
Stream-Guided Smoke Simulations

SYUHEI SATO, University of Toyama, Prometech CG Research, JAPAN
YOSHINORI DOBASHI, Hokkaido University, Prometech CG Research, JAPAN
THEODORE KIM, Yale University, USA

(a) input (c) frequency-domain

ncutoff = 1/2, cvc = 5.0

(b) ours

a = 0.01, cvc = 5.0

(d) variational guiding

flow = 0.0, fhigh = 0.35, cvc = 5.0

Fig. 1. The procedurally-generated input (a). Figures (b) (c) and (d) respectively show results with our method, the frequency-domain [Forootaninia and Narain
2020], and variational guiding method [Nielsen and Christensen 2010]. The 𝛼 is a control parameter for our guiding method, 𝑐vc is a vorticity confinement
coefficient. 𝜈cutoff is the cutoff frequency of the frequency-domain method. 𝜙low and 𝜙high are the control parameters of the variational method.

High-resolution fluid simulations are computationally expensive, so many
post-processing methods have been proposed to add turbulent details to
low-resolution flows. Guiding methods are one promising approach for
adding naturalistic, detailed motions as a post-process, but can be inefficient.
Thus, we propose a novel, efficient method that formulates fluid guidance
as a minimization problem in stream function space. Input flows are first
converted into stream functions, and a high resolution flow is then computed
via optimization. The resulting problem sizes are much smaller than previous
approaches, resulting in faster computation times. Additionally, our method
does not require an expensive pressure projection, but still preserves mass.
The method is both easy to implement and easy to control, as the user
can control the degree of guiding with a single, intuitive parameter. We
demonstrate the effectiveness of our method across various examples.

CCS Concepts: • Computing methodologies → Animation; Phys-
ical simulation.

Additional Key Words and Phrases: fluid simulation, upsample, guiding
flow, stream function

ACM Reference Format:
Syuhei Sato, Yoshinori Dobashi, and Theodore Kim. 2021. Stream-Guided
Smoke Simulations. ACM Trans. Graph. 40, 4, Article 161 (August 2021),
7 pages. https://doi.org/10.1145/3450626.3459846

1 INTRODUCTION
Fluid simulations are ubiquitous in film and game production, but
remain computationally expensive and tedious to control, requiring
users to time-consumingly and painstakingly tweak many parame-
ters. Many methods have been proposed to accelerate this process,

Authors’ addresses: Syuhei Sato, University of Toyama, Prometech CG Research,
Toyama, JAPAN, ssato@eng.u-toyama.ac.jp; Yoshinori Dobashi, Hokkaido Univer-
sity, Prometech CG Research, Sapporo, JAPAN, doba@ime.ist.hokudai.ac.jp; Theodore
Kim, Yale University, New Haven, USA, kim@cs.yale.edu.

© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3450626.3459846.

including control forces, direct editing, and physics-based post-
processing. In the paper, we present a guide-based post-processing
method, as these approaches generally generate the most naturalis-
tic flows by finding solutions that holistically satisfy natural laws.
However, these guide-based methods [Nielsen and Christensen 2010;
Nielsen et al. 2009] also usually solve large minimization problems,
which can make their computational cost quite large.

We present amore efficientmethod that works on stream functions
(a.k.a. vector potentials in 3D). This significantly reduces the problem
size, and allows the computations to complete much more quickly
than previous methods [Nielsen and Christensen 2010; Nielsen et al.
2009], while still yielding high-quality, high-resolution flows. Our
method converts arbitrary input velocities into stream functions,
that are then used to guide the optimization of a higher-resolution
stream. The final velocity can be retrieved by simply taking the curl,
and the result is guaranteed to be incompressible. Similar to previous
methods, we formulate a minimization problem, but our stream
formulation reduces the complexity of the problem by phrasing it
as the scalar product of the upsampled input stream function and
a simple scaling function. The goal is then to obtain the optimal
scaling field that generates a high-resolution turbulent flow that
is similar to the input flow. The problem complexity is 16 times
smaller than that of previous methods. Our method inherits the
attractive property of optimization-based approaches where results
are achieved faster than brute-force solves, while still maintaining
the incompressibility in the final flow. Fig. 1 shows an example of
our method.
Relative to previous noise-based [Kim et al. 2008; Narain et al.

