

Extracting Depth and Matte using a Color-Filtered Aperture

Yosuke Bando TOSHIBA + The University of Tokyo

Bing-Yu Chen National Taiwan University

Tomoyuki Nishita The University of Tokyo

Outline

Background

- Related Work
- Our Method
- Results
- Conclusion

THE UNIVERSITY OF TOKYO

National Taiwan University

2

Computational Cameras

- Capture various scene properties
 - High dynamic range, high resolution,
 - Large field of view, reflectance, depth,
 - ... and more
- With elaborate imaging devices
 - Camera arrays
 - Additional optical elements

[Wilburn 2005]

[Nayar 1997]

THE UNIVERSITY OF TOKYO

Compact Computational Cameras

- Small devices
- Simple optical elements

[Ng 2005]

[Levin 2007]

THE UNIVERSITY OF TOKYO

Capture scene properties

With minimal modification to the camera

THE UNIVERSITY OF TOKYO

Our Goal

Capture scene properties

- Depth maps
- Alpha mattes
- With minimal modification to the camera

THE UNIVERSITY OF TOKYO

Our Goal

Capture scene properties

- Depth maps
- Alpha mattes
- With minimal modification to the camera
 - Put color filters in a camera lens aperture

TOSHIBA Leading Innovation >>>

the University of Tokyo

Our Goal

Capture scene properties

- Depth maps
- Alpha mattes
- With minimal modification to the camera
 - Put color filters in a camera lens aperture
 - This idea itself is not new

Contents

- Background
- Related Work
- Our Method
- Results
- Conclusion

Previous Color-Filter Methods

• Extract (only) depth maps

- With low precision
- Or, a specialized flashbulb is used
 - Spoils the visual quality of captured images

[Amari 1992]

[Chang 2002]

THE UNIVERSITY OF TOKYO

Coded Aperture

Patterned mask in the aperture

- Changes frequency characteristics of defocus
- Facilitates blur identification/removal

[Levin 2007]

[Veeraraghavan 2007]

Lens with a mask

Captured image

Amount of defocus blur (≈ depth)

THE UNIVERSITY OF TOKYO

Single-Lens Multi-View Capture

- Records light rays separately depending on their incident angle
 - Enables light field rendering

[Adelson 1992]

[Veeraraghavan 2007]

[Georgeiv 2006]

[Liang 2008]

THE UNIVERSITY OF TOKYO

Matting

Automatic matting by multiple cameras

[McGuire 2005]

3 cameras with half mirrors

IPinhole Lackground Foreground

Video matting

Array of 8 cameras

Video matting

THE UNIVERSITY OF TOKYO

National Taiwan University

α

Our Method

• Features

- Automatic depth and matte extraction
- Single hand-held camera
- Single shot

Contributions

- 1. Improved depth estimation
- 2. Novel matting algorithm
- for images captured thru a color-filtered aperture

Outline

- Background
- Related Work
- Our Method
- Results
- Conclusion

THE UNIVERSITY OF TOKYO

Our Method

- Color-filtered aperture
- Depth estimation
- Matting

THE UNIVERSITY OF TOKYO

Our Method

- Color-filtered aperture
- Depth estimation
- Matting

THE UNIVERSITY OF TOKYO

Canon EF 50mm f/1.8 II lens

THE UNIVERSITY OF TOKYO

Canon EF 50mm f/1.8 II lens

Aperture part of the disassembled lens

THE UNIVERSITY OF TOKYO

National Taiwan University

19

Canon EF 50mm f/1.8 II lens

Fujifilter SC-58, BPB-53, and BPB-45

THE UNIVERSITY OF TOKYO

National Taiwan University

20

Canon EF 50mm f/1.8 II lens

Fujifilter SC-58, BPB-53, and BPB-45

Our prototype lens with color-filters

THE UNIVERSITY OF TOKYO

• Took me just a few hours to fabricate

- Using a micro-screwdriver and a box cutter

Canon EF 50mm f/1.8 II lens

Fujifilter SC-58, BPB-53, and BPB-45

Our prototype lens with color-filters

THE UNIVERSITY OF TOKYO

Captured Image

THE UNIVERSITY OF TOKYO

Red Plane

THE UNIVERSITY OF TOKYO

Green Plane

THE UNIVERSITY OF TOKYO

Blue Plane

THE UNIVERSITY OF TOKYO

Captured Image

• Has depth-dependent color-misalignment

NOT due to chromatic aberration

THE UNIVERSITY OF TOKYO

TOSHIB/

THE UNIVERSITY OF TOKYO

THE UNIVERSITY OF TOKYO

Our Method

- Color-filtered aperture
- Depth estimation
- Matting

IOSHIB/

THE UNIVERSITY OF TOKYO

Depth Estimation

- Our camera captures 3 views in the RGB planes
 - \rightarrow Stereo reconstruction problem

