇ is the gradient operator. We introduce Eq.(1), so that we
can compute the velocities uΩ(t) such that the gradients of these
are as small as possible. This term is used to remove discontinuities
in the resulting flow. The incompressibility of the flow is taken
into account by the second term, Ediv(t), which is defined as the
following equation.

Ediv(t) =
∑
Ω

||∇ · uΩ(t)||2, (2)

where ∇· is the divergence operator. Then, our energy function
EΩ(t) is defined as the sum of the above two energy functions.

EΩ(t) = Egrd(t) + αEdiv(t)

=
∑
Ω

{||∇uΩ(t)||2 + α||∇ · uΩ(t)||2}, (3)

where α is a coefficient for adjusting the influence of Ediv(t). To
obtain uΩ(t), we solve the following minimization problem

arg min
uΩ(t)

∑
Ω

{||∇uΩ(t)||2 + α||∇ · uΩ(t)||2}, (4)

and we set the boundary conditions uΩ(t) = u1(t) at ∂Ω1 and
uΩ(t) = u2(t) at ∂Ω2. By taking the derivative of Eq.(4) with
respect to uΩ, we obtain

∇2uΩ(t) + α∇(∇ · uΩ(t)) = 0, (5)

where ∇2 is the Laplace operator. We obtain a numerical solu-
tion to Eq.(5), we used the biconjugate gradient stabilized method
(BiCGSTAB).

5 Results

Figs. 2 - 6 show results created using our method. We used a desk-
top PC with an Intel Core i7-5820K CPU, 32GB memory to com-
pute all the examples. Orange circles and spheres indicate obstacles
in Figs. 2 and 4. The videos corresponding to these examples can
be found in the supplementary material.

Figs. 2 and 3 show comparisons of results created by using our
method and those created by importing flow, in 2D flow fields.
Fig. 2 (a) and (b) are the input flow fields, (a) is rising smoke with
a circular shaped obstacle, and (b) is rising smoke directed to move
upward. The number of grid points is 192 × 256 for each flow
field and the blue and red curves indicate the user specified region
and the copied region, respectively, same as Fig. 1. Fig. 2 (c) is
generated by importing the velocity fields from (a) to (b), and (d)
is created by using our method. In Fig. 2 (c), since incompress-
ibility is not guaranteed near the boundary of the synthesis region,
the smoke densities disappear in the region within the yellow dot-
ted curve. To confirm that the incompressibility is not guaranteed,
we show the divergence of (c) in (e). The red and blue parts in the
divergence fields indicate maximum and minimum value, respec-
tively. As shown in Fig. 2 (e), the divergence around the boundary
of the synthesis region is large. In contrast, for our result in Fig. 2
(d) the incompressibility is guaranteed, and, furthermore, our result
can combine multiple flow fields without discontinuities. In Fig. 3,
a combined flow is created by tiling the four input flow fields shown
in Fig. 3 (a). The number of grid points is 256 × 256 for each in-
put flow field and 512× 512 for the combined flow fields. For this

(b) target field

(a) source field (c) importing only

(d) our result (f) divergence of (d)

(e) divergence of (c)

Figure 2: Comparison of our method and a flow created by import-
ing input flows. (a) and (b) are input flow fields.

(a) input flow fields (b) inporting only (c) our result

1

3

2

4

Figure 3: Comparison of our method and a flow created by import-
ing input flows.

result, we interpolate the cross shaped region (marked in green in
Fig. 3 (a)). Fig. 3 (b) is generated by copying the velocity fields,
and (c) is synthesized by using our method. In (b), there are dis-
continuities within the yellow dotted curve. In contrast, our method
smoothly combines the four input flow fields as shown in Fig. 3 (c).
These results show that our method is effective for combining mul-
tiple flow fields. The computation times for our method are 0.2 and
0.7 seconds per frame for Fig. 2 (d) and Fig. 3 (c), respectively. On
the other hand, the computation times for fluid simulation with the
same number of grid points are 1.1 and 18.0 seconds per frame for
Fig. 2 and Fig. 3, respectively. Since Poisson’s equation is solved
within a small fraction of the total area only, the desired flow can be
computed faster using our method than by using fluid simulation.

Figs. 4 - 6 show results created by applying our method to 3D flow
fields. Fig. 4 (a) is rising smoke with a spherical shaped obstacle,
and (b) is rising smoke directed to move upward. Fig. 4 (c) is cre-
ated by combining the two datasets (a) and (b). For 3D flow fields,
synthesis regions are specified by a 2D curve, and the region for the
depth direction is same with the size for the simulation space. The
blue and red curves indicate the user specified region and the copied
region, respectively, same as Fig. 1. The number of grid points is
256 × 256 × 256 for each flow field. The computation time using

(a) source field (b) target field (c) our result

Figure 4: Experimental result in 3D flow fields.

(a) input flow field (b) synthesis regions (c) our result

Figure 5: Partially extending a smoke animation by using our
method.

our method is about 10.0 times faster than for fluid simulation.