2008; Schechter and Bridson 2008] or data-driven approaches [Chu
and Thuerey 2017; Sato et al. 2018], our approach produces more
naturalistic results. Compared to very recent frequency-based guid-
ing work [Forootaninia and Narain 2020], our method is robust to
non-physical inputs, and is able to generate convincing results even
when the input velocities were generated procedurally, or hand-
drawn by the user. This makes our method more widely applicable

ACM Trans. Graph., Vol. 40, No. 4, Article 161. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459846
https://doi.org/10.1145/3450626.3459846

161:2 • Sato, Dobashi, and Kim

to artistic flow designs, and not limited to existing low-resolution
physics-based simulations.

2 RELATED WORK
Stam [1999] introduced the first unconditionally stable solver for
the Navier-Stokes equations to computer graphics. Since then, many
methods have been proposed for simulating fluid phenomena, which
are summarized in many excellent texts [Bridson 2015; Kim 2017].
Realistic animations can be produced with these methods, but users
must still run repeated simulations and search for good parameter
settings in order to obtain a desired motion. We discuss previous
approaches to this problem here.
Several control methods have been proposed for creating a de-

sired fluid motion. Fattal and Lischinski [2004] introduced additional
external forces to control smoke simulations, while Thürey et al.
[2006] proposed a detail-preserving control method. This work de-
composes a fluid velocity field intomulti-scale components, and then
only applies control forces to coarse-scale components. Although
these control methods can create desired fluid motions, multiple
costly high-resolution simulations are needed to design an overall
motion.

Many methods have been proposed for enhancing flow detail as
a post-process. Some of them synthesize plausible turbulent motion
for a low-resolution simulation using wavelet noise [Kim et al. 2008]
or curl noise [Narain et al. 2008; Schechter and Bridson 2008]. In re-
cent years, existing high-resolution flow data has been used for detail
enhancement. Chu and Thuerey [2017] used a Convolutional Neural
Network to learn a relation between low- and high-resolution flows.
Sato et al. [2018] introduced style transfer for turbulence, where
details are transferred to low-resolution flows using patch-based
texture synthesis. Although these approaches synthesize plausible
details, the use of noise functions or other data results in flows that
are less realistic than those from direct, high-resolution simulations.
Several guiding methods that work on velocity fields have also

been proposed for enhancing detail. Nielsen et al. [2010; 2009] pro-
posed methods for synthesizing guided high-resolution flows us-
ing an optimization-based approach. This method constrains the
low-frequency components of a high-resolution simulation to fol-
low an input guide field. The degree of guiding is controlled by
a user-specified coefficient. Although this method is useful, the
problem is formulated as a minimization problem that satisfies the
incompressibility condition, which results in a large, asymmetric,
computationally expensive matrix. Gregson et al. [2014] reported
a guided simulation based on an ADMM framework, while Inglis
et al. [2017] also proposed an optimization-based approach to guide
simulation via a primal-dual algorithm. However, this method also
requires relatively high computation.
Forootaninia and Narain [2020] proposed a frequency-domain

guiding method to address these problems. Their method uses an
input guiding velocity field and the corresponding high resolution
velocity field. These velocity fields are transformed into the fre-
quency domain and the low frequency components of the high
resolution field are replaced with those of the guiding velocity field.
The synthesized frequency components are then transformed back

to the spatial domain to obtain the guided velocity field, and a pres-
sure projection step is then performed. This method is simple to
implement and efficient compared to the previous methods, but
requires the user to prepare a high resolution velocity field that is
similar to the input guiding velocity field, which can be a difficult
task for procedurally-generated guiding velocity fields.

We generate guided high-resolution flows using stream functions,
which have been used in the past for several different purposes. For
example, Ando et al. [2015] proposed a liquid solver which is per-
formed in stream function space, and Sato et al. [2015] introduced
a stream function for deforming fluid flow as a post-process. In-
put flows were converted into stream functions and then deformed.
These approaches have the advantage that the results always sat-
isfy the incompressibility condition, and our method shares this
property.

3 PROPOSED METHOD
In the following, we use lower case letters to denote quantities on a
low-resolution grid (e.g. u𝑡), and upper case letters for those on a
high-resolution grid (e.g. U𝑡).

