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ABSTRACT

String-like objects in our daily lives, for example shoelaces, threads, rubber cords, plastic fiber and spaghetti, have a wide
variety of materials. Such string-like objects also exhibit interesting behaviors such as twisting, tearing (by stretching or
twisting), and bouncing back when pulled and released. In this paper, we present a method that enables these behaviors
and simulates such materials in traditional string simulation methods that explicitly represent a string by particles and seg-
ments. Specifically, we offer the following three contributions. First, we introduce a method for handling twisting effects
with both uniform and non-uniform torsional rigidities. Second, we propose a method for estimating the tension acting
on inextensible strings in order to reproduce tearing and flicking (bouncing back), whereas the tension for an extensible
object can be computed via stretched length. The length of an inextensible object is maintained constant in general, and
thus, we need a novel approach. Third, we introduce an optimized grid-based collision detection for accelerating the com-
putation. We demonstrate that our method can produce visually plausible animations of string-like objects with various
material properties, and it is a fast framework for interactive applications such as games. Copyright © 2012 John Wiley &

Sons, Ltd.
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1. INTRODUCTION

String-like deformable objects play an important role in
representing hair strands, threads, elastic rods, cables, and
ropes in computer graphics. For realistic animations of
such objects, we have to reproduce their interesting behav-
iors such as bending, stretching, twisting, tearing, plastic-
ity, and flicking when pulled and released, according to
their material properties. For example, threads are made
of yarn that barely stretches but easily tears. An elas-
tic rod made of rubber can be twisted and flicked but is
hard to break. A partially braided rope such as fourragere
has a non-uniform torsional rigidity. Soft strings such as
spaghetti and candy are easily cut by stretching and twist-
ing. In the rest of this paper, we refer to such string-like
objects as strings.

Copyright © 2012 John Wiley & Sons, Ltd.

In order to simulate a string, several traditional methods
have been proposed, such as mass-spring systems [1,2],
rigid multibody serial chains [3], geometric approaches
[4,5], and elastic energy-based models [6—8]. However, all
behaviors (i.e., twisting, tearing, and flicking) of a string
are not introduced together in a single framework.

The handling of inextensible strings, such as threads
and cables, poses another technical challenge. To pre-
vent excessive elongation of inextensible strings, many
length-constraint schemes called strain limiting have been
developed [9-13]. With strain limiting, however, the tear-
ing simulation becomes difficult. Although an extensible
string will break when its length or strain reaches a certain
breaking point, we cannot see when an inextensible string
will tear on the basis of the constrained length. Moreover,
beside the fact that an inextensible string is not elongated
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by their own weight, under a large applied force such as a
large pulling force, the string should be elongated accord-
ing to its material property. However, controlling material
property becomes hard since the strain is unrelated to the
applied force with strain limiting.

In this paper, we present a method that can handle twist-
ing, tearing, and flicking of strings in real time. Our method
is a simple pseudo-physically-based model which is easy
to implement, yet visually plausible results can still be
achieved. Our method is applicable to traditional simu-
lation methods that explicitly represent a string by parti-
cles and segments. Our implementation is based on chain
shape matching (CSM) [5], which is a simplified version
of the more versatile deformation method, lattice shape
matching [4], because CSM inherits and enhances several
advantages of lattice shape matching (e.g., CSM is fast,
easy to implement, and numerically stable). In this paper,
we offer the following three contributions:

1. We introduce a simple method for twisting effects
by adding twisting angles into each segment of a
string, which can handle both uniform and non-
uniform torsional rigidities.

2. We propose a method in estimating the tension of
tearing and flicking effects in an inextensible string
whose actual tensile stress and strain values are con-
strained from strain limiting. Furthermore, we con-
sider the torsional tension in handling plasticity and
tearing from twisting as well.

3. We introduce a collision searching scheme for effi-
cient collision handling by using a grid-based data
structure, which has less number of neighbors to be
searched compared to typical searching schemes.

This paper is an extended version of [14]. Please refer to
Supporting Information" for a summary of differences.

