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Abstract

We propose a simple and efficient data-driven method for synthe-
sizing high-resolution 3D animations of fire from low-resolution
fluid simulations. Our method is based on grid-based fluid sim-
ulation. The key concept behind our method is to use a precom-
puted database of high-resolution velocity fields in order to produce
small-scale details that are lost in low-resolution velocity fields.
The database is constructed by 2D fluid simulation and no high-
resolution 3D fluid simulations need to be executed. At run-time, a
low-resolution 3D fluid simulation is executed and the velocity field
calculated at each time step is approximated by a linear combina-
tion of the precomputed velocity fields. This approximation process
produces realistic small-scale detail. Using our method, users can
efficiently design animations of fire with low-resolution simulation
and our method converts them into high-resolution animations. We
examine the ability of our method by applying it to simulations of
fire under various situations including moving obstacles.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.6 [Computer Graphics]:
Methodology and Techniques;
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1 Introduction

Visual simulation of fluids has become one of the most im-
portant research topics in computer graphics. Many methods
have been proposed for simulating smoke, water, fire, and so on
[Bridson 2008]. Most of the recent methods are based on compu-
tational fluid dynamics to create realistic animations and these are
used in many applications such as movies and computer games.
However, one of the problems in simulating fluids using computa-
tional fluid dynamics is the expensive computational cost. In enter-
tainment applications such as movies, creating the motion of fluids
is often requested. Animators usually try to create the desired mo-
tion by repeating fluid simulations with different parameter settings
until a satisfactory result is obtained. However, this is an extremely
tedious and time-consuming task incurring an expensive computa-
tional cost.

Many methods have been proposed to address the problem men-
tioned above. A straightforward approach is to accelerate the com-
putation [Crane et al. 2007; Lentine et al. 2010]. This approach
would be the ultimate solution if real-time performance could be
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Figure 1: Simulated low-resolution fire (left, 32 × 32 × 64 grid
points) and a high-resolution fire synthesized using our method
(right, 128× 128× 256 grid points). The computation time of the
simulation (left) was 0.05 sec for each time step and the computa-
tion time for the synthesis of the fire on the right took an additional
0.34 sec.

achieved for fluid simulations of arbitrary resolution. However,
this has not yet been achieved. Another approach is to control the
fluid simulation to create the desired motion [Treuille et al. 2003;
Fattal and Lischinski 2004]. This approach is also promising but a
trial-and-error process is still required to tune the control parame-
ters. Several recent research projects have focused on a different
approach: using low-resolution fluid simulation as a guide to pro-
duce high-resolution results. In this approach, animators design
the desired animation of the fluid efficiently using low-resolution
fluid simulation. The low-resolution animations are subsequently
converted into high-resolution animations. Some methods con-
trol the high-resolution simulation using low-resolution simulation
results [Nielsen and Christensen 2010; Yuan et al. 2011]. How-
ever, in these methods, costly high-resolution simulations need
to be executed to verify the quality of the final result. Methods
combining noise functions with fluid simulation [Kim et al. 2008;
Schechter and Bridson 2008; Pfaff et al. 2010], on the other hand,
can produce detailed animations without running high-resolution
simulations. However, results obtained by these methods are less
realistic than those obtained by physical simulations. Our method
also produces high-resolution results without running the high-
resolution simulations but uses precomputed velocity fields ob-
tained by fluid simulation, resulting in enhanced realism compared
to noise-based methods.

Our method is based on grid-based fluid simulation and is suit-
able for synthesizing animations of gaseous phenomena such as
fire. Our motivation comes from the observation that we often
see similar flow patterns at different times and positions on dif-
ferent scales during animations of gaseous objects. This may be
the reason why the procedural approach, such as fractals, can pro-
duce realistic-looking animations. Our method generates such flow
patterns by 2D fluid simulation and uses them to synthesize a high-
resolution velocity fields from low-resolution velocity fields. The
method consists of two processes. First, in a preprocessing step, a



database of high-resolution velocity fields is constructed by running
a fluid simulation. An important feature of the method is that the
precomputed database is constructed by 2D fluid simulation. Next,
at run-time, a high-resolution velocity field is synthesized from the
low-resolution velocity field by approximating the low-resolution
velocity field with a linear combination of the precomputed velocity
fields. The approximation is done in such a way that the downsam-
pled version of the resulting high-resolution velocity field becomes
identical to the low-resolution velocity field.