Green plane

Blue plane

THE UNIVERSITY OF TOKYO

Depth Estimation

- Our camera captures 3 views in the RGB planes
 - \rightarrow Stereo reconstruction problem
- However, their intensities don't match
 - Contribution 1: improved correspondence measure between the RGB planes

Red plane

Green plane

Blue plane

THE UNIVERSITY OF TOKYO

Original Image

THE UNIVERSITY OF TOKYO

35

Disparity = 1

THE UNIVERSITY OF TOKYO

THE UNIVERSITY OF TOKYO

THE UNIVERSITY OF TOKYO

THE UNIVERSITY OF TOKYO

THE UNIVERSITY OF TOKYO

National Taiwan University 🍈

THE UNIVERSITY OF TOKYO

National Taiwan University 🍈

When Is The Color Aligned?

TOSHIB! Leading Innovation >>>

THE UNIVERSITY OF TOKYO

• Local color distribution of natural images tends to form a line [Omer 2004, Levin 2006]

THE UNIVERSITY OF TOKYO

• Local color distribution of natural images tends to form a line [Omer 2004, Levin 2006]

Leading Innovation >>>

THE UNIVERSITY OF TOKYO

• Local color distribution of natural images tends to form a line [Omer 2004, Levin 2006]

THE UNIVERSITY OF TOKYO

• Local color distribution of natural images tends to form a line [Omer 2004, Levin 2006]

THE UNIVERSITY OF TOKYO

• Local color distribution of natural images tends to form a line [Omer 2004, Levin 2006]

THE UNIVERSITY OF TOKYO

• Local color distribution of natural images tends to form a line [Omer 2004, Levin 2006]

• Local color distribution of natural images tends to form a line [Omer 2004, Levin 2006]

• Local color distribution of natural images tends to form a line [Omer 2004, Levin 2006]

Variances along the principal axes (eigenvalues)

Variances along the RGB axes

Disparity = 0L = 0.003

Disparity = 1

L = 0.11

Disparity = 3

L = 0.39

07

R

0.5

0

G

Depth Estimation

• Solve for the disparity that makes the color-alignment measure minimum

Captured image

Pixel-wise estimates (intensity ≈ depth)

THE UNIVERSITY OF TOKYO

National Taiwan University

Depth Estimation

- Solve for the disparity that makes the color-alignment measure minimum
- With smoothness constraints
 - Graph-cut optimization [Boykov 2001]

Captured image

Pixel-wise estimates (intensity ≈ depth)

After graph-cuts

THE UNIVERSITY OF TOKYO

Our Method

- Color-filtered aperture
- Depth estimation
- Matting

Matting

Problem of estimating foreground opacity $\mathbf{I}(x, y) = \alpha(x, y)\mathbf{F}(x, y) + (1 - \alpha(x, y))\mathbf{B}(x, y)$ Input Foreground Background Matte color image color

THE UNIVERSITY OF TOKYO

Trimap

Assigns each pixel to one of 3 labels

- Strictly foreground $(\alpha = 1)$
- Strictly background ($\alpha = 0$)
- Unknown (α to be computed)

Captured image

THE UNIVERSITY OF TOKYO

Trimap

Assigns each pixel to one of 3 labels

- Strictly foreground ($\alpha = 1$)
- Strictly background ($\alpha = 0$)
- Unknown (α to be computed)

Generated from the depth map

Captured image

Captured image

THE UNIVERSITY OF TOKYO

• Errors remain where the foreground and background colors are similar

THE UNIVERSITY OF TOKYO

- Errors remain where the foreground and background colors are similar
 - Contribution 2: matte error correction using color misalignment cues

THE UNIVERSITY OF TOKYO

Basic Idea

• Estimate foreground and background colors based on the current matte

Captured image

Current matte

THE UNIVERSITY OF TOKYO

National Taiwan University

Basic Idea

• Estimate foreground and background colors based on the current matte

Captured image

Estimated foreground color

Current matte

Estimated background color

THE UNIVERSITY OF TOKYO

National Taiwan University

Basic Idea

- Estimate foreground and background colors based on the current matte
- Detect inconsistent color misalignments