2. RELATED WORK

Simulation of twisting strings: Considerable research on
the twisting effects in string simulation introduced vari-
ous models for solving the Cosserat and Kirchhoff energy
equations. Bertails et al. [6] introduced a mechanical
model called super helices to simulate human hair on the
basis of the Kirchhoff theory. However, handling collision
responses is not straightforward because of the implicit
representation of hair strands. Spillmann and Teschner [7]
explicitly represented the centerline of an elastic string and
used the finite element method (FEM) to solve the Cosserat
energy equation. Recently, Bergou et al. [8] introduced
a discrete model to simulate elastic strings on the basis
of the Kirchhoff theory. However, the twisting angles are
computed with a quasi-static assumption. Thus, the twist-
ing of non-uniform torsional rigidity along the string is

TSupporting information may be found in the online version of
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not addressed. There are also several works on pseudo-
physical models that can capture the twisting effect with-
out solving the energy equations. Hadap [3] introduced a
model that captures the torsion effect by integrating a tor-
sion spring into each joint of rigid links. However, strings
cannot be stretched and collision handling is not straight-
forward because the motion is propagated from top to
bottom in one single pass (not affected backward). Selle
et al. [2] represented a hair strand by a chain of tetra-
hedrons of springs and captured the torsion effect by
introducing appropriate altitude springs. However, the
configuration of springs is complex, and auxiliary particles
are required along a string.

Strain limiting for inextensible strings: In order to han-
dle inextensible objects simulated by deformation models,
a variety of methods for stretch resistance have been con-
tinuously proposed, from Provot’s iterative post-processing
edge constraint [9] to a more recent constraint method
based on impulse [13]. Some alternative ways of stabi-
lizing stiff simulation were also proposed [10-12]. These
methods and many of their sequels have a common goal,
to limit the maximal strain to a certain threshold. Accord-
ingly, these kinds of methods are problematic in the
case of excessive stretch or when rupture should occur.
Metaaphanon et al. [15] proposed a method to deal with
cloth tearing by using a mass-spring model. However,
it tears cloth by checking lengths of springs; when and
where yarns of cloth are cut were not directly related to
user-applied external forces and cloth material properties
but were dependent on how the method constrains the
springs.ss

3. CHAIN SHAPE MATCHING

Before describing the details of our algorithms, this section
first briefly introduces Chain Shape Matching (CSM) [5],
the basis model used in this paper. In the CSM, a string
is represented as a chain of particles connected by seg-
ments (see Figure 1 (a)). The particles are grouped into
multiple overlapping chain regions with the region half-
width wesp € {1,2,3,...}. The chain region half-width
corresponds to the stiffness of the string. The particles are
independently moved by external forces, and then an opti-
mal rigid transformation (i.e., rotation and translation) of
each region is computed. The rigidly transformed positions
of the particles are called goal positions. The goal position
of each particle is weighed in the overlapping regions by
particle per-region mass. Finally, each particle is updated
toward the goal position.

4. TWISTING EFFECTS

Based on the CSM, a string in our model is represented
as a chain of (n + 1) particles connected by n segments
(Figure 1(a)). A segment i € {l1,2,...,n} has a twist-
ing angle 6; tracking how much the segment is twisted.
The twisting angle can be represented as an angle between
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Figure 1. Our string model: (a) multiple overlapping chain regions in the chain shape matching; (b) the twisting angle of a segment of
an elastic string is an angle between a twist-free frame and a material frame.

a twist-free frame (bishop frame) and a material frame
(Figure 1(b)). In the initial state, we specify an initial angle
91-0 of each segment i according to the shape of the string.
The twisting angle is assigned to each segment, not for
each particle, to avoid the ambiguity.

The behavior of twisting can be clearly observed when a
string, clamped at both ends, is twisted at one end. There-
fore, we use this scenario for our explanation (Figure 2).
When we twist one clamped end with an angle 6;, the
angle 6; of the segment is increased. The increment of the
twisting angle of the segment is propagated to the next
segments in order to minimize the elastic energy in the
string. In other words, the string tries to minimize the twist-
ing angles between each connected segment. We compute
and update a goal twisting angle for each segment, sim-
ilarly, to finding a goal position for each particle in the
shape matching.