An overview of our method is shown in Fig. 2. At each frame of
the animation, our method takes as input a low resolution guiding
velocity field u𝑡 , and upsamples it to a high resolution velocity field
U𝑡 . The upsampled velocity field is converted to a stream function
Ψ𝑡 . An optimization problem is solved to generate a guided stream
function Ψ̂𝑡 , and the final velocity field Û𝑡 is obtained by taking
the curl of Ψ̂𝑡 . This velocity field is then advected by solving the
momentum equation of the Navier-Stokes equations and used to
solve the optimization problem at the next frame of animation. We
can optionally add external forces, such as vorticity confinement
forces that increase turbulence. Our method allows the user to
control the degree of guiding with a single parameter 𝛼 . The details
of these processes follow.

3.1 Computing the Stream Function
Using the Helmholtz-Hodge decomposition [Bhatia et al. 2013; Tong
et al. 2003], U𝑡 can be decomposed into:

U𝑡 = ∇ × Ψ𝑡 + ∇𝑃 + H, (1)

where 𝑃 is a scalar function,H is a harmonic vector field. By applying
∇× to the both sides of the equation, we obtain:

∇ × (∇ × Ψ𝑡) = ∇ × U𝑡 . (2)

Next, by using the following relationship,

∇ × (∇ × Ψ𝑡) = ∇(∇ · Ψ𝑡) − ∇2Ψ𝑡 , (3)

and ∇ · Ψ𝑡 = 0 as a constraint, we obtain:

− ∇2Ψ𝑡 = ∇ × U𝑡 . (4)

We can solve the above equation to compute Ψ𝑡 from U𝑡 . We used
the conjugate gradient method (CG) as the numerical solver. Ando
et al. [2015] and Sato et al. [2015] provide more details.

3.2 Guiding Formulation
We will first describe our guided stream function, followed by our
optimization problem. We represent the guided stream function Ψ̂𝑡

ACM Trans. Graph., Vol. 40, No. 4, Article 161. Publication date: August 2021.

Stream-Guided Smoke Simulations • 161:3

optimizer

Poisson solver

upsampled input velocity stream function guided stream function guided velocity

curl operator

control parameter

advection + external force

𝛼𝐔௧ 𝚿௧ 𝚿෡௧ 𝐔෡௧

optimizer

Poisson solver

upsampled input velocity stream function guided stream function guided velocity

curl operator

control parameter

advection + external force

𝛼
𝐔௧ 𝚿௧ 𝚿෡௧ 𝐔෡௧

Fig. 2. Overview of our method.

as the sum of an upsampled stream function Ψ𝑡 and any stream
function from Section 3.1 Ψ̃𝑡 ,

Ψ̂𝑡 (x) = Ψ𝑡 (x) + Ψ̃𝑡 (x), (5)

where x is a grid position. We can then optimize Ψ̃𝑡 (x) to gener-
ate high-frequency turbulent details. In lieu of directly computing
Ψ̃𝑡 (x), we instead represent it as the product of the scaling function
𝑤𝑡 (x) and an user-provided stream function Ψusr,𝑡 (x):

Ψ̃𝑡 (x) = 𝑤𝑡 (x)Ψusr,𝑡 (x). (6)

We then optimize the scaling function, which reduces the complexity
of the optimization problem by a factor of three:𝑤 (x) is three times
smaller than Ψ̃𝑡 (x). This method additionally allows the user to
choose any arbitrary Ψusr,𝑡 (x) obtained via the process of Section
3.1. However, based on our experiments, we found that using the
input stream function, Ψ𝑡 , produced plausible high resolution flows.
We can now define the optimization problem. Our guiding for-

mulation is similar to the previous optimization-based methods
[Nielsen and Christensen 2010; Nielsen et al. 2009], but instead uses
the stream functions described above.

We solve for the optimal scaling function subject to the following
minimization problem at each frame of the animation,

arg min
𝑤𝑡 (x)

∑
x

| |∇ × Ψ̂𝑡 (x) − V𝑡 (x) | |2 + 𝛼 (𝑤𝑡 (x))2, (7)

where 𝛼 controls the degree of guiding. V𝑡 (x) is obtained by ad-
vecting the guided velocity field from the previous frame. This is
computed as

𝜕V𝑡

𝜕𝑡
= −(V𝑡 · ∇)V𝑡 + f, (8)

and, by replacing V𝑡−1 with Û𝑡−1, we obtain the following discrete
form:

V𝑡 − Û𝑡−1
Δ𝑡

= −(Û𝑡−1 · ∇)Û𝑡−1 + f, (9)

where Δ𝑡 is a time step, and f is external forces such as vorticity
confinement and smoke sources. Eq. (9) is a momentum equation

in Navier-Stokes equations. In our implementation, the advection
term (the first term on the right hand side of Eq. (9)) is solved using
a semi-Lagrangian scheme [Stam 1999], but our method does not
depend on a specific advection scheme, so it can be freely selected.
The Û𝑡−1 (x) term is:

Û𝑡−1 (x) = ∇ × Ψ̂𝑡−1 (x) . (10)

We can ignore the pressure and divergence-free terms from the
Navier-Stokes equations because our stream functions already guar-
antee that the flow will be divergence-free.
We can interpret our optimization problem as follows. By using

Eqs. (5) and (6), the first term of Eq. (7) can be rewritten as:

| |∇ × (𝑤𝑡 (x)Ψ𝑡) − (V𝑡 (x) − ∇ × Ψ𝑡 (x)) | |2 . (11)

The second term in the above equation is the difference between
the upsampled input velocity field, ∇ × Ψ𝑡 , and the simulated ve-
locity field, V𝑡 , which was generated by the advection operator and
external forces. The above equation tries to find the optimal scaling
function𝑤𝑡 that reproduces the turbulent motion of V𝑡 . The second
term of Eq.(7) works as a regularization term whose strength is
controlled by 𝛼 . Large 𝛼 strongly constrains the output to follow
the input flow, and suppresses turbulent motion, while the converse
is true for small 𝛼 .

The stream function has a non-trivial null space [Ando et al. 2015].
Our optimization therefore picks one of the possible solutions that
minimizes 𝛼 (𝑤𝑡 (x))2, such that the solution is unique. However,
Ψusr contains some ambiguity because𝑤𝑡 can vary depending on
the choice of Ψusr, even if the final velocity is the same. Poor choices
for Ψusr can produce unpleasant flows. In our experiments, we found
that the stream functions from Section 3.1 should be used as Ψusr to
obtain plausible flows. We discuss further in Section 5.

The minimization problem can be solved by taking the derivative
of the objective function with respect to𝑤𝑡 (x). This yields a linear
system that we then solve using the conjugate gradient method. Af-
ter solving the optimization problem, we obtain the guided potential
Ψ̂𝑡 and the final velocity field Û𝑡 is given by taking the curl of the

ACM Trans. Graph., Vol. 40, No. 4, Article 161. Publication date: August 2021.

161:4 • Sato, Dobashi, and Kim

(a) input (b) ours

a = 0.01, cvc = 5.0

(c) frequency-domain

ncutoff = 1/2, cvc = 5.0

Fig. 3. Result with a procedurally-generated flow in the shape of a ring.

(a) input (b) ours

a = 0.01, cvc = 5.0

(c) frequency-domain

ncutoff = 1/2, cvc = 5.0

Fig. 4. Result with a procedurally-generated branching flow.

guided potential. By definition, Û𝑡 satisfies the incompressibility
condition.

3.3 Using Control Parameter 𝛼
The regularization coefficient in Eq. (7), 𝛼 , varies throughout space,
and makes it possible to generate spatially-varying turbulence. The
user can paint 𝛼 according to the desired levels of turbulence.

Additionally, we found that our solver for Eq. (7) converged faster
for larger 𝛼 , which suggested that the computation can be accel-
erated by adaptively choosing an appropriate 𝛼 at each grid point.
Since the flow is visualized by a smoke density, and turbulent details
are only visible in regions with non-zero densities, we assigned
small 𝛼 to the grid points in the smoke region and large values to
other regions. While the ratio depends on the size of the smoke,
this resulted in an average of 10% reduction in computation time.
Since a sudden change in 𝛼 at the boundary of the smoke region
can cause artifacts, we linearly interpolated the value in this region.