In Fig. 5, we create a flow field extended from a single input flow
field. Fig. 5 (a) is the input flow field. Fig. 5 (c) is our result created
by extending the lower half of (a) as shown in Fig. 5 (b). In other
words, we interpolate the white regions shown in Fig. 5 (b). The
number of grid points is 256 × 256 × 256 for the input flow and
256×256×320 for the extended flow field. The computation time
using our method is about 28.0 times faster than for fluid simulation
with 256×256×320 grid points. Since the lower half is extended,
using our method the flow field can be extended while preserving
the shape of the smoke in the upper half of (a).

In Fig. 6, we create a large-scale dust storm animation from a single
flow field simulated in a small-scale area. Fig. 6 (a) shows the input
flow field. Fig. 6 (c) shows the result created by placing the input
flow at multiple positions and interpolating the green regions as
shown in Fig. 6 (b). The number of grid points is 256 × 64 × 128
for the input flow field and 256× 456× 128 for the combined flow
field. The computation time using our method is about 6.5 times
faster than for fluid simulation with 256 × 456 × 128 grid points.
As the result shows, our method can be used to efficiently create a
large-scale flow field by combining multiple small-scale flow fields.

6 Conclusion and Limitations

We have proposed a method for combining existing fluid flow fields
while preserving the incompressibility. Our method combines mul-
tiple flow fields by solving minimization problem. In addition, in-
compressible flow fields can be obtained by minimizing the diver-
gence of the velocity field. By using our method, new desired flow
fields can be efficiently and easily created by combining existing
flow fields.

One of the limitations of our method is that the flow fields gener-
ated might have discontinuities at the boundaries of the synthesis
regions if the input flows have large differences. To address this
problem, we plan to introduce a mechanism to automatically detect

(a) input flow field (b) synthesis regions (c) our result

Figure 6: Large-scale dust storm animation created by combining flow fields simulated in a small-scale area.

regions with smaller error by solving a minimization problem using
the user specified regions for the initial conditions. In addition, in
the result of dust storm (Fig. 6), pattern of repeat of the input flow is
confirmed because a single flow field is used as the input. We plan
to develop a method for reducing such pattern in combined flow
field.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number
JP15H05924.

References

BOJSEN-HANSEN, M., AND WOJTAN, C. 2016. Generalized non-
reflecting boundaries for fluid re-simulation. ACM Transactions
on Graphics 35, 4, Article 96.

BRIDSON, R. 2008. Fluid Simulation for Computer Graphics. AK
Peters.

FEDKIW, R., STAM, J., AND JANSEN, H. W. 2001. Visual sim-
ulation of smoke. In Proceedings of ACM SIGGRAPH 2001,
15–22.

FELDMAN, B. E., O’BRIEN, J. F., AND ARIKAN, O. 2003. An-
imating suspended particle explosions. In Proceedings of ACM
SIGGRAPH 2003, 708–715.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In Proceedings of ACM SIGGRAPH 2001, 23–30.

FULLER, A. R., KRISHNAN, H., MAHROUS, K., HAMANN, B.,
AND JOY, K. I. 2007. Real-time procedural volumetric fire. In
Proceeding of the 2007 symposium on Interactive 3D graphics
and games, 175–180.

KIM, T., AND DELANEY, J. 2013. Subspace fluid re-simulation.
ACM Transactions on Graphics 32, 4, Article 62.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling
of flames for a production environment. ACM Transactions on
Graphics 21, 3, 729–735.

MIYAZAKI, R., DOBASHI, Y., AND NISHITA, T. 2002. Simulation
of cumuliform clouds based on computational fluid dynamics.
In Proceedings of EUROGRAPHICS 2002 Short Presentations,
405–410.

NGUYEN, D. Q., FEDKIW, R., AND JENSEN, H. W. 2002. Phys-
ically based modeling and animation of fire. ACM Transactions
on Graphics 21, 3, 721–728.

PIGHIN, F., COHEN, J., AND SHAH, M. 2004. Modeling and
editing flows using advected radial basis functions. In Proceed-
ings of the 2004 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 223–232.

RAVEENDRAN, K., WOJTAN, C., THUEREY, N., AND TURK, G.
2014. Blending liquids. ACM Transactions on Graphics 33, 4,
Article 137.

SATO, S., DOBASHI, Y., IWASAKI, K., YAMAMOTO, T., AND
NISHITA, T. 2014. Deformation of 2D flow fields using stream
functions. In Proceedings of SIGGRAPH Asia 2014 Technical
Briefs, Article 4.

SATO, S., DOBASHI, Y., YUE, Y., IWASAKI, K., AND NISHITA,
T. 2015. Incompressibility-preserving deformation for fluid
flows using vector potentials. The Visual Computer 31, 6, 959–
965.

STAM, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH
1999, Annual Conference Series, 121–128.

TREUILLE, A., LEWIS, A., AND POPOVIC, Z. 2006. Model re-
duction for real-time fluids. ACM Transactions on Graphics 25,
3, 826–834.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. ACM Transaction on Graphics 28, 3,
Article 39.

YNGVE, G. D., O’BRIEN, J. F., AND HODGINS, J. K. 2000. An-
imating explosions. In Proceedings of ACM SIGGRAPH 2000,
29–36.