First, we group the segments into multiple overlap-
ping chain regions with the region half-width wsyisr €
{1,2,3,...}, which affects the propagation speed of the
twisting angles in the string or the torsional rigidity; the
larger the wyq; ¢ 18, the faster the change of twisting angles
is propagated. The size of each region in a string can be
varied in handling non-uniform torsional rigidity. The min-
imized twisting angle increment A@;egmn
k is computed by averaging the twisting angle increment
AOj =0; — 9;’ of the segments in the region k weighted
by mass m ;:

of each region
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where Sy, is a set of segments within region k. Then, the
0; of each segment i is updated with the twisting angle
increment Aefegment. The goal twisting angle increment
AQiS egment i calculated by summing the twisting angle

increment A9]:eg ron

belongs to:

of each region k to which segment i

segment __ region
A6 =) A6, )
keR

01' — AQisegment (3)

where 3 is the set of regions to which segment i belongs
to.

While a segment is updated to the goal twisting angle,
a torque occurs in the cross-section, causing the change of

. . segment . > :

rotational velocity w; in the segment’s tangential
axis. In each time step At, a segment is rotated by the rota-
tional velocity first, and then it is updated to the computed

goal twisting angle in Equation (3). The rotational velocity

region r

|
1
|
~=<IZ__--""clamped

material frame at time step #+2
material frame at time step 7+/
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Figure 2. (a) An elastic string clamped at both ends is twisted at one end with a twisting angle 8;. (b) The increment of the twisting
angle is propagated to the next segments.
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Figure 3. Typical tensile and torsional stress—strain curves of a material: (a) tensile stress—strain curve; (b) torsional stress—
strain curve.

and the time evolution of the twisting angle are computed
as follows:

w;vegment <o+ IAeisegment (4)

0; < 0; + Atwisegme"t (5)
where /; is an inertia moment of segment i.

The twisting force f1*?5? can be treated as an external
force exerted on particle i and derived from the elastic
energy equation [8] as follows:

| —kb;i11 —Kkbi_
fgwtst — %(9[-_‘_1—29,'4—91'—1) (%) (6)
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where «b; is the curvature binormal, e; is the segment vec-
tor, [ is the length of the segment, S is the twisting stiffness
of the string, and L is the total length of the string.

5. TEARING AND
FLICKING EFFECTS

This section briefly reviews the material science of a string
and then describes strain limiting, a widely used technique
used to constrain the length of an inextensible string from
excessive elongation. Finally, we describe our method in
handling tearing and flicking effects, which was previously
difficult because of strain limiting.

5.1. Stress and Strain

In material science, the strength of a string is associated
with its stress—strain curve [16]. There are many kinds
of the stress—strain curves, depending on the direction of
the force used in the material strength test, for exam-
ple, tensile, compressive, shear, and torsional stress—strain
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(c) Y length constraint force Tension estimation
0000 > from length differences
tension in each segment g0
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Figure 4. A simple example of the tension computation. From
(a) to (c), an ordinary length-constrained string simulation is per-
formed. In (d), tensions are estimated by calculating forces that
make the particles move from their unconstrained positions to
the constrained positions, yielding a result equivalent to (c).

Figure 5. A two-dimensionalillustration of our optimized search-

ing scheme. When performing a collision detection between

Particles A and B, segment collision tests between {a, g}, {a, f},
{b, g}, and {b, f} capsules are tested.

curves. Because tearing is typically affected by tensile and
torsional stresses, we consider only tensile and torsional
stress—strain curves of the material in our model. The ten-
sile stress—strain curve shows the relation between an aver-
age force per unit area of a cross-section surface and the
elongation of a string. The torsional stress—strain curve
shows the relation between an average torque on a cross-
section surface and the twisting of a string. Examples of
both curves are shown in Figure 3.
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The tensile stress o and torsional stress 7 of a string are
the average force and the average torque per unit area of a
cross-section surface, respectively:

_ lIFa|
= ®)
_ Tl

=" C)]

where A is the cross-sectional area, F, is the normal
force, and T, is the normal torque. The normal direc-
tion is the vector in the cross-section surface’s normal
direction.

