
Volume 28(2009), Number 7 pp. 1–8 COMPUTER GRAPHICS forum

Chain Shape Matching for Simulating Complex Hairstyles

W. Rungjiratananon1, Y. Kanamori2 and T. Nishita1

1The University of Tokyo, Japan
2University of Tsukuba, Japan

Abstract
Animations of hair dynamics greatly enrich the visual attractiveness of human characters. Traditional simulation
techniques handle hair as clumps or continuum for ef�ciency; however,the visual quality is limited because they
cannot represent the �ne-scale motion of individual hair strands. Although a recent mass-spring approach tackled
the problem of simulating the dynamics of every strand of hair, it requireda complicated setting of springs and
suffered from high computational cost. In this paper, we base the animationof hair on such a �ne-scale onLattice
Shape Matching(LSM), which has been successfully used for simulating deformable objects. Our method regards
each strand of hair as a chain of particles, and computes geometrically-derived forces for the chain based on
shape matching. Each chain of particles is simulated as an individual strandof hair. Our method can easily handle
complex hairstyles such as curly or afro styles in a numerically stable way. While our method is not physically-
based, our GPU-based simulator achieves visually-plausible animations consisting of several tens of thousands
of hair strands at interactive rates.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Simulating the dynamics of a full head of hair (i.e., typ-
ically one hundred thousand hair strands) has, for a long
time, been a challenging task in computer graphics. The dif-
�culty mainly stems from the computational cost and numer-
ical stability, especially in the interactions between individ-
ual strands of hair, which are essential for animation. Other
important concerns for hair simulation include how to model
each strand to represent various hairstyles; many recent tech-
niques handle hair as clumps or a continuum to avoid the
computational issues and focus on speci�c hair styles such
as straight only [BNC03,Osh07,TB08] or straight plus curly
hairstyles [VMT06,BAC� 06]. Recently, an extended mass-
spring model [SLF08] undertook to simulate the dynamics
of up to ten thousand individual hair strands. However, this
required a complicated con�guration for the spring structure
and suffered from high computational cost.

In this paper, we undertake �ne-scale animation of a
large number of individual hair strands based onLattice
Shape Matching(LSM) [RJ07]. LSM has been successfully
used for simulating deformable objects because it is simple,
fast and numerically stable. While LSM assumes that a de-

Figure 1: Animating 10k straight strands of hair (16 parti-
cles per strand, about 12 fps on the GPU), with the dynamics
of each strand of hair.

formable object can be approximated by a set of particles
aligned in a lattice, we represent a hair strand as a chain of

c
 2010 The Author(s)
Journal compilationc
 2010 The Eurographics Association and Blackwell PublishingLtd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Rungjiratananon et al. / Chain Shape Matching for Simulating Complex Hairstyles

Table 1: Advantages of our method against previous methods for hair strand dynamics.

Rigid chain [HMT01] Super helices[BAC� 06] Mass-spring[SLF08] Our method
Stability conditional conditional unconditional unconditional
Hairstyle straight only complex con�gurations complex con�gurations easy
Constraint tricky tricky easy easy
Performance off-line off-line off-line interactive

particles; therefore we call our methodChain Shape Match-
ing (CSM). CSM is much simpler than LSM because it only
considers deformations along a single chain. We can imme-
diately use the particles' positions in the original shape to
create a chain structure, which greatly bene�ts the design
process. While a hair strand should not be stretched, the
original LSM was not concerned with stretching because it
targeted deformation only. However, we successfully inte-
grated a stretching constraint into the LSM framework.

Our proposed model is not physically-based, targeting
interactive applications including games. Our method can
be implemented entirely on the GPU and achieve interac-
tive performance for up to several tens of thousands of hair
strands (Figure1).