4 RESULTS
In this section, we show examples and compare against the frequency-
domain method of Forootaninia and Narain [2020] and the varia-
tional guiding method of Nielsen and Christensen [2010]. Figs. 6
and 8 use input velocity fields that were calculated using a semi-
Lagrangian solver [Stam 1999], while other figures used inputs
generated through alternate means. We used a semi-Lagrangian ad-
vection scheme, and vorticity confinement was used in calculating
Eq.(9) to add more turbulence, where its amount is adjusted with a

(a) input

(b) ours

a = 0.01, cvc = 5.0

Fig. 5. Smoke arch interacting with a sphere.

coefficient 𝑐vc which is equivalent to 𝜖 from Fedkiw et al. [2001].
We used a desktop PC with an Intel Core i9-9900K CPU to compute
all examples. The grid sizes, parameters, and computation times are
summarized in Table 1. For the artistic examples (Figs. 1, 3 - 5, and, 7),
we used static input velocity fields. For such input flows, our method
only requires the conversion from stream function to velocity field
to be computed once. For the frequency-based method, the accuracy
of the pressure projection step was set so that its computation time
would closely match the running time of our algorithm. The videos
of these examples can be found in the supplementary material.
We first show several examples of procedurally-generated in-

put flows that demonstrate the advantages of our optimization-
approach. For all the inputs in these examples, velocities and den-
sities are only assigned in regions of interest. In Fig. 1, the input
flow forms an arch, and does not conform to any physical laws.
Regardless, our method successfully synthesizes realistic turbulent
motion (Fig. 1(b)) while the frequency-domain method struggles
(Fig. 1(c)). The frequency-domain approach successfully addresses
one limitation of optimization-based approaches, which is that they
tend to blur high-frequency details. However, for the procedural
input used in this experiment, velocities are only assigned in specific
regions, which creates severe discontinuities at the region bound-
aries. These discontinuities cannot be accurately represented using
low-frequency velocity fields, which renders the frequency-domain
method unworkable. Fig. 1(d) is created using the variational guid-
ing method. This can synthesize turbulent motion, but it is less

ACM Trans. Graph., Vol. 40, No. 4, Article 161. Publication date: August 2021.

Stream-Guided Smoke Simulations • 161:5

Table 1. Simulation statistics.

Figure grid size pre-computation time [sec] computation time/frame [sec]
input result optimization previous methods unguided simulation

Fig. 1 64 × 32 × 32 256 × 128 × 128 124 (once) 28 (c)24, (d)203 28
Fig. 3 48 × 48 × 32 192 × 192 × 128 146 (once) 41 36 34
Fig. 4 48 × 48 × 32 192 × 192 × 128 146 (once) 29 28 34
Fig. 5 64 × 32 × 32 256 × 128 × 128 124 (once) 38 – 28
Fig. 6 64 × 64 512 × 512 3.4 (per frame) 0.92 – 2.1
Fig. 7 24 × 48 × 24 192 × 384 × 192 599 (once) 176 – 152

Fig. 8 24 × 64 × 24 192 × 512 × 192 702 (per frame) (b)123, (c)151
(f)118, (g)150

(d)163, (e)140
(h)134, (i)126 220

(a) input and

user specified region

(b) ours

a = 0.1 and 100, cvc = 7.5

Fig. 6. 2D smoke with spatially-varying 𝛼 .

realistic than ours. Furthermore, the computation time for the opti-
mizing velocity and pressure fields is seven times longer than ours
(see Table 1). Note that our implementation of the variationalmethod
has neither parallel computation nor a multigrid solver. Thus, our
timings are longer than those reported in their paper. Due to their
larger problem dimensions, various optimizations are needed to
achieve the best performance. In contrast, our optimization-based
method synthesizes guided flows that satisfy physical laws across
all frequency bands, and result in more naturalistic flows. Further-
more, ourmethod does not need the various optimization techniques
present in the variational method. This feature is particularly im-
portant for artistic flow designs in production environments.
Figs. 3 and 4 respectively show procedural examples of circular

and branching smoke. Both input flows were created manually, and
the outputs are essentially impossible to create using physically-
based simulation alone, but our method is able to synthesize realistic-
looking results. Fig. 5 uses the same input flow as Fig. 1, but places
a sphere obstacle at the midpoint. In the input, the smoke does
not interact with the sphere in any physically-plausible way; we
simply assigned the velocity to zero inside the sphere. After con-
verting the input velocity field into a stream function, we applied
the method proposed in Bridson et al. [2007] to consider the effect
of the sphere. Our method then successfully synthesizes a realistic
flow that plausibly interacts with the sphere in Fig. 5 (b).