The tensile strain ¢ and torsional strain y of a string are
expressed as the ratio of the elongation AL to the initial
length Lo and the change in twisting along the axis of the
segment, respectively:

e = &zﬂ (10)
Lo Lo
y=(0i—1—0iv1)r (11)

where L is the current length of the string and r is the
radius of the segment. Note that Af; = 6; — GI.O is the
change in the twisting angle from the rest state, not the
tensional strain. The torsional strain comes from the differ-
ence of the twisting angles between connected segments,
which are segments i — 1 and i + 1.

Along the curve, the material exhibits elastic behaviors
until the yield point. Prior to the yield point, the mate-
rial will return to its original shape if the applied force or
torque is removed. The slopes of this elastic region are the
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Young’s modulus E = o/¢ and the torsional constant J =
7/y in the tensile and torsional curves, respectively. Once
the yield point is passed, the material becomes plastic;
some fractions of the deformation will be permanent and
irreversible. As deformation continues, the material will
break when the stress or strain reaches the rupture point.

The stress—strain curve can be derived via the strength
testing of a material sample, stored as a data set of the
experimental result. The stress—strain curve of most mate-
rials in the elasticity state is linear, and thus, the part of the
curve from the origin to the yield point can be stored as a
constant value. Still, the data set is required for the curve
in the plasticity state. In our implementation, we simply
approximate the curve by a line with a constant slope that
fits the curve best. As a result, our implementation uses two
constant values to represent the stress—strain curve in the
elasticity and plasticity states together with two constants
for the yield point and rupture point.

5.2. Strain Limiting

By using traditional methods or CSM, strings are usually
excessively stretched under its own weight and with large
applied force. Instead of using the large Young’s modulus,
which can lead to numerical instability, position constraints
are often imposed so that the length of each segment i
does not exceed a certain threshold L*®* [9-13], which
is called strain limiting. Although our method of tension
estimation described in the next subsection is applicable to
any strain limiting approach, for our implementation, we
used the position constraints method of Miiller ez al. [11].

By denoting the position vector of particle i by x;, we
constrain the length L; = ||x; 41 —X; || of segment i below

(d)

cereresrvomrs e (UL TTT T s

(a) (b)

(e)

Figure 6. Our simulation results for the twisting effects. (a) An application for hanging boxes in wind forces. (b) The twisting effect

of a string clamped at both ends. The string is gradually twisted on the left end and finally twisted to form a loop. (c) A twisted

string that forms a spiral shape similar to a telephone cord. (d) A string with uniform torsional rigidity. (e) A string with non-uniform
torsional rigidity.
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L7 by moving x; and/or x; 41 according to the state of
a string. There are three possible cases.

1. A string clamped at one end: Length-constraint is
applied from the clamped end sweeping through to
another end. For example, in a string clamped at
i =0, X;41 is moved, sweeping from the clamped
end to another end.

2. A string clamped at both ends: We perform multi-
ple adjustments from one end to another end of the
string, sweeping back and forth repeatedly because
correcting the length of one segment may change
the length of other segments.

3. A string clamped at multiple points: We separate
the string into strings clamped at both ends and
strings clamped at one end and perform the length-
constraint accordingly.

tensile stress o tensile stress o

W. Rungjiratananon et al.

5.3. Tension Estimation

As previously stated, because of the constraint on lengths
unrelated to applied forces, actual tensile stress and strain
values cannot be directly computed from the simulation
result. Here, we propose a novel approach to estimate
the actual tensile stress and strain values for inextensible
strings. The stress and strain are then used in handling
elasticity, plasticity, tearing, and flicking of strings.