2. Previous Work

The early research on hair simulation handled the dynam-
ics of individual strands of hair using the mass-spring sys-
tem [RCT91] and projective dynamics [AUK92]. However,
these methods ignore hair-hair interactions, curliness and
torsion. Hadap and Magnenat [HMT01] use a rigid multi-
body serial chain to represent a hair strand which can cap-
ture the torsion effect, but still ignore curliness. Bertails et
al. [BAC� 06] introduced a mechanical model calledsuper-
helixesbased on Kirchhoff's theory to represent a strand of
hair. The model can capture bending, torsion, non-stretching
and the curliness behavior of hair at high expense of compu-
tational cost.

For computational ef�ciency, several techniques regard
hair as disjoint groups [DTKT93, PCP02] or a contin-
uum [HMT01, BNC03, VMT06], limiting the degrees of
freedom (DOFs) of the hair motion; although human hair has
a collective tendency, a high number of DOFs is required to
represent the �ne-scale motion of hair blown about by the
wind. Please refer to the survey [WBK� 07] for advances on
hair modeling, styling, simulation and rendering.

Recently, mass-spring systems have commonly been used
for simulating hair dynamics. Integrations in mass-spring
systems are performed using explicit or implicit schemes.
Explicit schemes are often preferred due to the low compu-
tational cost and ease of implementation. However, for stable
simulation, the time step in an explicit scheme should be in-
versely proportional to the square root of the spring constant
(the Courant condition). As a result, highly stiff hair is dif�-
cult to simulate at an interactive rate when using an explicit

scheme. Implicit schemes can solve the stability problem,
with higher computational cost. Selle et al. [SLF08] pro-
posed the use of additional altitude springs to simulate the
complex behavior of human hair and semi-implicit springs
to solve the stability problem. However, this is not suitable
for stylized hair in interactive applications due to the expen-
sive cost and complex con�guration of the springs.

As for hair-hair interactions, most of the previous
methods only consider collisions occurring on guide hair
strands [CCK05,BAC� 06] and possibly miss collisions be-
tween interpolated hair strands when the guide strands do
not collide. There has been little research done that takes full
hair-hair interactions into consideration, except for the time-
consuming bounding box hierarchy used in [SLF08] and the
hybrid technique of Eulerian and Lagrangian methods intro-
duced in [MSW� 09]. Tariq and Bavoil [TB08] introduced
a fast technique for inter-hair collisions using a hair density
�eld. All the hair strands are voxelized into a grid then repul-
sive forces are applied to hair particles in high density areas.
However, their technique only affects volume preservation
of hair. The same limitation can be seen in the continuum
methods [HMT01,BNC03,VMT06].

Unlike most of the previous works, our method is easy
to implement, can easily handle complex hairstyles, is inter-
active and numerically stable even if the hair is very stiff.
Also, our method handles collisions between individual hair
strands. This is accomplished by using particle-particle col-
lision detection. The advantages of our method for simulat-
ing hair strand dynamics against those described in previous
works are summarized in Table1.

3. Hair Simulation Method

Here we brie�y explain Lattice Shape Matching
(LSM) [RJ07] because it forms the basis of our method.
Then we describe how to model hair using our Chain Shape
Matching (CSM). While hair strands, in actual fact, do
not stretch, they are stretched in LSM. We also introduce
strain limiting for CSM. Finally, we describe the hair-hair
interaction algorithm in our model.

3.1. Lattice Shape Matching (LSM)

LSM is an extension of the shape matching
method [MHTG05]. The main advantages of the shape

c
 2010 The Author(s)
Journal compilationc
 2010 The Eurographics Association and Blackwell PublishingLtd.

Rungjiratananon et al. / Chain Shape Matching for Simulating Complex Hairstyles

matching method are unconditional stability and high con-
trollability due to its geometrically-motivated computation.
Optimally-transformed positions are computed �rst, and
then particles are moved towards those positions. Since
it guarantees that all particles are updated towards the
appropriate positions, the overshooting problem that occurs
in explicit integration schemes is eliminated. This technique
is later generalized asposition based dynamics[MHHR07],
which can be applied to general simulation systems.