(b) ours

a = 0.01, cvc = 10.0

(a) input vector field

side view top view

Fig. 7. Result from whirlwind-like procedural flow.

Next, we show an example demonstrating the effect of the param-
eter 𝛼 (see Fig. 6). We can spatially vary the degree of turbulence by
spatially modulating 𝛼 . In Fig. 6 (a), 𝛼 is 0.1 inside the green region
but it is 100 elsewhere. Fig. 6 (b) shows the result: turbulent details
only appear inside the green region.

Fig. 7 shows a more artistic example where the input flows were
created manually. In Fig. 7, we created a whirlwind-like flow, and
our system then adds realistic motion to this artistic flow.
Finally, we use an input flow that was computed by solving the

Navier-Stokes equation (Fig. 8). We show smoke computed by our
method with various parameter settings. Fig. 8 (a) shows the input
flow simulating a smoke plume. Fig. 8 (b), (c), (f), and (g) show the
guided high resolution flows, and the parameter values are shown
in the captions. The semi-Lagrangian scheme was used to compute
the advection term. These examples use the same stream function
converted from the input velocity field, but since we do not have
to re-compute the stream function every time the parameters are
changed, so parameter tuning can be done efficiently. These exam-
ples demonstrate the effects of the parameters: detailed turbulent
motions are likely to be synthesized with smaller 𝛼 and larger 𝑐vc.
Fig. 8(d), (e), (h), and (i) show the same scene computed by the
frequency-domain method [Forootaninia and Narain 2020]. The
cutoff frequency is set to the value shown in the caption. Although
high-frequency details are generated, the results look noisy (see the
supplemental video).

ACM Trans. Graph., Vol. 40, No. 4, Article 161. Publication date: August 2021.

161:6 • Sato, Dobashi, and Kim

(a) input

(b) ours

a = 0.1, cvc = 1.0

(c) ours

a = 0.01, cvc = 1.0

(f) ours

a = 0.1, cvc = 5.0

(g) ours

a = 0.01, cvc = 5.0

(d) frequency-domain

ncutoff = 1/4, cvc = 1.0

(e) frequency-domain

ncutoff = 1/12, cvc = 1.0

(h) frequency-domain

ncutoff = 1/4, cvc = 5.0

(i) frequency-domain

ncutoff = 1/12, cvc = 5.0

Fig. 8. Plume examples with different parameters.

5 DISCUSSION
Our guiding fails when an inappropriate Ψusr is chosen. We inves-
tigated what constitutes an acceptable stream functions for Ψusr
using 2D experiments over various Ψusr. First, a Ψusr = 0 function
(obviously) did not work, and yielded the input flow. The functions
Ψusr = 1 and Ψusr = Ψ𝑡 + 𝐶 , where 𝐶 is any constant value, also
did not work, as the resulting flows were completely different from
the input, and contained spurious details along with the domain
boundaries (see Fig. 9 (b), (c)). We experimented with other Ψusr, in-
cluding noise functions and images of smoke, but the resultant flows
around the boundaries were unacceptable (see Fig. 9 (d), (e) and the
supplemental video). In contrast, the Ψusr obtained from Section 3.1

produced the convincing results shown in Section 4. These experi-
ments suggest that plausible flows arise from the stream functions
computed by Section 3.1.
Our guided flows always satisfy incompressibility by solving

the optimization in stream function space. However, the divergent
and harmonic components vanish from the input velocity fields
during the conversion process from Section 3.1, since the curl of
both terms in Eq.(1) is always zero by construction. However, if we
factor the harmonic component from the input, it can be later added
back. We experimented with a harmonic vector field as the input,
and the stream function Ψusr obtained from another non-harmonic
velocity field via Section 3.1. After the optimization, the harmonic
component is simply added to the velocity. By doing this, a harmonic
vector field can be used as a guiding input of our system.

ACM Trans. Graph., Vol. 40, No. 4, Article 161. Publication date: August 2021.

Stream-Guided Smoke Simulations • 161:7

(a) input (b) Yusr = 1.0 (c) Yusr = Yt + 1.0

(d) Yusr = perlin noise (e) Yusr = (f) (f) image of smoke

Fig. 9. 2D experimental results regarding Ψusr.

6 CONCLUSIONS
We have proposed a guiding method that works with stream func-
tions, and introduced a simple scaling function to formulate a min-
imization problem, which significantly reduces our problem size
compared to previous guiding methods. Input velocities are con-
verted into stream functions, and the final velocity is guaranteed to
be incompressible.