The actual tensile stress and strain values can be com-
puted by estimating the tensions in the string. To derive
the tensions, we also consider the particle positions com-
puted without strain limiting. We model the fension T; of
segment i as a stiff force (Figure 4(d)) that makes its parti-
clesi and i 41 at both ends move from their unconstrained
positions x§ and X; 1 (Figure 4(b)) to the constrained posi-
tions x; and x; 11 (Figure 4(c)). In our implementation, we
compute the tension as follows:

torsional stress 7
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Figure 7. Experiments of various stress—strain curves and results of curves. A variety of stress—strain curves are shown at the top
row, and their results are shown as animation sequences from top to bottom. (a) Tensile rupture point variation test; (b) Young's
modulus variation test; and (c) torsional rupture point variation test.
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(a) Initial state

(d) Initial state
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Figure 8. Plasticity of the material under tensile and torsional stresses. (a) and (d) are the states before forces and torques are applied
in (b) and (d), respectively. In (b) and (d), the strings on the left do not pass the yield points, whereas the strings on the right do.
(c) and (e) are the states after the forces and torques are released.
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(c) Animation sequences of
a twisted string flicking

Figure 9. Flicking animation sequences of strings from top to bottom: (a) animation sequences of a string without flicking;
(b) animation sequences of a string flicking; and (c) animation sequences of a twisted string flicking.

T =kgrirr (1% 11 =X — %1 —xil) i (12)
where kg7 7 is a coefficient and t; is a unit vector from
particle i to i + 1. The tension derived this way is used to
reproduce tearing and flicking, as well as plastic behaviors
of a string.

5.4. Tearing and Flicking a String

For tearing under a tensile stress, we assign a rupture point
or a tensile stress threshold o7y pryre for each segment. If
the segment’s tensile stress exceeds its tensile stress thresh-
old, the segment will be broken. The applied tensile stress

Comp. Anim. Virtual Worlds (2012) © 2012 John Wiley & Sons, Ltd.
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o; can be computed from tension T; in each segment by
using Equation (8) with F,, =T;.

Similarly, we can handle the behavior of flicking by
using the tension. When an inextensible string is pulled and
released or torn apart, the applied stress vanishes, but the
tensile strain of the segment from the elongated length still
remains. The bouncing back force could be computed from
an internal tensile stress translated from the tensile strain
by referencing the stress—strain curve. However, with our
tension estimation technique, we can directly use the ten-
sion as the bouncing back force. Note that, without this
technique, the string would just fall down quietly by the
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Figure 10. Animation sequences of a hanging bridge colliding with incoming crates.

|

(a) At the beginning of a game.

(C) At the 16th second.

(d) At the 49th second. The string is torn by twisting.

Figure 11. This is a game application using our method. The goal of this game is to shoot a box and make a string twist until it is torn

apart. The more it is twisted, the harder it will twist back. Therefore, if a player misses, the bar will decrease the twisting angles the

player has hit so far. Players can compare the time and the number of boxes they used with others. (a) At the beginning of the game;
(b) at the fifth second; (c) at the 16th second; and (d) at the 49th second, the string is torn by twisting.
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Table I. The computational time in milliseconds of each process in one time step. The time step in our
implementation is 0.01 second.

Number Updating CSM Twisting computation  Tension estimation Collision  Total
of segments particles handling  time
100 0.011 0.086 0.098 0.221 1.31 173
150 0.022 0.168 0.184 0.424 1.36 2.16
200 0.029 0.221 0.237 0.564 1.37 2.42
746 0.128 0.501 0.739 1.67 3.13 6.17

CSM, chain shape matching.

force of gravity because tensile strain is limited and, thus,
very small in an inextensible string.

As can be seen in the tensile stress—strain curve
(Figure 3(a)), a real string is lengthened according to the
tensile stress in the elasticity and plasticity states prior to
the rupture point. Therefore, the maximum length L4¥
of each segment used in strain limiting should be updated
accordingly (otherwise the string does not elongate). For
this, we look up the tensile strain &; corresponding to
applied stress o; from the tensile stress—strain curve and
use it to compute the appropriate value of L"%* by using
Equation (10), L"%* = g; Lo + Lo. In the elasticity state,
the tensile strain ¢; of a string becomes zero when applied
forces are removed. In other words, the string returns to its
original length. However, when its tensile strain exceeds
the yield point (plasticity state), &; will remain the same as
the last time the forces are applied. Our method also modi-
fies the radius of a segment in order to preserve the volume
of the segment when stretched.