In LSM, the particles are grouped into multiple-
overlapping cubical regions (Figure2b). The region half-
width valuew (w= 1;2;3; � � �) corresponds to the stiffness of
the object. The positions of particles are updated as follows.
First, they are moved independently according to the exter-
nal forces. Next, for each region, LSM computes an optimal
rigid transformation (i.e., rotation and translation) based on
shape matching [MHTG05]. The rigidly-transformed posi-
tions of the particles are calledgoal positions. The goal po-
sition gi of particlei is weighed in the overlapping regions
by particle per-region massemi = mi

Nr
, wheremi is the mass of

particlei andNr is the total number of regions that the parti-
cle i belongs to. The goal position of particlei is computed
as follows.

gi =
1
Nr

å
r2R i

(Rr (x
0
i � x0

cm;r) + xcm;r); (1)

whereR i is a set of regions that particlei belongs to,x0
i is

the original position,x0
cm;r is the center of mass of the orig-

inal shape of the region,xcm;r andRr are the optimal trans-
lation and rotation for regionr. Finally, for each particle, the
velocity is computed toward the goal position.

vi(t + dt) = vi(t) +
gi(t) � xi(t)

dt
+ dt

f i;ext(xi ; t)
mi

; (2)

xi(t + dt) = xi(t) + dtvi(t + dt); (3)

wheredt is a time step,vi is the velocity andf i;ext the exter-
nal force.

3.2. Hair Simulation Using Chain Shape Matching
(CSM)

In our method, a hair strand is represented by a chain of par-
ticles grouped into multiple overlapping chain regions (Fig-
ure 2d). Each particlei is associated with a chain region
Ri 2 R i that centers the particlei and contains adjacent
particles within the region half-widthw. Each chain region
uses the same shape matching method as used in LSM (Fig-
ure3). Therefore we call our algorithm Chain Shape Match-
ing (CSM). Algorithm 1 describes the pseudocode of our
algorithm.

Note that the rotation matrixR can be inverted, i.e., it
can involve re�ection. Re�ection causes �ipping of the input
shape, and therefore should be avoided for ordinary shape
matching [MHTG05, RJ07]; however, it has little in�uence

(b) LSM for a deformable object
(A lattice and regions)

Deformable object Lattice

Hair strand

Lattice

Hair particles

Chain regions

(d) CSM for a hair strand(c) LSM for a hair strand

(a) LSM for a deformable object
(An object and a lattice)

Regions Lattice particles

Figure 2: Illustrations for Lattice Shape Matching(LSM)
andChain Shape Matching(CSM).

Algorithm 1 Pseudocode of CSM algorithm.
1: for all particlesi do
2: initialize original positionx0

i , xi x0
i

3: end for
4: loop
5: BucketGeneration() // Sections3.4and4.1
6: for all particlesi do
7: f i;ext ComputeCollisionForce() +fgravity
8: end for
9: for all particlesi do

10: vi vi + dt f i;ext
mi

11: xi xi + dtvi
12: end for
13: for all chain regionsRi do
14: xcm ComputeOptimalTranslation()
15: R ComputeOptimalRotation()
16: end for
17: for all particlesi do
18: gi ComputeGoalPosition() // Eq.1
19: end for
20: for all particlesi do
21: gi StrainLimiting() // Section3.3
22: xi gi
23: vi vi + gi � xi

dt
24: end for
25: end loop

in our case because we employ one-dimensional shapes, and
thus can be ignored.

In CSM, we can design complex hairstyles at the strand-
level as follows. The shape of the strand can be de�ned
by the original particle positions, since these original posi-
tions de�ne the shape of the strand at rest (Figure4). The
root of each strand is �xed by several particles which are

c
 2010 The Author(s)
Journal compilationc
 2010 The Eurographics Association and Blackwell PublishingLtd.