A limitation of our method is that the boundary of the simulation
space is restricted, by construction, to solid boundaries. Treating
other boundary conditions is a challenging problem and left for
our future work. We also plan to apply our method to other fluid
phenomena, such as, fire, liquids, and clouds.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their constructive
comments to improve our paper. This work was supported by JSPS
KAKENHI Grant Numbers JP20K19945 and JP20H05954.

REFERENCES
Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2015. A stream function solver for

liquid simulations. ACM Transactions on Graphics 34, 4 (2015), Article 53.
H. Bhatia, G. Norgard, V. Pascucci, and P. Bremer. 2013. The helmholtz-hodge decom-

position - a survey. IEEE Transactions on Visualization and Computer Graphics 19, 8
(2013), 1386–1404.

Robert Bridson. 2015. Fluid simulation for computer graphics. CRC Press.
Robert Bridson, Jim Hourihan, andMarcus Nordenstam. 2007. Curl-noise for procedural

fluid flow. ACM Transactions on Graphics 26, 3 (2007), Article 46.
M. Chu and N. Thuerey. 2017. Data-Driven Synthesis of Smoke Flows with CNN-based

Feature Descriptors. ACM Transactions on Graphics 36, 4 (2017), Article 14.
R. Fattal and D. Lischinski. 2004. Target-driven smoke animation. ACM Transactions on

Graphics 23, 3 (2004), 439–446.
R. Fedkiw, J. Stam, and H. W. Jansen. 2001. Visual Simulation of Smoke. In Proceedings

of ACM SIGGRAPH 2001. 15–22.
Zahra Forootaninia and Rahul Narain. 2020. Frequency-domain smoke guiding. ACM

Trans. Graph. 39, 6, Article 172 (Dec. 2020).
James Gregson, Ivo Ihrke, Nils Thuerey, and Wolfgang Heidrich. 2014. From Capture

to Simulation: Connecting Forward and Inverse Problems in Fluids. ACM Trans.
Graph. 33, 4, Article 139 (July 2014), 11 pages.

T. Inglis, M.-L. Eckert, J. Gregson, and N. Thuerey. 2017. Primal-Dual Optimization for
Fluids. Computer Graphics Forum 36, 8 (2017), 354–368.

Doyub Kim. 2017. Fluid Engine Development. CRC Press.
Theodore Kim, Nils Thurey, Doug James, and Markus Gross. 2008. Wavelet turbulence

for fluid simulation. ACM Transactions on Graphics 27, 3 (2008), Article 3.
R. Narain, J. Sewall, M. Carlson, and M. C. Lin. 2008. Fast animation of turbulence

using energy transport and procedural synthesis. ACM Transactions on Graphics 27,
5 (2008), Article 166.

Michael B. Nielsen and Brian B. Christensen. 2010. Improved Variational Guiding of
Smoke Animations. Computer Graphics Forum 29, 2 (2010), 705–712.

Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar, Doug Roble, and KenMuseth.
2009. Guiding of smoke animations through variational coupling of simulations
at different resolutions. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 217–226.

Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki Nishita. 2018. Example-
based Turbulence Style Transfer. ACM Trans. Graph. 37, 4, Article 84 (2018).

S. Sato, Y. Dobashi, Y. Yue, K. Iwasaki, and T. Nishita. 2015. Incompressibility-preserving
deformation for fluid flows using vector potentials. The Visual Computer 31, 6 (2015),
959–965.

H. Schechter and R. Bridson. 2008. Evolving sub-grid turbulence for smoke animation.
In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 1–7.

Jos Stam. 1999. Stable Fluids. In Proceedings of ACM SIGGRAPH 1999, Annual Conference
Series. 121–128.

N. Thürey, R. Keiser, M. Pauly, and U. Rüde. 2006. Detail-preserving fluid control.
In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation. 7–12.

Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun. 2003. Discrete multiscale vector
field decomposition. ACM Transactions on Graphics 22, 3 (2003), 445–452.

ACM Trans. Graph., Vol. 40, No. 4, Article 161. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Computing the Stream Function
	3.2 Guiding Formulation
	3.3 Using Control Parameter

	4 Results
	5 Discussion
	6 Conclusions
	Acknowledgments
	References