Tearing of the string also happens when a sufficient
torque is applied to the string. Tearing caused by twisting
regularly arises in several soft strings such as spaghetti and
licorice(candy stick). In contrast to tearing by stretching,
torsional strain is not limited, and it can be directly calcu-
lated from current twisting angles (Equation (11)). Similar
to tearing by stretching, when y; of segment i reaches
a rupture point, we tear the segment. For a plasticity of
twisting, when y; passes a yield point, we update Qio with
(6i—1 — 6i4+1)/2 to make the twisted angle of segment
i permanent.

6. COLLISION HANDLING

In this section, we introduce an optimized searching
scheme for collision detection of strings, although previous
works often use techniques based on the bounding volume
hierarchy [2,17,18]. Apart from the bounding volume hier-
archy, space partitioning using a grid-based data structure
is a simple and efficient technique for collision detection of
strings that have a large number of self-collisions. Specif-
ically, we treat each segment as a capsule (a cylinder with
two spheres at both ends) and search for capsule collision
pairs. For neighbor searches, we use a uniform grid of vox-
els. The number of voxels to be searched is 27(= 3x3x3)
in a naive approach. For better performance, we found that
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it is sufficient to search for colliding segments in only seven
neighboring voxels (top, bottom, left, right, front, back, and
center voxels) under the following three specifications:

(1) specifying the voxel size equal to or larger than
segment length /;

(2) storing indices of particles in each voxel; and

(3) searching for capsule collision pairs from two adja-
cent segments of each particle in the seven neighbor-
ing voxels.

For a better understanding, we describe it by using an
example in a two-dimensional case (five neighboring
cells). The idea can be generalized to the three-dimensional
case in a straightforward manner. In Figure 5, Particles A
and B are neighbors. Our method performs the segment
collision test between their two adjacent segments, that is,
pairs of segments {a, g}, {a, [}, {b, g}, and {b, f}. If two
segments have an intersection, there is definitely a pair of
both ends’ particles residing in each of the other seven
neighboring cells. This can be easily proved if one writes
all possible cases in two dimensions, with five neighboring
cells (center, up, down, left, and right).

The closest points of a pair of colliding segments i and
j are indicated by fractions s € [0,1] and ¢t € [0,1],
respectively. In order to move the colliding segments to
the non-intersection positions, we compute a displacement
vector between the closest points. Then, we move both end
particles of each segment, corresponding to the fractions s
and ¢ similar to [18].

Moving a colliding segment may make the string discon-
tinuous, and thus, we repeat shape matching until particle
positions converge. Conversely, shape matching may cause
a collision again. As a result, iterations are required for
both shape matching and collision constraints. To lessen
the iterations, we temporarily make the masses of collid-
ing particles heavier so that shape matching barely moves
the particles. In our experiments, by making the colliding
particles three times heavier, one iteration is sufficient.

7. RESULTS

Our implementation was written in C++ with OpenGL.
All experiments were conducted on a desktop PC with
an Intel Core i7 3.20GHz CPU and 6GB RAM. See
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the accompanying video for the animation of our results
(stringCAVW _lo.mov).

Figure 6 demonstrates the twisting effects in our
model. An application for hanging boxes is presented in
Figure 6(a), where objects at the tips of strings are rotated
by wind forces, making the strings twisted. With twist-
ing effects, the strings try to twist back to the initial state,
making the rotational velocities increase and the objects
roll back and forth in the wind. Twisting of strings can
reproduce phenomena such as an instability of bending and
twisting called buckling, which makes a string form a spiral
shape (Figure 6(b) and (c)). Figure 6(d) and (e) shows the
twisting of strings with uniform and non-uniform torsional
rigidities, respectively. In the string with non-uniform tor-
sional rigidity (thicker at the middle of the string in this
result), the thicker part has a larger torsional rigidity and,
therefore, has less twisting.

Our method enables the simulation of strings with var-
ious material properties, as shown in the variation tests in
Figure 7. The stress—strain curves are shown in the top row,
and their corresponding results are shown as animation
sequences below each curve. Parameters used in tearing,
that is rupture points, yield points, and Young’modulus,
are assigned to all segments in the string. However, that
kind of completely uniform strength is impossible in the
real string, so we randomly altered the parameters in each
segment with a range of variation up to 0.01%. Three
experiments were conducted as follows:

(1) Tensile rupture point variation (Figure 7(a)): Tensile
rupture points of strings are varying, increasing from
string number 1 to 4. As expected, the topmost string
(1), which has the lowest rupture point, is torn first.