Rungjiratananon et al. / Chain Shape Matching for Simulating Complex Hairstyles

Optimal translation
and rotation

Original lattice shape
x0 x1

x2x3

g0

g1

g2
g3

x0

x1

x3

0 0

0 0

x0
0

x1
0

x2
0

x3
0

x4
0

g0

g1

g2

g3 g4

x0

x1

x2

x3

x4Optimal translation
and rotation

Original chain shape

Figure 3: x0
i is the original position,xi is the position up-

dated by external forces andgi is the goal position of particle
i.

Figure 4: The original particle positions de�ne the shapes
of the hair strands.

constrained on the head. The number and direction of the
constrained particles partially determine the behavior of the
strand. The stiffness of the strand is de�ned by the chain
region half-widthw (Figure5), which can be partially mod-
i�ed to generate complex hairstyles; e.g., soft straight hair
near the root and stiff curly hair near the tip of the hair strand.

Regarding the stiffness control of hair strands, one might
consider the use of parametersa;b 2 [0;1], as presented in
the original shape matching paper [MHTG05]; a controls
the tendency that goal positions are moved towards rigidly-
transformed positions, andb allows goal positions to un-
dergo a linear transformation (see [MHTG05] for more de-
tails). Whilea andb can control the stiffness independently
of w, we simply �x a = 1 andb = 0 according to the LSM
paper [RJ07], taking into account thata andb can make a
region softer but not stiffer. Although reducing the number
of particles makes a region stiffer, it also reduces the hair
strand's DOFs required especially for complex hairstyles.
Nevertheless, the use ofa andb in conjunction withw might
bene�t to advanced stiffness control, which is left as future
work; a study on the relationship betweenb andw can be
found in [OKN09].

Figure 5: A bunch of 1,000 strands is dragged over a cylin-
der, with different chain region half-width w. Small w makes
the strands softer while large w stiffer.

3.3. Strain Limiting

In this subsection, we describe how to limit the stretching of
hair. Techniques for constraining stretching were originally
proposed in research on cloth simulation, known asstrain
limiting. Most of the cloth simulations use an elastic system
to model cloth such as popular mass-spring systems. As a
drawback, the cloth becomes very elastic and looks unnat-
ural. Provot et al. [Pro95] therefore modi�ed positions by
checking the length of each segment (a spring in the mass-
spring systems) in the cloth and then adjusting the length
of stretched segments. However, modifying one segment
causes stretching of other connected segments. Although it-
erative modi�cation can be applied, convergence is not guar-
anteed. Bridson et al. [BFA02] and Selle et al. [SLF08] mod-
i�ed velocity instead of position. In our framework, however,
goal positions are computed �rst and then the velocities are
computed so that particles are moved towards the goal po-
sitions (Section3.1). Therefore, modifying velocity is not
appropriate for our CSM framework (position based frame-
work).

To constrain stretching, we modify the positions of
stretched segments in hair strands after the shape matching
process (Figure6a). Since the root of a hair strand is always
attached to the head, we adjust only the near-tip particle (the
endpoint near the tip of the strand) of a stretched segment
to the non-stretched position. This adjustment process takes
place from the root to the tip of the strand, therefore an iter-
ative adjustment is not required.

A simple option for strain limiting is to shrink segments
individually and then connect them together (Figure6b);
however, our experiments yield unnatural results. Instead,
we move each near-tip particle along the direction of the pre-
vious segment that is already adjusted (Figure6c). As a re-
sult, each hair strand becomes a smooth curve from the root
to the tip (Figure6d). Note that just moving particles to the
non-stretched positions leads to the loss of linear and angular
momenta. To conserve the momenta, our method modi�es
velocity, similarly to [MHHR07].

c
 2010 The Author(s)
Journal compilationc
 2010 The Eurographics Association and Blackwell PublishingLtd.

Rungjiratananon et al. / Chain Shape Matching for Simulating Complex Hairstyles

(a)
The stretched strand
after shape matching.