Captured image

Estimated foreground color

Current matte

Estimated background color

THE UNIVERSITY OF TOKYO

National Taiwan University

Synthesized input image

Ground truth matte

TOSHIB/

Leading Innovation >>>

THE UNIVERSITY OF TOKYO

Synthesized input image

Ground truth matte

THE UNIVERSITY OF TOKYO

Synthesized input image

Ground truth matte

THE UNIVERSITY OF TOKYO

Hard example

Similar foreground and background colors

Foreground Background

THE UNIVERSITY OF TOKYO

Hard example

- Similar foreground and background colors
- But solvable
 - Color misalignment cues from 'x' textures

Foreground Background

Foreground

××××	*******	****
xxxx	*******	****
××××	*******	****
xxxx	××××	****
	~~~~	XXXX
XXXX	_ ^ ^ ^ ^	

Input image

Trimap

TOSHIB/

Leading Innovation >>>



THE UNIVERSITY OF TOKYO



Foreground





THE UNIVERSITY OF TOKYO



Foreground







THE UNIVERSITY OF TOKYO






#### **Current matte**

××××	*******	×***
xxxx	xxxxxxx	<b>***</b> *
xxxx	*******	****
××××	****	****
××××	xxxx	****
××××	xxxx	****

#### Input image







THE UNIVERSITY OF TOKYO



Foreground



TOSHIBA Leading Innovation >>>



THE UNIVERSITY OF TOKYO













THE UNIVERSITY OF TOKYO







THE UNIVERSITY OF TOKYO



Foreground



Final matte

x 🚍 x x x x
x 🥌 xxxx
× = ××××
×***
×××××
××××

#### Input image





THE UNIVERSITY OF TOKYO



Foreground



TOSHIBA Leading Innovation >>>



THE UNIVERSITY OF TOKYO



## Outline

- Background
- Related Work
- Our Method
- Results
- Conclusion





THE UNIVERSITY OF TOKYO





#### **Results of Depth & Matte Extraction**





THE UNIVERSITY OF TOKYO



## **Comparison: Depth Estimation**

#### With the previous color-filter methods

#### Local estimation to show raw performance



#### [Amari 1992]

#### [Chang 2002]





THE UNIVERSITY OF TOKYO



# **Comparison: Matting**

Leading Innovation >>>

#### With the trimap-based matting methods

#### The trimaps were generated by our method



# **Comparison with Ground Truth Mattes**





THE UNIVERSITY OF TOKYO



# Image Editing

- Image composition
- Color-alignment reconstruction
- Novel view synthesis
- Refocusing
- Video matting





THE UNIVERSITY OF TOKYO



#### **Example 1: Composition**







THE UNIVERSITY OF TOKYO



## Example 2: Color-Alignment Reconst.





THE UNIVERSITY OF TOKYO



#### **Reconstructed Image**







THE UNIVERSITY OF TOKYO





#### **Captured Image**







THE UNIVERSITY OF TOKYO





## **Examples 3 & 4: View/Focus Synthesis**







THE UNIVERSITY OF TOKYO



## **Example 5: Video Matting**







THE UNIVERSITY OF TOKYO



## Outline

- Background
- Related Work
- Our Method
- Results
- Conclusion





THE UNIVERSITY OF TOKYO



#### Conclusion

- Automatic depth and matte extraction using a color-filtered aperture
  - Improved depth estimation
  - Novel matting algorithm





THE UNIVERSITY OF TOKYO

National Taiwan University



93

## Conclusion

- Automatic depth and matte extraction using a color-filtered aperture
  - Improved depth estimation
  - Novel matting algorithm

#### Easy-to-use computational photography

- Put color filters in a camera lens
- Take a single photo with a hand-held camera









## Conclusion

- Automatic depth and matte extraction using a color-filtered aperture
  - Improved depth estimation
  - Novel matting algorithm

#### Easy-to-use computational photography

- Put color filters in a camera lens
- Take a single photo with a hand-held camera

#### Limitation

- Entirely red objects cannot be handled







## Thank You!!

Any questions?

#### Acknowledgments

- Takeshi Naemura
- Yusuke Iguchi
- Takuya Saito
- Johanna Wolf
- Zoltan Szego
- Paulo Silva
- Saori Horiuchi







## **Other Possible Filter Arrangements**