(2) Young’s modulus variation (Figure 7(b)): Young’s
modulus is a measure of the elasticity of a material.
Because values of the Young’s modulus of strings in
this test are lessened from number 1 to 4, whereas
the applied stresses required for breaking the strings
are equal, the bottommost string (4) is lengthened the
most before breaking.

(3) Torsional rupture point variation (Figure 7(c)): Sim-
ilar to Figure 7(a), torsional rupture points are vary-
ing, increasing from string number 1 to 4. When the
strings are twisted by the applied torques on the right-
hand side, the topmost string (1), which has the lowest
torsional rupture point, is torn first.

Figure 8 shows plasticity handling of strings in our
model. When an applied stress from a force or torque
passes a yield point, a string will irreversibly deform; this
means the string will not return to its original length or
twisting angle. In the top row, we compare two strings
under the applied forces below (left string) and over (right
string) the yield point. Likewise, two strings in the bottom
row show a comparison under the different applied torques.
It can be observed both in the top and bottom rows that the
string on the left returns to its original shape, whereas the
string on the right is permanently deformed.
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Animation sequences of flicking are shown in Figure 9.
Without flicking, the string in Figure 9(a) falls naturally
when an applied force is removed. In our model, the string
bounces back through the estimated tensions when the
applied force is removed, as shown in Figure 9(b). When
the twisted string in Figure 9(c) is pulled and released, the
twisting effect also occurs.

For us to demonstrate the practical uses of our method,
Figures 10 and 11 show applications in an animation and
game. Figure 10 shows a destruction of a hanging bridge.
Wooden boards (rigid bodies) are tied with strings (ropes
in this case) to build the bridge. The ropes are gradually
torn apart from collisions of the wooden boards and incom-
ing crates that cause high tensions in the ropes. We used a
particle-based simulation method [19] for rigid body sim-
ulation in our implementation. Figure 11 shows a twisting
game. A box is hanging from a wooden beam by a string.
The rule of the games is to shoot the box and make the
string twist until it breaks.

The breakdown computational time in each process for
strings with different numbers of particles is shown in
Table I. All strings consist of 100 segments, except for the
150 segments in Figure 9, 200 segments in Figure 6(c),
and 746 segments in Figure 10. The computational time of
the results in Figures 10 and 11 is measured, excluding the
time for the rigid body simulation.

8. CONCLUSION AND
FUTURE WORK

We have introduced a simple model to simulating twisting,
tearing, and flicking of strings, that is fast, easy to imple-
ment, and applicable to traditional simulation models.
We have demonstrated that our method can handle twist-
ing effects of strings with both uniform and non-uniform
torsional rigidities, as well as rotational velocity caused
by twisting.

By using our method, the tension in an inextensible
string can be estimated for the generation of tearing and
flicking effects. We have also enabled the tearing effects in
twisting. A variation in the quality of strings, that is elas-
ticity and plasticity, can be achieved. Although our method
is not physically-based, it can successfully reproduce the
interesting behaviors of strings which would greatly enrich
the realism of interactive applications such as games.

Our method has some limitations. As previously
mentioned, our method is not a full physically-based
model. Thus, more advanced physics behaviors such as
spring-twisting pendulum and anisotropic bending in [8]
are hard to simulate. The rapid motion could cause the
strings to pass through each other or themselves. How-
ever, this problem did not occur in our experiments. In
case of rapid motion, continuous collision detection should
be considered.

For future work, we would like to consider a defor-
mation of cross-sections during twisting. In our model,
each segment is rendered as a spherical cylinder. However,
cross-sections of most materials can be deformed when it
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is twisted. The non-uniform torsional rigidity in our model
is considered along the length, not the cross-sections. A
non-uniform density distribution within the cross-section
should be considered to simulate more interesting results.
The collision between segments is treated as a collision
between rigid segments. We would like to improve the col-
lision detection algorithm to handle the collisions between
deformable segments. We also would like to improve the
overall performance with a GPU implementation.
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