(b)
Shrinking each

stretched segment.

(d)
The comparison
of (b) and (c).

(c)
Adjusting near-tip

particle in the
propagating direction.

Hair root

Hair tip

Stretched
Non-stretched

Near-root particle

Near-tip particle

Figure 6: Comparison of stretched particles adjustment.

2D textures

strand index = 1

strand index = 2

strand index = 3

A texel with 4 color channels

AR G B

Figure 7: Physical values of particles are stored in textures
(up to four values per texel). Particles of each hair strand
are distinguished by the strand index. These are shown by
different colors in this �gure.

3.4. Collision Detection and Response

For hair-hair and hair-head interactions, we employ simple
sphere-sphere collision detection that can be easily imple-
mented on the GPU. Particles of hair strands required in
CSM are used for collision detection. Note that, to han-
dle collisions more accurately, we can increase the num-
ber of particles independently of those used in CSM, while
our implementation uses identical particles. Particle-particle
collisions are detected using a uniform grid of voxels that
store the indices of particles. The pair particles colliding are
found from the neighboring 3� 3� 3 voxels, and the penalty
forces are added to them. For hair-head interactions, the head
model is represented by a set of large spheres, and collisions
with each particle are calculated.

4. GPU Implementation

For the GPU computation, the physical values of particles
are stored in 2D textures in the GPU memory. We use 32bit
�oating-point RGBA textures, and thus each texel can store
up to four values for a particle. Our implementation uses ten
textures, i.e., two position textures, two velocity textures,
one property texture (region half-widthw, particle index,

Original
Position

Optimal
Translation

Optimal
Rotation

Position (A) Velocity (A)

Position (A) Velocity (A)

Position (B)

Position (B) Velocity (B)

Bucket

Property

Pass 2 : Position Update
and Collision Detection

Pass 3 :
Chain Shape Matching

Pass 1 : Bucket
Generation

Pass 5 : Strain Limiting

Pass 4 : Goal Position
Computation

Figure 8: Simulation �ow of a single step on the GPU. Blue
rectangles represent the texture data, black rounded rectan-
gles represent operations and green directed line segments
represent the �ow of data.

strand index and limiting length), one original position tex-
ture, one texture for optimal translation and three textures
for optimal rotation (3� 3 matrix, 9 components). Strand in-
dices (see Figure7) are required to distinguish strands be-
cause values for all particles are stored in the same textures,
and each strand can contain a different number of particles.
In addition, our implementation requires one bucket texture,
where each texel represents a voxel that stores particle in-
dices for nearest-neighbor searches in the collision detection
process.

4.1. Simulation Step

In each simulation time step, �ve passes of the GPU com-
putation are assigned (see the black rounded rectangles in
Figure8). The detail of each GPU pass is explained together
with corresponding line numbers of Algorithm 1 as follows:

Passes 1 and 2 : Position update and collision detection
(lines 5-12)First, the bucket texture is generated for nearest-
neighbor searches using a GPGPU technique [Har07]. The
velocity of each particle is updated according to external
forces such as gravity and penalty forces calculated in the
collision detection process (Section 3.4). Then, the position
of each particle is updated according to the updated velocity
and the time step.

c
 2010 The Author(s)
Journal compilationc
 2010 The Eurographics Association and Blackwell PublishingLtd.

Rungjiratananon et al. / Chain Shape Matching for Simulating Complex Hairstyles

a

b

c

w = 3

w = 5

1 2 312

4 5

1 2 3123

Figure 9: Connectivity information of hair particles on a
texture. (a) The region half-width w= 3. The particles in the
region can be found in the adjacent texels. (b) The region
half-width w= 5. All �ve adjacent particles in the right half
can be found. The left half has only two adjacent particles
in a strand. (c) Access pattern for strain limiting. The non-
stretched position is computed by tracing the length of each
segment from the root particle.