Fig. 1 shows an example of a synthetic fire created using our
method. The image on the left shows the fire obtained from a
low-resolution simulation with 32 × 32 × 64 grid points. The
high-resolution fire on the right is created by converting the low-
resolution fire to a four times higher resolution, that is, 128×128×
256 grid points. The low-resolution simulation takes 0.05 sec for
each time step and our method requires only an additional 0.34 sec
to produce the high-resolution results.

The method has three features:

• The database is created by 2D fluid simulation. We use 2D ve-
locity fields to add small-scale detail to the 3D low-resolution
velocity field. This results in a significant reduction in compu-
tational costs for both precomputation and the run-time pro-
cess.

• Using our synthesis method recursively, animations can ide-
ally be synthesized with arbitrarily high resolution.

• The method is highly suitable for parallel computation. The
low-resolution velocity field is subdivided into small blocks
and the high-resolution velocity field can be synthesized in
parallel for each block.

The rest of this paper is organized in the following way. In Section
2, we briefly discuss some related work to clarify the advantages
of our method. Next, in Section 3, the fluid solver used in this
paper is briefly described. Section 4 describes the details of our
method. Some experimental results are shown in Section 5. Section
6 discusses the limitations of our method. Finally, in Section 7, we
give our concludes to this paper.

2 Related Work

Stam [1999] addressed the stability problem in solving the Navier-
Stokes equations and made fluid simulation practical. Fol-
lowing this work, many methods were proposed for simulat-
ing various fluid phenomena. Readers can find details of
those methods in [Bridson 2008]. One of the problems with
fluid simulation, however, is the expensive computational cost.
Therefore, many methods that reduce the cost have been pro-
posed [Losasso et al. 2004; Feldman et al. 2005; Crane et al. 2007;
Batty et al. 2007; Dobashi et al. 2008; Lentine et al. 2010]. How-
ever, high-resolution simulation is still costly and tuning simulation
parameters with repeated simulations is time-consuming. Some
researchers use 2D fluid simulations for efficiently creating high-
resolution animations of explosions [Rasmussen et al. 2003] or fire
[Horvath and Geiger 2009]. These methods can reduce the compu-
tational cost significantly compared to high-resolution 3D fluid sim-
ulations. However, they are still time-consuming since they need
to simulate high-resolution 2D fluids multiple times. In contrast
to these methods, our method precomputes a single set of high-
resolution velocity fields by running a 2D fluid simulation only
once and synthesizes the high-resolution 3D velocity fields from
the low-resolution 3D fluid simulation.

Recently, several methods have been developed to create high-
resolution results from low-resolution simulation. Nielson et

al. [Nielsen et al. 2009; Nielsen and Christensen 2010] proposed
methods for simulating high-resolution fluids that resemble a refer-
ence low-resolution simulation result. Yuan et al. [2011] proposed
a method that regulates high-resolution fluid simulation with flow
patterns extracted from low-resolution fluid simulations. Although
these methods can generate high-resolution results with the de-
sired fluid behavior, costly high-resolution simulations are required
to produce the final animations. By combining low-resolution
fluid simulation with turbulent noise functions, high-resolution re-
sults can be synthesized without conducting any high-resolution
fluid simulations [Kim et al. 2008; Schechter and Bridson 2008;
Pfaff et al. 2010]. These methods can add small scale details but
the results are not very realistic when compared to the results ob-
tained by fluid simulations.

Our method lies somewhere between the noise-based approach and
the high-resolution simulation approach. It uses high-resolution 2D
simulation to create a database of velocity fields and uses these to
procedurally generate high-resolution results from low-resolution
simulations. Treuille et al. [2006] and Wicke et al. [2009] also pro-
posed data-driven methods for accelerating fluid simulations. How-
ever, our purpose is to convert low-resolution simulations into high-
resolution results, not to accelerate the simulation itself. Further-
more, their methods require extremely long precomputation times
ranging from twenty to thirty hours since their database is con-
structed by 3D fluid simulations. In our method, the precompu-
tation time is less than one hour since 2D fluid simulations are used
to construct the database.

