
Generating Flow Fields Variations by Modulating Amplitude and Resizing
Simulation Space

Syuhei Sato∗

Hokkaido University
Yoshinori Dobashi

Hokkaido University
JST CREST

Kei Iwasaki
Wakayama University

Hiroyuki Ochiai
Kyushu University

JST CREST

Tsuyoshi Yamamoto
Hokkaido University

(a) (b) (c) (d)

original synthesized results by modulating amplitudes

Figure 1: Modulating amplitudes of a smoke animation by our method. (a) shows the input smoke animation. (b) through (d) show the results
generated by modulating amplitudes of original animations.

Abstract

The visual simulation of fluids has become an important element in
many applications, such as movies and computer games. In these
applications, large-scale fluid scenes, such as fire in a village, are
often simulated by repeatedly rendering multiple small-scale fluid
flows. In these cases, animators are requested to generate many
variations of a small-scale fluid flow. This paper presents a method
to help animators meet such requirements. Our method enables
the user to generate flow field variations from a single simulated
dataset obtained by fluid simulation. The variations are generated
in both the frequency and spatial domains. Fluid velocity fields are
represented using Laplacian eigenfunctions which ensure that the
flow field is always incompressible. In generating the variations in
the frequency domain, we modulate the coefficients (amplitudes) of
the basis functions. To generate variations in the spatial domain, our
system expands or contracts the simulation space, then the flow is
calculated by solving a minimization problem subject to the resized
velocity field. Using our method, the user can easily create various
animations from a single dataset calculated by fluid simulation.

CR Categories: I.3.7 [Computer Graphics]: Animation; I.3.6
[Computer Graphics]: Methodology and Techniques;

Keywords: flow field, variation synthesis, Laplacian eigenfunc-
tions, amplitude modulation, resizing simulation space

∗e-mail:sato@ime.ist.hokudai.ac.jp

1 Introduction

The visual simulation of fluids has become one of the most impor-
tant research topics in computer graphics. Many methods have been
proposed for simulating smoke, water, fire, etc [Stam 1999; Fed-
kiw et al. 2001; Nguyen et al. 2002; Feldman et al. 2003; Bridson
2008]. Most of the recent methods are based on computational fluid
dynamics to create realistic animations and these are used in many
applications such as movies and computer games. However, one of
the problems is the expensive computational cost. In those enter-
tainment applications, similar fluid animations are often required.
Such examples include multiple explosions caused by missile at-
tack, many flowing rivers, multiple houses on fire, and smoke rising
from multiple chimneys. Using the same fluid animation repeated-
ly degrades the realism of a synthetic scene. Therefore, anima-
tors have to create multiple fluid animations with different motions.
This is achieved by repeating the fluid simulation many times with
different parameter settings. However, adjusting the simulation pa-
rameters to create such similar animations is very difficult and huge
computational costs are required. Our research goal is to address
this problem.

Procedural methods can generate similar multiple flows with rela-
tively low computational cost. For example, curve-based methods
for creating various fire animations have been proposed [Lamor-
lette and Foster 2002; Fuller et al. 2007]. These methods generate
user-designed fire animations by deforming a curve representing
the route of the fire. Some researchers have developed procedural
methods for modeling flow using turbulent noise functions [Patel
and Taylor 2005; Bridson et al. 2007]. With these methods, anima-
tors can easily generate turbulent motion and multiple animations
with similar motion can be created at low cost. However, these pro-
cedural methods do not use fluid simulation to generate the fluid
flow, making the animations less realistic than those created using
physically-based simulation.

To address this problem, we propose a method for generating vari-
ous different fluid animations from a single simulated dataset. Our
method is based on grid-based fluid simulation and is suitable for

Variations in Frequency Domain

Variations in Spatial Domain

original

variations

resize

simulation space vin

vmod

vvar

vdef

mod

expand by

basis functions

modulate

amplitude

minimize

objective function

def

var

Figure 2: Overview of our method.

cut line

cut line

assign velocities

to resized grid

expand or contract

simulation space

set cut line on

input velocity field

contraction length

expansion length

vin v in

Figure 3: Expanding and contracting an input velocity field. Up-
per row shows how to expand the velocity field. Lower row shows
contracting the velocity field.

generating animations of divergence-free flow such as smoke and
fire. Fig. 1 shows examples of the variations created by our method.
The input data produces a simulated flow field of rising smoke from
the bottom-left corner of the simulation space (Fig. 1(a)). Then,
variations in the flow field are generated in both the frequency and
spatial domains, where the user can specify the degree of variation.
Using the resulting flow fields, scalar quantities such as the smoke
density, are advected and the final images are created as shown in
Figs. 1(b) through (d).