Pass 3 : Chain shape matching (lines 13-16)The optimal
rigid transformation of each chain region is computed from
the particle positions in the region. Hair particles are stored
sequentially in a texture. See Figure9 for an example of the
texture layout. Particlea has a half-width sizew = 3. Parti-
cles contained in the region can be found in three texels to
the left and right hand sides. In the case of particleb with a
half-width sizew= 5, �ve adjacent particles can be found on
the right hand side, while the last two particles are found in
the next row by computing their addresses with the texture
width. However, the last three particles on the left hand side
have a different strand index. Therefore, only two adjacent
particles can be found. The region doesn't have to contain a
maximal number of particles (eleven in case ofw = 5).

Pass 4 : Goal position computation (lines 17-19)After the
optimal translation and rotation computation, the goal posi-
tion of each particle is computed by averaging the goal posi-
tions of overlapping regions (Equation1). This process can
be computed in a similar way to the chain shape matching
pass (Pass 3). Instead of particle positions, the computed op-
timal translation and rotation of the overlapping regions can
also be read from the adjacent texels.

Pass 5 : Strain Limiting (lines 20-24)The �nal pass is the
strain liming process (Section3.3). The non-stretched posi-
tion of each particle can be computed from the length start-
ing from the root particle of the strand to the particle (see
particlec in Figure9). After updating particle positions, the
velocities are also updated in this pass.

5. Results

The prototype implementation was written in C++, using
OpenGL and GLSL. All experiments were conducted on a

Figure 10: Moving bunch of hair strands with (left) and
without (right) strain limiting.

Figure 11: Increasing hair strands greatly improves the vi-
sual quality. From left to right, there are 1.25k, 5k and 10k
hair strands on the head.

PC with an Intel Core 2 Quad 3.00GHz, 2GB RAM and an
NVIDIA GeForce GTX 280 graphics card. The structure of
hair is rendered as connected line segments between par-
ticles, and the visual quality is enhanced by Catmull-Rom
splines on the GPU using the instanced tessellation tech-
nique [BS05]. As for the shading and self shadowing of
hair, we used the Kajiya-Kay shading model and Deep Opac-
ity Maps [YK08], respectively. All simulation and rendering
were entirely conducted on the GPU. The frame rates in this
paper include both simulation and rendering. We perform
only a single simulation step per frame. Figure10shows the
result of hair simulation with and without strain limiting de-
scribed in Section3.3. The hair strands are stretched due to
the external forces without strain limiting. Figure11 shows
the result with different numbers of strands on the head. With
more strands the visual quality is increased.

Figure 13 shows animation sequences of straight, curly
and complex hairstyles �owing in the wind. Each strand of
the complex hairstyle is straight around the top and curly
around the bottom. Each scene consists of 10k strands (160k
particles), 10k strands (580k particles) and 17k strands (764k
particles), respectively. The breakdown computational time
used in each GPU pass and rendering for each result is
shown in Figure12. The simulation and rendering speeds
of each sequence are 12, 7 and 4 fps, respectively.

c
 2010 The Author(s)
Journal compilationc
 2010 The Eurographics Association and Blackwell PublishingLtd.

Rungjiratananon et al. / Chain Shape Matching for Simulating Complex Hairstyles

38
.4

%

46
.6

%

51
.8

%

19
.2

%

11
.1

% 9.
2%

2.
2%

1.
9% 2.

4%

1.
9%

2.
1% 2.

8%

2.
2% 3.
1% 2.

4%

36
.1

%

35
.2

%
0

10

20

30

40

50

60

70

80

90

ms

New pos. + Coll. Bucket Gen. CSM
Goal Comp. Strain Limi!ng Rendering

(10k, 160k) (10k, 580k) (23k, 764k)

140

150

~~

Figure 14 (top) Figure 14 (middle) Figure 14 (bo"om)

31
.4

%~~

Figure 12: The computational time in milliseconds used in
each GPU pass and rendering. The detail of each GPU pass
is described in Section4.1. The numbers of hair strands and
particles used in each result are shown as (no. of strands,
no. of particles).