3 Fluid Solver

In this paper, for simulating motions of fire, we assume the fluid
to be inviscid and incompressible. The motion of the gases can be
calculated by solving the following Navier-Stokes equations.

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p+ f , (1)

∇ · u = 0, (2)

where u is the velocity field of the fluid, ρ is the density of the
fluid, p is the fluid pressure, and f represents any external force
such as gravity or wind. We use the GPU-accelerated method
[Crane et al. 2007] to solve the above equations numerically. We
also use the vorticity confinement method [Fedkiw et al. 2001] in
order to add detailed turbulent motion.

For the simulation of fire, we take into account the temperature and
the buoyancy force. These are calculated by the method described
in [Crane et al. 2007]. Our method is applied only to the veloc-
ity field u. Other physical quantities for the high-resolution grid
are obtained by advecting them along with the synthesized high-
resolution velocity field.

4 The Method

Fig. 2 shows an overview of our method, which comprises two pro-
cesses: the prerocess and the run-time process. In the preprocess, a
high-resolution 2D velocity field database is constructed. Next, in
the run-time process, a low-resolution 3D velocity field is obtained
by 3D fluid simulation and converted to a high-resolution velocity
field using the database. After that, the scalar quantities are ad-
vected according to the high-resolution velocity field. In order to
clarify the explanation, we assume that 2D simulations are done in
uv space and 3D simulations are in xyz space. Details of these
processes are described in the following subsections.
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Figure 2: Overview of our method.

4.1 Database Construction

The database is constructed by running a 2D fluid simulation. Dur-
ing the simulation, our method temporarily stores the velocity field
at each time step. After the fluid simulation has finished, each ve-
locity field is subdivided into small blocks. We assume that each
block is a square and the number of grid points of each block is
nb × nb. Then, our method applies principal component analysis
and extracts the principal components of the block velocities. The
number of principal components to be extracted is specified by the
user but we found that thirty two components were sufficient for the
examples shown in our paper. We call the principal components of
the block velocity field principal velocity fields, or PVFs for short.
The PVFs are stored in the database. In the following, the PVFs
are denoted by bi (i = 0, · · · ,m − 1), where m is the number of
principal components.

The resolution of the 2D simulation should be the same as that of
the high-resolution velocity field we want to generate. The simula-
tion parameters should be chosen so that the desired turbulent de-
tails are captured. We cannot synthesize detailed turbulent motion
in the subsequent 3D simulation if such turbulence is not included
in the 2D simulation. However, we do not have to take into account
any obstacles in the data construction process.

4.2 Synthesizing a High-resolution 3D Velocity Field

At run-time, a low-resolution 3D fluid simulation is executed. At
each time step of the simulation, the 3D velocity field is converted
into a high-resolution velocity field by our converter using the PVFs
stored in the database. Let us denote the input 3D velocity field by
Vin(nx, ny, nz) where nx×ny ×nz is the number of grid points.
Our purpose is to create a 3D velocity field Vout(dnx, dny, dnz)
where the resolution is d times higher. In our method, each slice of
Vout is separately converted into a high-resolution velocity field.
Let us consider the slice indicated by the large red rectangle in Fig.
2. This slice is further subdivided into small blocks indicated by
the small red rectangle in the figure. The blocks overlap in order to
reduce the discontinuity between them. In our current implementa-
tion, half of each block overlaps with its neighboring blocks. The
high-resolution velocity field is created on a block basis and the ve-
locities in the overlapping regions are linearly interpolated. Let us
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Figure 3: Details of our converter.

denote the velocity field in the red block by vh. A low-resolution
velocity field vl corresponding to vh (indicated by the blue rectan-
gle) is generated by linear interpolation of the input velocity field.
Our converter synthesizes vh from vl.