The key concept behind our method is to represent the input ve-
locity fields using divergence-free basis functions in order to gen-
erate flow field variations. We use Laplacian eigenfunctions for the
divergence-free basis functions [Witt et al. 2012]. The variations
are generated by randomly modulating the coefficient of each fre-
quency component. Furthermore, our system resizes the simulation
space to generate variations in the spatial domain. The flow field

in the resized space is calculated by solving a minimization prob-
lem. By combining these two methods, various fluid flows can be
generated from a single simulated flow field.

2 The Method

Fig. 2 shows an overview of our method. Two types of process-
es are used to generate the variations. The first one is amplitude
modulation which generates variations of the flow field vmod(tn) in
the frequency domain. This process modulates the coefficients cal-
culated by expanding the input flow field vin(tn) into divergence-
free basis functions. The other one is resizing the simulation space
which generates variations of the flow field vdef(tn) in the spatial
domain. In this process, the size of the simulation space is changed
randomly. Our system then solves a minimization problem subject
to the resized velocity fields, and generates the resultant flow fields.
These processes can be combined and a flow field vvar(tn) is gen-
erated. In the following subsections, we describe the details of the
above two processes.

2.1 Variations in the Frequency Domain

First, we represent the input flow field vin(tn) by a linear combina-
tion of divergence-free basis functions Φi, that is,

vin(tn) =

N−1∑
i=0

wi(tn)Φi, (1)

where N is the number of basis functions, and tn are discrete time
steps (n = 0, 1, · · ·). We use Laplacian eigenfunctions for the
basis functions, Φi [Witt et al. 2012]. This enforces the divergence-
free condition on the flow field. The coefficient wi(tn) for the i-th
basis function is calculated using the following equation.

wi(tn) =

∫
x∈Ω

vin(tn) ·Φidx, (2)

where Ω is the entire domain of the input flow field and · is the dot
product between two vectors.

By modulating wi(tn), we generate variations of the flow fields
vmod(tn) in the frequency domain. Our method modulates wi(tn)
for each frequency component as follows,

vmod(tn) =

N−1∑
i=0

giwi(tn)Φi, (3)

where gi represents the gain with which wi(tn) is modulated. In
our method, gi is generated randomly.

2.2 Variations in the Spatial Domain

In this subsection, we describe a method for generating flow field
variations in the spatial domain. Our method changes the size of the
simulation space by arbitrarily expanding or contracting it. Fig. 3
shows the method used to resize the simulation space. First, a di-
rection and a line that cuts through the input velocity field are de-
termined by random numbers. In Fig. 3, the cut direction is shown
as being horizontal. Next, a distance to expand or contract the sim-
ulation space is determined, again using a random number. In the
expansion process, the simulation space is divided by the cut line
into two domains. These domains are separated and new grid points
are inserted between them (Fig. 3). In the case of contraction, two
cut lines are specified, and then the grid points between the two cut
lines are removed as shown in Fig. 3. After resizing the simulation
space, we prepare a new grid for the resized simulation space. The
number of grid points for the new grid is Ndef. The input velocities
are copied to the new grid according to the resizing information of
the simulation space. The resized velocity field is denoted by v′

in.
Then the coefficients w′(tn) = (w′

0(tn), w
′
1(tn), · · · , w′

N−1(tn))
are calculated by solving the following minimization problem.

arg min
w′(tn)

(E(tn) + α

N−1∑
i=0

w′2
i (tn)), (4)