6. Conclusions

We have presented a simple model for simulating hair
based on shape matching. Our method can achieve visually-
plausible animations with complex hairstyles in a numeri-
cally stable way, even for highly stiff and curly hair like an
afro. We have also demonstrated that a GPU-based simulator
can achieve interactive performance up to several ten thou-
sand hair strands.

There are some limitations in our method. Our model is
non-physically based, thus to specify the physical proper-
ties of hair strands such as elastic properties is impractical.
We used trial and error to get the desired result. We do not
consider the torsion of hair in our model. Torsion has less
signi�cant effects for straight hair in common animations,
because the external forces that twist straight hair are rare.
However, it does occur in curly hair. We would like to im-
prove our model to capture the torsion of hair. One idea is the
use of the torsion spring presented in a rigid multibody se-
rial chain [HMT01] which represents a hair strand as a chain
of rigid segments could be adapted. Because the hair strand
in our model is also represented by a chain of particles, tor-
sion springs between particles could be added to capture the
torsion effect. In addition, collisions between hair segments
cannot be detected in our model due to the use of sphere-
sphere collision detection. We would like to employ a fast
and robust collision detection that could �nd the intersec-
tions between lines as well. The stiction force in�uenced by
the electrostatic pull-in also has to be taken into account to
generate more realistic results.

Although our method simulates each strand of hair in-
dividually, an interpolation technique such as [CJY02] and

[BAC� 06] can be applied for an application which prefers a
better performance to �ner detail. For example, in the case
of one thousand hair strands with 30k particles (Figure5),
our model can run at 61 fps, which is suf�ciently fast for
interactive applications such as games.

References

[AUK92] A NJYO K., USAMI Y., KURIHARA T.: A simple
method for extracting the natural beauty of hair. InSIGGRAPH
'92: Proceedings of the 19th annual conference on Computer
graphics and interactive techniques(1992), pp. 111–120.

[BAC� 06] BERTAILS F., AUDOLY B., CANI M.-P., QUERLEUX
B., LEROY F., LÉVÊQUE J.-L.: Super-helices for predicting the
dynamics of natural hair. InSIGGRAPH '06: ACM SIGGRAPH
2006 Papers(2006), pp. 1180–1187.

[BFA02] BRIDSONR., FEDKIW R., ANDERSONJ.: Robust treat-
ment of collisions, contact and friction for cloth animation.In
SIGGRAPH '02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques(2002), pp. 594–
603.

[BNC03] BANDO Y., NISHITA T., CHEN B.-Y.: Animating hair
with loosely connected particles.Comput. Graph. Forum 22, 3
(2003), 411–418.

[BS05] BOUBEKEUR T., SCHLICK C.: Generic mesh re-
�nement on GPU. InACM SIGGRAPH/Eurographics Graphics
Hardware(2005), pp. 99–104.

[CCK05] CHOE B., CHOI M. G., KO H.-S.: Simulating com-
plex hair with robust collision handling. InSCA '05: Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation(2005), pp. 153–160.

[CJY02] CHANG J. T., JIN J., YU Y.: A practical model for
hair mutual interactions. InSCA '02: Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation(2002), pp. 73–80.

[DTKT93] DALDEGAN A., THALMANN N. M., KURIHARA T.,
THALMANN D.: An integrated system for modeling, animat-
ing and rendering hair. InComputer Graphics Forum(1993),
pp. 211–221.

[Har07] HARADA T.: Real-time rigid body simulation on GPUs.
GPU Gems 3, Chapter 29(2007), 123–148.

[HMT01] HADAP S., MAGNENAT-THALMANN N.: Modeling
dynamic hair as a continuum.Comput. Graph. Forum 20, 3
(2001), 329–338.