The details of the converter are illustrated in Fig. 3. First, our
method downsamples PVFs to the resolution of the input velocity
field; then, it approximates the input velocity vl by a weighted sum
of the downsampled PVFs. The approximation is done in a least
squares manner as described in the next paragraph. The weights
used for the approximation are then applied to the original PVFs.
The output velocity vh is calculated by the weighted sum of the
PVFs. However, the dimensions of the input velocity field (3D) are
different from those of the PVFs in the database (2D). Therefore,
we apply the above process three times for each of the xyz compo-
nents of the input velocity field. The horizontal components in 2D
(i.e., u component of PVFs) are used for the horizontal components
in the input 3D velocity fields (i.e., the x and y components), and
the vertical components in 2D (v) are used for the vertical compo-
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Figure 4: Comparison of synthetic fire. (a) simulated low-resolution fire, (b) upsampled fire by linear interpolation, (c) high-resolution fire
synthesized using our method, (d) high-resolution fire synthesized using our method with enhanced detailed motion, (e) high-resolution fire
with wavelet turbulence.

nents (z) in 3D.

Let us denote the u or v component of ith PVF by bi,∗ (∗ = u, v).
Similarly the x, y or z components of the low-resolution 3D ve-
locity field are denoted by vl,⋆ (⋆ = x, y, z). Our converter ap-
proximates vl,⋆ with bi,∗ by solving the following minimization
problems.

min
wi,x

∥vl,x −
m−1∑
i=0

wi,x(b
↓
i,x)∥

2, (3)

min
wi,y

∥vl,y −
m−1∑
i=0

wi,y(b
↓
i,x)∥

2, (4)

min
wi,z

∥vl,z −
m−1∑
i=0

wi,z(b
↓
i,y)∥

2, (5)

where b↓
i,∗ indicates the downsampled PVF and m is the number of

PVFs. Each of the above minimization problems results in a matrix
equation. In the following, we refer only to the x component (i.e.,
Eq. 3). Other components are computed in a similar way.

Solving Eq. 3 results in the following matrix equation.

Axwx = cx, (6)

where Ax is a m×m matrix, wx and cx are m dimensional column
vectors. The elements of wx are the weight wi,x. (i, j) element of
Ax, aij,x, and ith element of cx, ci,x, are given by:

aij,x = b↓
i,x · b↓

j,x (7)

ci,x = vl,x · b↓
i,x (8)

The weights can then be obtained by multiplying the inverse matrix
of Ax with cx. After computing the weight, the high-resolution
velocity field vh,x for the block is synthesized using the following
equation.

vh,x =

m−1∑
i=0

αiwi,xbi,x. (9)

In the above equation, we introduce a nonnegative control param-
eter αi which is specified by the user at run-time. This parame-
ter allows the user to adjust the degree of detailed motion to be
added. Since we use principal component analysis in the database
construction process, the small-scale turbulent motion tends to be

represented by PVFs of a higher order. By increasing αi for higher
order PVFs, the user can enhance the detailed motion.

As shown in Eq. 7, the coefficient matrix Ax does not depend on
the input velocity field and thus its inverse A−1

x can be precom-
puted. Therefore, the computations involved in the synthesis of the
high-resolution velocity field are a set of matrix and vector opera-
tions. We use GPU to efficiently calculate these operations. Fur-
thermore, the computation of the high-resolution velocity field for
each block is completely independent of other blocks. So, we fur-
ther accelerate the computation by processing each block in parallel
on the GPU.

4.3 Recursive Synthesis

The method proposed in the previous subsections fails when the
resolution ratio is too high. This is because the high-dimensional
space spanned by the principal block velocity fields becomes re-
dundant when they are downsampled. This makes the coefficient
matrix appearing in Eq. 6 singular. Therefore, there is a cer-
tain upper limit to the resolution that can be synthesized by our
method. From our experiments, we found that the ratio should
be less than four in most cases. In order to break through the up-
per limit, we apply our method recursively. That is, the input ve-
locity Vi(nx, ny, nz) is converted to V1(dnx, dny, dnz) by our
synthesizer. Next, V1(dnx, dny, dnz) is converted again to the
V2(d

2nx, d
2ny, d

2nz) velocity field. At each stage of recursion,
we perform a 2D simulation of the desired resolution and recon-
struct the database. By repeating this process, we can create arbi-
trarily high resolution for the velocity fields.