E(tn) =
∑

x∈Ωin

|v′
in(x, tn)−

N−1∑
i=0

w′
i(tn)Φ

′
i(x)|2,

where Ωin is the domain where the input velocities vin are assigned
on v′

in, and α is a user-specified constant used to adjust the influ-
ence of the second term which is called the regularization term. Φ′

i

is defined on the grid of the resized simulation space. E(tn) mea-
sures the difference between the resized velocities and the resulting
flow field. By solving the above equation, variations of the flow
fields vdef(tn) in the spatial domain are synthesized.

vdef(tn) =

N−1∑
i=0

w′
i(tn)Φ

′
i. (5)

Given the definition of the error function E(tn) in the previous
paragraph, we can now solve the minimization problem given in
Eq. (4). By taking the derivative of Eq. (4) with respect to the coef-
ficient w′

i(tn), we obtain the following matrix equation.

(A+ αI)w′(tn) = c(tn), (6)

where A and I are N × N matrices, and w′(tn) and c(tn) are N
dimensional column vectors. I is the identity matrix. A and c are
related to E. The (i, j)-th element aij of A and the i-th element ci
of c(tn) are given respectively by:

aij =
∑
x∈Ωin

Φ′
i(x) ·Φ′

j(x),

ci =
∑
x∈Ωin

v′
in(x, tn) ·Φ′

i(x),

A is a full matrix as shown by the above equation. In order to com-
pute the dot product between the functions in the above equations,
v′

in and Φ′
i are sampled on the grid of the resized simulation s-

pace. Then, an approximation of the dot product is computed using
the sampled values.

Table 1: Parameter settings and computation times. N is the num-
ber of basis functions, Ndef is the number of grid points for resized
velocity fields. T is the time for updating the flow field, measured
in milliseconds.

N Ndef T
Fig. 1 1024 – 120
Fig. 4(b) 400 64×96 10
Fig. 5(b)(c) 1024 256×320 140
Fig. 5(e)(f) 1024 256×192 80

(a) (b) (c) (d)

Figure 4: Comparison of results using different methods. (a) orig-
inal smoke simulated on a 64 × 64 grid. (b) flow computed our
method. (c) flow warped from (a). (d) flow re-simulated with larger
grid

The coefficient vector w′(tn) is then obtained by solving the ma-
trix equation, Eq. (6). To solve the equation efficiently, we use the
LU decomposition technique [Press et al. 2007]. The LU decom-
position of the matrix (A+ αI) is firstly computed and the weight
vector w′(tn) is efficiently obtained using the decomposed matrix.

3 Results

This section shows some examples created using our method. We
used a desktop PC with an Intel Core i7 2600K CPU, 16GB mem-
ory, and an NVIDIA GeForce GTX 680 GPU to compute all the
examples shown in this section. The parameter settings and timing
information are summarized in Table 1. For examples of Fig. 1 and
Fig. 5, the number of grid points for the input velocity fields was
256 × 256. In Fig. 4, the input velocity field was computed on a
64× 64 grid. The videos corresponding to the following examples
can be found in the supplementary material.

Fig. 1 shows examples of the amplitude modulation. The flow field
is visualized by advecting the smoke density. The source of the
smoke is located at the bottom-left corner of the simulation space.
Fig. 1(a) shows the input smoke animation. Figs. 1(b) through (d)
show the variations created by modulating the amplitudes of the
input animation. (b) is created by increasing the high-frequency
components of the input velocity fields. In (c), the low-frequency
components are reduced. (d) is created by applying the modulations
of both (b) and (c). As shown in these examples, our method can
generate variations in the frequency domain.

Fig. 4 shows a comparison of results generated by using the resizing
approach. Fig. 4(a) shows the original flow field computed on a
64 × 64 grid. A cut line is shown by a red dotted line in Fig. 4(a).
The result by using our method is shown in Fig. 4(b). Our method
successfully created a continuous flow field and the flow is similar
to the original one. Fig. 4(c) shows a flow field created by warping
the original flow field into the resized simulation space. In this
case, the flow is deformed from the original flow field. Fig. 4(d)
shows a result obtained by re-simulating the flow field in the resized

(b)

(e)

cut line

cut line

(a) (c)

(d) (f)

Figure 5: Resizing simulation space of input smoke animation. (a)
and (d) show an input smoke animations. In (b) and (e), a simu-
lation space is resized by our method. (c) and (f) are variations in
both the frequency and spatial domains.

simulation space with the same parameter settings as in Fig. 4(a).
In this case, the smoke does not rise into the higher region unless
we adjust the simulation parameters adequately through a trial-and-
error process.