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M.,
RATCLIFF J.: Position based dynamics.J. Vis. Comun. Image
Represent. 18, 2 (2007), 109–118.

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNERM.,
GROSSM.: Meshless deformations based on shape matching. In
SIGGRAPH '05: ACM SIGGRAPH 2005 Papers(2005), pp. 471–
478.

[MSW� 09] MCADAMS A., SELLE A., WARD K., SIFAKIS E.,
TERAN J.: Detail preserving continuum simulation of straight
hair. InSIGGRAPH '09: ACM SIGGRAPH 2009 Papers(2009),
pp. 1–6.

[OKN09] OHTA M., KANAMORI Y., NISHITA T.: Deformation
and fracturing using adaptive shape matching with stiffnessad-
justment.Comput. Animat. Virtual Worlds 20, 2-3 (2009), 365–
373.

[Osh07] OSHITA M.: Real-time hair simulation on GPU with a
dynamic wisp model.Comput. Animat. Virtual Worlds 18, 4-5
(2007), 583–593.

c
 2010 The Author(s)
Journal compilationc
 2010 The Eurographics Association and Blackwell PublishingLtd.

Rungjiratananon et al. / Chain Shape Matching for Simulating Complex Hairstyles

Figure 13:Animation sequences of straight (top row, 12 fps), curly (middle row, 7 fps) and complex hairstyles (bottom row, 4 fps)
in the wind. There are 10k strands (160k particles), 10k strands (580kparticles) and 23k strands (764k particles), respectively.
The stiffness con�gurations of the straight and curly hair are w= 2 and w= 5. Each strand of the complex hairstyle is straight
near the roots and curly near the tips with chain region half-widths of w= 2 and w= 6, respectively.

[PCP02] PLANTE E., CANI M.-P., POULIN P.: Capturing the
complexity of hair motion. Graphical Models (GMOD) 64, 1
(january 2002), 40–58.

[Pro95] PROVOT X.: Deformation constraints in a mass-spring
model to describe rigid cloth behavior. InGraphics Interface '95
(1995), Davis W. A., Prusinkiewicz P., (Eds.), Canadian Human-
Computer Communications Society, pp. 147–154.

[RCT91] ROSENBLUM R. E., CARLSON W. E., TRIPPE.: Simu-
lating the structure and dynamics of human hair: Modelling, ren-
dering and animation.The Journal of Visualization and Com-
puter Animation 2, 4 (1991), 141–148.

[RJ07] RIVERS A. R., JAMES D. L.: FastLSM: fast lattice shape
matching for robust real-time deformation. InSIGGRAPH '07:
ACM SIGGRAPH 2007 papers(2007), p. 82.

[SLF08] SELLE A., LENTINE M., FEDKIW R.: A mass spring
model for hair simulation. InSIGGRAPH '08: ACM SIGGRAPH
2008 papers(2008), pp. 1–11.

[TB08] TARIQ S., BAVOIL L.: Real time hair simulation and ren-
dering on the GPU. InSIGGRAPH '08: ACM SIGGRAPH 2008
talks(2008), pp. 1–1.

[VMT06] V OLINO P., MAGNENAT-THALMANN N.: Real-time
animation of complex hairstyles.IEEE Transactions on Visual-
ization and Computer Graphics 12, 2 (2006), 131–142.

[WBK � 07] WARD K., BERTAILS F., KIM T.-Y., MARSCHNER
S. R., CANI M.-P., LIN M.: A survey on hair modeling: Styling,
simulation, and rendering.IEEE Transactions on Visualization
and Computer Graphics (TVCG) 13, 2 (2007), 213–34.

[YK08] Y UKSEL C., KEYSERJ.: Deep opacity maps.Computer
Graphics Forum (Proceedings of EUROGRAPHICS 2008) 27, 2
(2008), 675–680.

c
 2010 The Author(s)
Journal compilationc
 2010 The Eurographics Association and Blackwell PublishingLtd.