5 Results

We apply our method to simulating fire in the following way. Af-
ter the high-resolution velocity field is synthesized, temperature of
the fire is advected. We prepare a high-resolution grid for storing
the temperature field. At each time step of the low-resolution 3D
simulation, temperature of the source of the fire is added to the
high-resolution grid and advected along with the high-resolution
velocity field. In the following examples, the size of the principal
block velocity field is 32× 32 and the number of principal compo-
nents is 32. Video files for the following examples can be found in
the supplemental material.

First, we simulate fire in order to compare our method with other
different methods. The database is constructed by the 2D simula-
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Figure 5: Effects of wind forces (a) and moving obstacle (b).

tion with 128 × 256 grid points. Figs. 4 (a) through (e) show a
comparison of fire simulated using the different methods. Fig. 4(a)
shows the low-resolution simulation with 32× 32× 64 grid points.
Fig. 4(b) shows fire on a high-resolution grid of 128 × 128 × 256
created by upsampling the velocity field using linear interpolation.
Figs. 4(c) and (d) show high-resolution results synthesized by our
method from Fig. 4(a). In Fig. 4(d), the control parameter αi is
modified to enhance the small-scale turbulence. Fig. 4(e) shows
the result using wavelet turbulence method [Kim et al. 2008]. The
wavelet turbulence function successfully adds small-scale details
but the result looks noisy. When compared to the result using the
wavelet turbulence, our result seems to be more realistic.

Fig. 5 shows simulations of fire taking into account wind forces
and moving obstacles. Although the wind and the obstacles are not
taken into account in the database construction, our method suc-
cessfully synthesizes realistic animations.

Finally, Fig. 6 is created using our method recursively. The high-
resolution fire on a 256×256×512 grid is synthesized by applying
our method three times to a low-resolution fire simulated on a 32
grid.

The examples shown in this section are calculated on a PC with
an Intel Core i7-2600K (CPU) and NVIDIA GeForce GTX 580
(GPU). Both the simulation and the rendering are executed on the
GPU. For the precomputation, 2D fire is simulated on a 128× 256
grid and it took 48 sec to create the database. The low-resolution 3D
simulation on a 32× 32× 64 grid took 0.05 sec for each time step.
The synthesis of the high-resolution animation (128× 128× 256)
took 0.34 sec. The time required for the full high-resolution sim-
ulation was 0.91 sec. Our method is three-times faster on average
than the full high-resolution simulation.

6 Discussion

The high-resolution scalar field, such as for smoke density, some-
times becomes different to that of the low-resolution field. Al-
though our method tries to match the high-resolution velocity field
to the low-resolution velocity field, they are not completely the
same. Therefore, this results in a difference in the distributions of
the scalar quantities between high- and low-resolution. Currently,
we are not considering compensating for this problem. Increas-
ing/decreasing the scalar values artificially to reduce the difference
would be required.

Figure 6: Example of recursive synthesis. This example is cre-
ated by applying our method three times to the low-resolution result
(32× 32× 64) to synthesize fire on 256× 256× 512 grid.

Since our method creates a high-resolution velocity field for each
block independently, the minimum memory requirement is propor-
tional to the number of grid points of the block. The memory re-
quirement for the precomputed database is very small since only 2D
velocity fields are stored. However we need to prepare a set of high-
resolution grids to store the final velocity field and the advected
scalar fields. If we use particles to track the scalar quantities, and
store the velocities at the particle positions, we do not have to pre-
pare these high-resolution grids, as indicated by [Kim et al. 2008].

7 Conclusion

We have proposed a method for synthesizing high-resolution
gaseous animations using low-resolution fluid simulations. Our
method uses a precomputed database of the 2D velocity fields.
The database can be constructed efficiently since a 2D simula-
tion is executed only once. Our method has succeeded in creating
high-resolution animations of fire. We are now planning to extend
our method to the simulation of other phenomena, such as smoke,
clouds, and liquids.
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