Fig. 5 shows the results obtained using our method. Fig. 5(a) and
(d) show the original flow field. The cut lines in Figs. 5(a) and (d)
are shown by red dotted lines. In Figs. 5(b) and (c), the simulation
space has been expanded. In Figs. 5(e) and (f), the simulation space
has been contracted. The amount of expansion and contraction is
set to a quarter of the vertical height of the input simulation space.
Furthermore, Figs. 5(c) and (f) are created by additionally apply-
ing amplitude modulation so that the high-frequency components
are enhanced. Using our method continuous flow fields can be suc-
cessfully created. In addition, we can generate variations in both
the frequency and spatial domains.

4 Conclusion

We have proposed a method for synthesizing variations of flow
fields. Our method can generate variations in both the frequency
and spatial domains. The flow fields are represented by Laplacian
eigenfunctions, and the variations in the frequency domain are gen-
erated by modulating the coefficients of the basis functions. In ad-
dition, we can generate variations in the spatial domain by solving a
minimization problem after resizing the velocity field. We demon-
strated the capabilities of our method with a set of examples. As

our future work, we are planning to extend our method to 3D flow
fields.

One of the limitations of our method is that the computational cost
is proportional to the number of basis functions. The level of de-
tail in the flow generated by our method depends on the number
of basis functions used. If the number of basis functions is large,
high computational costs are required to calculate A, c(tn) and to
reconstruct the flow fields using Eqs. (3) and (5). The user can gen-
erate variations of detailed flow fields at the expense of increased
computational and storage costs.

Another limitation is the fact that the flow fields generated by our
method might not conform to the laws of fluid flow, if the degree
of modulation by gi is too large. To address this problem, we cal-
culate the Navier-Stokes equations for velocity fields generated by
our method, then compare two velocity fields. By this comparison,
we can evaluate whether or not the flow generated by our method
follows the laws of fluid flow. In future work, we will make exper-
iments to evaluate these flow fields.

Acknowledgements

We would like to thank UEI Research for their support.

References

BRIDSON, R., HOURIHAN, J., AND NORDENSTAM, M. 2007.
Curl-noise for procedural fluid flow. ACM Transactions on
Graphics 26, 3, Article 46.

BRIDSON, R. 2008. Fluid Simulation for Computer Graphics. AK
Peters.

FEDKIW, R., STAM, J., AND JANSEN, H. W. 2001. Visual sim-
ulation of smoke. In Proceedings of ACM SIGGRAPH 2001,
15–22.

FELDMAN, B. E., O’BRIEN, J. F., AND ARIKAN, O. 2003. An-
imating suspended particle explosions. In Proceedings of ACM
SIGGRAPH 2003, 708–715.

FULLER, A. R., KRISHNAN, H., MAHROUS, K., HAMANN, B.,
AND JOY, K. I. 2007. Real-time procedural volumetric fire. In
Proceeding of the 2007 symposium on Interactive 3D graphics
and games, 175–180.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling
of flames for a production environment. ACM Transactions on
Graphics 21, 3, 729–735.

NGUYEN, D. Q., FEDKIW, R., AND JENSEN, H. W. 2002. Phys-
ically based modeling and animation of fire. ACM Transactions
on Graphics 21, 3, 721–728.

PATEL, M., AND TAYLOR, N. 2005. Simple divergence-free fields
for artistic simulation. Journal of Graphics, GPU, and Game
Tools 10, 4, 49–60.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 2007. Numerical Recipes 3rd Edition: The
Art of Scientific Computing. Cambridge University Press.

STAM, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH
1999, Annual Conference Series, 121–128.

WITT, T. D., LESSIG, C., AND FIUME, E. 2012. Fluid simulation
using laplacian eigenfunctions. ACM Transactions on Graphics
31, 1, Article 10.

